[Robast-commits] r1259 - in branches/robast-1.3/pkg: ROptEst ROptEst/inst ROptEst/inst/scripts ROptEstOld ROptEstOld/R ROptEstOld/inst ROptEstOld/man ROptRegTS ROptRegTS/inst RandVar/inst RobAStBase RobAStBase/inst RobAStRDA RobAStRDA/inst RobExtremes RobExtremes/R RobExtremes/inst RobExtremes/inst/AddMaterial/interpolation RobExtremes/man RobLox RobLox/inst RobLoxBioC RobLoxBioC/inst RobRex RobRex/inst

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Mon May 8 16:02:58 CEST 2023


Author: ruckdeschel
Date: 2023-05-08 16:02:58 +0200 (Mon, 08 May 2023)
New Revision: 1259

Modified:
   branches/robast-1.3/pkg/ROptEst/DESCRIPTION
   branches/robast-1.3/pkg/ROptEst/inst/CITATION
   branches/robast-1.3/pkg/ROptEst/inst/NEWS
   branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R
   branches/robast-1.3/pkg/ROptEst/inst/scripts/ExponentialScaleModel.R
   branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R
   branches/robast-1.3/pkg/ROptEstOld/DESCRIPTION
   branches/robast-1.3/pkg/ROptEstOld/R/Gumbel.R
   branches/robast-1.3/pkg/ROptEstOld/inst/NEWS
   branches/robast-1.3/pkg/ROptEstOld/man/ROptEstOldConstants.Rd
   branches/robast-1.3/pkg/ROptRegTS/DESCRIPTION
   branches/robast-1.3/pkg/ROptRegTS/inst/CITATION
   branches/robast-1.3/pkg/ROptRegTS/inst/NEWS
   branches/robast-1.3/pkg/RandVar/inst/NEWS
   branches/robast-1.3/pkg/RobAStBase/DESCRIPTION
   branches/robast-1.3/pkg/RobAStBase/inst/CITATION
   branches/robast-1.3/pkg/RobAStBase/inst/NEWS
   branches/robast-1.3/pkg/RobAStRDA/DESCRIPTION
   branches/robast-1.3/pkg/RobAStRDA/inst/CITATION
   branches/robast-1.3/pkg/RobAStRDA/inst/NEWS
   branches/robast-1.3/pkg/RobExtremes/DESCRIPTION
   branches/robast-1.3/pkg/RobExtremes/R/Gumbel.R
   branches/robast-1.3/pkg/RobExtremes/inst/AddMaterial/interpolation/getLMInterpol.R
   branches/robast-1.3/pkg/RobExtremes/inst/CITATION
   branches/robast-1.3/pkg/RobExtremes/inst/NEWS
   branches/robast-1.3/pkg/RobExtremes/man/0RobExtremes-package.Rd
   branches/robast-1.3/pkg/RobExtremes/man/RobExtremesConstants.Rd
   branches/robast-1.3/pkg/RobLox/DESCRIPTION
   branches/robast-1.3/pkg/RobLox/inst/CITATION
   branches/robast-1.3/pkg/RobLox/inst/NEWS
   branches/robast-1.3/pkg/RobLoxBioC/DESCRIPTION
   branches/robast-1.3/pkg/RobLoxBioC/inst/CITATION
   branches/robast-1.3/pkg/RobLoxBioC/inst/NEWS
   branches/robast-1.3/pkg/RobRex/DESCRIPTION
   branches/robast-1.3/pkg/RobRex/inst/CITATION
   branches/robast-1.3/pkg/RobRex/inst/NEWS
Log:
[RobASt-devel branch 1.3] updated CITATION files to new format and NEWS and converted to UTF-8

Modified: branches/robast-1.3/pkg/ROptEst/DESCRIPTION
===================================================================
--- branches/robast-1.3/pkg/ROptEst/DESCRIPTION	2023-05-08 06:24:30 UTC (rev 1258)
+++ branches/robast-1.3/pkg/ROptEst/DESCRIPTION	2023-05-08 14:02:58 