[Robast-commits] r1280 - branches/robast-1.3/pkg/ROptEst/inst/scripts

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Feb 6 21:21:54 CET 2024


Author: ruckdeschel
Date: 2024-02-06 21:21:54 +0100 (Tue, 06 Feb 2024)
New Revision: 1280

Added:
   branches/robast-1.3/pkg/ROptEst/inst/scripts/examples_taking_longer.R
Modified:
   branches/robast-1.3/pkg/ROptEst/inst/scripts/AnscombeOrNot.R
   branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R
   branches/robast-1.3/pkg/ROptEst/inst/scripts/GammaModel.R
   branches/robast-1.3/pkg/ROptEst/inst/scripts/GumbelLocationModel.R
   branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R
   branches/robast-1.3/pkg/ROptEst/inst/scripts/NormalLocationScaleModel.R
Log:
[ROptEst] ported changes in R-scripts in inst/scripts from trunk to devel branch 

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/AnscombeOrNot.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/AnscombeOrNot.R	2024-02-06 20:20:56 UTC (rev 1279)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/AnscombeOrNot.R	2024-02-06 20:21:54 UTC (rev 1280)
@@ -42,7 +42,7 @@
 contnb <- ContNeighborhood(radius = 0.5)
 totvnb <- TotalVarNeighborhood(radius = 0.5)
 medianmad <- list(function(x)sign(x),function(x)sign(abs(x)-qnorm(.75)))
-### Normal location and scale --- takes ~2min:
+### Normal location and scale --- takes ~20 sec:
 system.time({print(round(mineff.ls <- checkOut(L2M = NormLocationScaleFamily(), nbd = contnb,
          extraICs = list(medmad=medianmad)),3))})
 ### Normal location
@@ -51,9 +51,9 @@
 system.time(print(round(mineff.sc <- checkOut(L2M = NormScaleFamily(), nbd = contnb),3)))
 ### Normal scale total variation
 system.time(print(round(mineff.sv <- checkOut(L2M = NormScaleFamily(), nbd = totvnb),3)))
-### Poisson(lambda=1) convex contamination:
+### Poisson(lambda=1) convex contamination: ### ~ 13 sec
 system.time(print(round(mineff.pc <- checkOut(L2M = PoisFamily(lambda = 1), nbd = contnb),3)))
-### Poisson(lambda=1) scale convex contamination:
+### Poisson(lambda=1) scale convex contamination: ~20 sec
 system.time(print(round(mineff.pv <- checkOut(L2M = PoisFamily(lambda = 1), nbd = totvnb),3)))
 
 

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R	2024-02-06 20:20:56 UTC (rev 1279)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R	2024-02-06 20:21:54 UTC (rev 1280)
@@ -49,11 +49,11 @@
 IC0 <- optIC(model = B, risk = asCov())
 IC0       # show IC
 
-#An object of class ''IC''
+#An object of class “IC”
 #### name:        Classical optimal influence curve for Binomial family
 #### L2-differentiable parametric family:         Binomial family
 #
-#### 'Curve':    An object of class ''EuclRandVarList''
+#### 'Curve':    An object of class “EuclRandVarList”
 #Domain: Real Space with dimension 1
 #[[1]]
 #length of Map:   1
@@ -101,7 +101,7 @@
 RobB1 <- InfRobModel(center = B, neighbor = ContNeighborhood(radius = 0.5))
 RobB1     # show RobB1
 
-#An object of class ''InfRobModel''
+#An object of class “InfRobModel”
 ####### center:  An object of class "BinomFamily"
 #### name:       Binomial family
 #
@@ -122,13 +122,13 @@
 #[1] "The Binomial family is symmetric with respect to prob = 0.5;"
 #[2] "i.e., d(Binom(size, prob))(k)=d(Binom(size,1-prob))(size-k)"
 #
-####### neighborhood:    An object of class ''ContNeighborhood''
+####### neighborhood:    An object of class “ContNeighborhood”
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
 (RobB2 <- InfRobModel(center = B, neighbor = TotalVarNeighborhood(radius = 0.5)))
 
-#An object of class ''InfRobModel''
+#An object of class “InfRobModel”
 ####### center:  An object of class "BinomFamily"
 #### name:       Binomial family
 #
@@ -149,7 +149,7 @@
 #[1] "The Binomial family is symmetric with respect to prob = 0.5;"
 #[2] "i.e., d(Binom(size, prob))(k)=d(Binom(size,1-prob))(size-k)"
 #
-####### neighborhood:    An object of class ''TotalVarNeighborhood''
+####### neighborhood:    An object of class “TotalVarNeighborhood”
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -160,7 +160,10 @@
 system.time(ICA <-  optIC(model=RobB1, risk=asAnscombe(),
             verbose=TRUE,lower=NULL,upper=10))
 
+#   user  system elapsed 
+#   2.75    0.00    2.76 
 
+
 #-------------------------------------------------------------------------------
 ## MSE solution
 #-------------------------------------------------------------------------------
@@ -167,11 +170,11 @@
 system.time(IC1 <- optIC(model=RobB1, risk=asMSE()))
 
 #   user  system elapsed
-#   3.62    0.00    3.62
+#   0.41    0.01    0.42 
 
 IC1
 
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -194,7 +197,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 
 checkIC(IC1)
 
@@ -216,13 +219,13 @@
 #[1] 0.1213661
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -248,7 +251,7 @@
 #prob 0.008544305
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -272,7 +275,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood''
+#An object of class “ContNeighborhood”
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
@@ -387,13 +390,13 @@
 #[1] 0.1213661
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -441,7 +444,7 @@
 #prob 0.008544305
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -465,7 +468,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood''
+#An object of class “ContNeighborhood”
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 #
@@ -501,11 +504,11 @@
 system.time(IC2 <- optIC(model=RobB2, risk=asMSE()))
 
 #   user  system elapsed
-#   9.46    0.02    9.47
+#   1.03    0.01    1.05 
 
 IC2
 
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -528,7 +531,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 
 checkIC(IC2)
 
@@ -550,13 +553,13 @@
 #[1] 0.2239858
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -582,7 +585,7 @@
 #prob 0.03342380
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -606,7 +609,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood''
+#An object of class “TotalVarNeighborhood”
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 #
@@ -671,13 +674,13 @@
 #[1] 0.2239858
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -703,7 +706,7 @@
 #prob 0.03342380
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -727,7 +730,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood''
+#An object of class “TotalVarNeighborhood”
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -738,7 +741,7 @@
 #-------------------------------------------------------------------------------
 (IC3 <- optIC(model=RobB1, risk=asBias()))
 
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -780,13 +783,13 @@
 #[1] 0.1098910
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -814,7 +817,7 @@
 #[1] 0.01011106
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -837,7 +840,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood''
+#An object of class “ContNeighborhood”
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
@@ -845,7 +848,7 @@
 
 (IC4 <- optIC(model=RobB2, risk=asBias()))
 
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -886,13 +889,13 @@
 #[1] 0.2159161
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -920,7 +923,7 @@
 #[1] 0.01148091
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -943,7 +946,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood''
+#An object of class “TotalVarNeighborhood”
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -956,7 +959,7 @@
 (IC5 <- optIC(model=RobB1, risk=asHampel(bound=clip(IC1))))
 
 #minimal bound:   0.1098910
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1001,13 +1004,13 @@
 #[1] 0.1213661
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1033,7 +1036,7 @@
 #prob 0.008544296
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1057,7 +1060,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood''
+#An object of class “ContNeighborhood”
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
@@ -1067,7 +1070,7 @@
 (IC6 <- optIC(model=RobB2, risk=asHampel(bound=Risks(IC2)$asBias$value), maxiter = 200))
 
 #minimal bound:   0.2159161
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1112,13 +1115,13 @@
 #[1] 0.2239858
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1144,7 +1147,7 @@
 #prob 0.03342372
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1168,7 +1171,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood''
+#An object of class “TotalVarNeighborhood”
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -1181,11 +1184,11 @@
 system.time(IC7 <- radiusMinimaxIC(L2Fam=B, neighbor=ContNeighborhood(),
                         risk=asMSE(), loRad=0, upRad=1))
 #   user  system elapsed
-#  39.39    0.02   39.45
+#   4.55    0.07    4.83 
 
 IC7
 
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1210,7 +1213,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 1]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.391"
-#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.103"
+#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.103"
 
 checkIC(IC7)
 
@@ -1232,13 +1235,13 @@
 #[1] 0.1269559
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1264,7 +1267,7 @@
 #prob 0.008272273
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1288,7 +1291,7 @@
 #[1] 0.3913008
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood''
+#An object of class “ContNeighborhood”
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.3913008
 
@@ -1297,11 +1300,11 @@
 system.time(IC8 <- radiusMinimaxIC(L2Fam=B, neighbor=TotalVarNeighborhood(),
                         risk=asMSE(), loRad=0, upRad=1))
 #   user  system elapsed
-# 163.20    0.12  168.21
+#  18.39    0.22   18.67 
 
 IC8
 
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1326,7 +1329,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 1]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.266"
-#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.146"
+#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.146"
 
 checkIC(IC8)
 
@@ -1348,13 +1351,13 @@
 #[1] 0.2406692
 #
 #$asBias$biastype
-#An object of class ''symmetricBias''
+#An object of class “symmetricBias”
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1380,7 +1383,7 @@
 #prob 0.01546324
 #
 #$trAsCov$normtype
-#An object of class ''NormType''
+#An object of class “NormType”
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1404,7 +1407,7 @@
 #[1] 0.2661058
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood''
+#An object of class “TotalVarNeighborhood”
 #type:    (uncond.) total variation neighborhood
 #radius:  0.2661058
 
@@ -1434,7 +1437,7 @@
 #current radius:  0.6388282      inefficiency:    1.044571
 #current radius:  0.6387762      inefficiency:    1.044584
 #   user  system elapsed
-# 125.41    1.20  143.03
+#  54.50    1.11   55.92 
 
 r.rho1
 
@@ -1464,7 +1467,7 @@
 #current radius:  0.3104966      inefficiency:    1.043323
 #current radius:  0.3105373      inefficiency:    1.043323
 #   user  system elapsed
-# 431.94    2.64  483.05
+# 280.18    4.97  286.97
 r.rho2
 
 #$rho
@@ -1491,7 +1494,7 @@
 
 #Evaluations of Minimum Kolmogorov distance estimate:
 #----------------------------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  MDEstimator(x = x, ParamFamily = BinomFamily(size = 25))
 #samplesize:   100
@@ -1525,7 +1528,7 @@
 
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  oneStepEstimator(x = x, IC = IC9, start = est0)
 #samplesize:   100
@@ -1548,7 +1551,7 @@
 #asymptotic bias:
 #[1] 0.06058743
 #(partial) influence curve:
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1571,7 +1574,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 #steps:
 #[1] 1
 
@@ -1694,8 +1697,7 @@
 #              prob
 #prob -2.220446e-16
 #maximum deviation
-#
-     9.843168e-15
+#     9.843168e-15
 ## you can also omit step 2
 est1v2 <- roptest(x, BinomFamily(size = 25), eps = 0.025,
                   neighbor = TotalVarNeighborhood(), distance = KolmogorovDist)
@@ -1794,7 +1796,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  kStepEstimator(x = x, IC = IC9, start = est0, steps = 3L)
 #samplesize:   100
@@ -1817,7 +1819,7 @@
 #asymptotic bias:
 #[1] 0.05992703
 #(partial) influence curve:
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1840,7 +1842,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 #steps:
 #[1] 3
 
@@ -1946,7 +1948,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  kStepEstimator(x = x, IC = IC10, start = est0, steps = 3L)
 #samplesize:   100
@@ -1969,7 +1971,7 @@
 #asymptotic bias:
 #[1] 0.05982794
 #(partial) influence curve:
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1992,7 +1994,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 #steps:
 #[1] 3
 
@@ -2114,7 +2116,7 @@
 
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  oneStepEstimator(x = x, IC = IC11, start = est0)
 #samplesize:   100
@@ -2137,7 +2139,7 @@
 #asymptotic bias:
 #[1] 0.07121993
 #(partial) influence curve:
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2162,7 +2164,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, Inf]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.601"
-#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.165"
+#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.165"
 #steps:
 #[1] 1
 
@@ -2184,7 +2186,7 @@
 (est3c1 <- roptest(x, BinomFamily(size = 25), eps.upper = 0.5))
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5)
 #samplesize:   100
@@ -2204,7 +2206,7 @@
 #asymptotic bias:
 #[1] 0.07044238
 #(partial) influence curve:
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2229,7 +2231,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 5]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.597"
-#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.159"
+#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.159"
 #steps:
 #[1] 1
 
@@ -2246,7 +2248,7 @@
 
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5,
 #    neighbor = TotalVarNeighborhood())
@@ -2267,7 +2269,7 @@
 #asymptotic bias:
 #[1] 0.07270451
 #(partial) influence curve:
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2292,7 +2294,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 5]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.31"
-#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.166"
+#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.166"
 #steps:
 #[1] 1
 
@@ -2383,7 +2385,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  kStepEstimator(x = x, IC = IC11, start = est0, steps = 3L)
 #samplesize:   100
@@ -2406,7 +2408,7 @@
 #asymptotic bias:
 #[1] 0.07071585
 #(partial) influence curve:
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2429,7 +2431,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 #steps:
 #[1] 3
 
@@ -2447,7 +2449,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  kStepEstimator(x = x, IC = IC12, start = est0, steps = 3L)
 #samplesize:   100
@@ -2470,7 +2472,7 @@
 #asymptotic bias:
 #[1] 0.07293007
 #(partial) influence curve:
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2493,7 +2495,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 #steps:
 #[1] 3
 
@@ -2510,7 +2512,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5,
 #    steps = 3L)
@@ -2531,7 +2533,7 @@
 #asymptotic bias:
 #[1] 0.07030448
 #(partial) influence curve:
-#An object of class ''ContIC''
+#An object of class “ContIC”
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2554,7 +2556,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 #steps:
 #[1] 3
 
@@ -2571,7 +2573,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5,
 #    neighbor = TotalVarNeighborhood(), steps = 3L)
@@ -2592,7 +2594,7 @@
 #asymptotic bias:
 #[1] 0.07266429
 #(partial) influence curve:
-#An object of class ''TotalVarIC''
+#An object of class “TotalVarIC”
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2615,7 +2617,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 #steps:
 #[1] 3
 

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/GammaModel.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/GammaModel.R	2024-02-06 20:20:56 UTC (rev 1279)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/GammaModel.R	2024-02-06 20:21:54 UTC (rev 1280)
@@ -85,6 +85,8 @@
 
 ## MSE solution
 system.time(IC1 <- optIC(model=RobG1, risk=asMSE()))
+#  user  system elapsed 
+#  18.78    0.92   19.79 
 IC1
 checkIC(IC1)
 Risks(IC1)
@@ -94,7 +96,8 @@
 
 ## lower case solutions
 system.time(IC2 <- optIC(model=RobG1, risk=asBias(), tol = 1e-10))
-IC2
+#   user  system elapsed 
+#  21.29    1.19   22.47 IC2
 checkIC(IC2)
 Risks(IC2)
 plot(IC2)
@@ -103,6 +106,8 @@
 
 ## Hampel solution
 system.time(IC3 <- optIC(model=RobG1, risk=asHampel(bound=clip(IC1))))
+#  user  system elapsed 
+#  31.73    2.24   38.50 
 IC3
 checkIC(IC3)
 Risks(IC3)
@@ -111,10 +116,13 @@
 infoPlot(IC3)
 
 ## radius minimax IC
-## takes quite some time - about 180 sec.
+## takes quite some time - about 430 sec.
 system.time(IC4 <- radiusMinimaxIC(L2Fam=G, neighbor=ContNeighborhood(), 
             risk=asMSE(), loRad=0, upRad=Inf))
+#  user  system elapsed 
+# 389.11   22.08  429.66 
 
+
 ## least favorable radius
 ## takes really long time - 33 min!
 #system.time(r.rho1 <- leastFavorableRadius(L2Fam=G, neighbor=ContNeighborhood(),
@@ -159,3 +167,6 @@
 confint(est3, symmetricBias())
 confint(est2, symmetricBias())
 confint(est4, symmetricBias())
+
+## set back defaults
+distrExOptions(ErelativeTolerance = .Machine$double.eps^0.25) # increase precision for E

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/GumbelLocationModel.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/GumbelLocationModel.R	2024-02-06 20:20:56 UTC (rev 1279)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/GumbelLocationModel.R	2024-02-06 20:21:54 UTC (rev 1280)
@@ -3,7 +3,16 @@
 ## computations numerically less stable than in case of the 
 ## Exponential Scale Family
 ###############################################################################
-require(ROptEst)
+
+###############################################################################
+# NOTE: the infrastructure for the Gumbel Location Family was moved
+#       to package RobExtremes (also on CRAN) in version 0.9 (~2013)
+# it remains as a copy in this folder, as it follows the same 
+# choreography as the other ones for smoothly parametrized models 
+# in this folder
+###############################################################################
+
+if(require(RobExtremes)){
 options("newDevice"=TRUE)
 
 ## generates Gumbel Location Family with loc = 0
@@ -173,3 +182,4 @@
 confint(G0.est21, symmetricBias())
 
 distrExOptions(ElowerTruncQuantile=0) # default
+}
\ No newline at end of file

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R	2024-02-06 20:20:56 UTC (rev 1279)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R	2024-02-06 20:21:54 UTC (rev 1280)
@@ -48,11 +48,11 @@
 IC0 <- optIC(model = N, risk = asCov())
 IC0       # show IC
 
-#An object of class ''IC'' 
+#An object of class “IC” 
 #### name:        Classical optimal influence curve for Negative Binomial family 
 #### L2-differentiable parametric family:         Negative Binomial family 
 #
-#### 'Curve':    An object of class ''EuclRandVarList'' 
+#### 'Curve':    An object of class “EuclRandVarList” 
 #Domain: Real Space with dimension 1 
 #[[1]]
 #length of Map:   1 
@@ -100,7 +100,7 @@
 RobN1 <- InfRobModel(center = N, neighbor = ContNeighborhood(radius = 0.5))
 RobN1     # show RobN1
 
-#An object of class ''InfRobModel'' 
+#An object of class “InfRobModel” 
 ####### center:  An object of class "NbinomFamily"
 #### name:       Negative Binomial family
 #
@@ -120,13 +120,13 @@
 #### props:
 #[1] ""
 #
-####### neighborhood:    An object of class ''ContNeighborhood'' 
+####### neighborhood:    An object of class “ContNeighborhood” 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
 (RobN2 <- InfRobModel(center = N, neighbor = TotalVarNeighborhood(radius = 0.5)))
 
-#An object of class ''InfRobModel'' 
+#An object of class “InfRobModel” 
 ####### center:  An object of class "NbinomFamily"
 #### name:       Negative Binomial family
 #
@@ -146,7 +146,7 @@
 #### props:
 #[1] ""
 #
-####### neighborhood:    An object of class ''TotalVarNeighborhood'' 
+####### neighborhood:    An object of class “TotalVarNeighborhood” 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -168,7 +168,7 @@
 
 IC1
 
-#An object of class ''ContIC'' 
+#An object of class “ContIC” 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -191,7 +191,7 @@
 #
 #### Infos:
 #     method  message                          
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 
 checkIC(IC1)
 
@@ -269,7 +269,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood'' 
+#An object of class “ContNeighborhood” 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
@@ -433,7 +433,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood'' 
+#An object of class “ContNeighborhood” 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 #
@@ -460,7 +460,7 @@
 
 IC2
 
-#An object of class ''TotalVarIC'' 
+#An object of class “TotalVarIC” 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -483,7 +483,7 @@
 #
 #### Infos:
 #     method  message                          
-#[1,] "optIC" "optimally robust IC for 'asMSE'"
+#[1,] "optIC" "optimally robust IC for ‘asMSE’"
 
 checkIC(IC2)
 
@@ -561,7 +561,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood'' 
+#An object of class “TotalVarNeighborhood” 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 #
@@ -684,7 +684,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood'' 
+#An object of class “TotalVarNeighborhood” 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -697,7 +697,7 @@
 (IC3 <- optIC(model=RobN1, risk=asBias()))
 
 
-#An object of class ''ContIC'' 
+#An object of class “ContIC” 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -797,7 +797,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood'' 
+#An object of class “ContNeighborhood” 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
@@ -806,7 +806,7 @@
 
 (IC4 <- optIC(model=RobN2, risk=asBias()))
 
-#An object of class ''TotalVarIC'' 
+#An object of class “TotalVarIC” 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -904,7 +904,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood'' 
+#An object of class “TotalVarNeighborhood” 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -918,7 +918,7 @@
 (IC5 <- optIC(model=RobN1, risk=asHampel(bound=clip(IC1))))
 
 #minimal bound:   0.05458835 
-#An object of class ''ContIC'' 
+#An object of class “ContIC” 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1020,7 +1020,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood'' 
+#An object of class “ContNeighborhood” 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
@@ -1033,7 +1033,7 @@
 #minimal bound:   0.1089328 
 #maximum iterations reached!
 # achieved precision:     5.583403e-07 
-#An object of class ''TotalVarIC'' 
+#An object of class “TotalVarIC” 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1136,7 +1136,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood'' 
+#An object of class “TotalVarNeighborhood” 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -1155,7 +1155,7 @@
 
 IC7
 
-#An object of class ''ContIC'' 
+#An object of class “ContIC” 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1180,7 +1180,7 @@
 #     method            message                                            
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0.01, 3.9]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.581"                    
-#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.177"    
+#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.177"    
 
 checkIC(IC7)
 
@@ -1258,7 +1258,7 @@
 #[1] 0.5814856
 #
 #$asMSE$at
-#An object of class ''ContNeighborhood'' 
+#An object of class “ContNeighborhood” 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5814856 
 
@@ -1272,7 +1272,7 @@
 
 IC8
 
-#An object of class ''TotalVarIC'' 
+#An object of class “TotalVarIC” 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1297,7 +1297,7 @@
 #     method            message                                            
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0.01, 1.8]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.294"                    
-#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.168"   
+#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.168"   
 
 
 checkIC(IC8)
@@ -1377,7 +1377,7 @@
 #[1] 0.2944932
 #
 #$asMSE$at
-#An object of class ''TotalVarNeighborhood'' 
+#An object of class “TotalVarNeighborhood” 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.2944932 
 
@@ -1407,6 +1407,7 @@
 #current radius:  0.5625595      inefficiency:    1.044701 
 #   user  system elapsed 
 #  141.37   0.84  150.89
+### 630 sec
 
 ## same as for binomial????
  
@@ -1441,7 +1442,8 @@
 #current radius:  0.2866889      inefficiency:    1.044456 
 #    user  system elapsed 
 #  707.48    3.17  760.09
- 
+### 630 sec
+
 r.rho2
 
 #$rho
@@ -1469,7 +1471,7 @@
 
 #Evaluations of Maximum likelihood estimate:
 #-------------------------------------------
-#An object of class ''Estimate''
+#An object of class “Estimate”
 #generated by call
 #  MLEstimator(x = x, ParamFamily = NbinomFamily(size = 25))
 #samplesize:   100
@@ -1492,7 +1494,7 @@
 
 #Evaluations of Minimum Kolmogorov distance estimate:
 #----------------------------------------------------
-#An object of class ''Estimate''
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robast -r 1280


More information about the Robast-commits mailing list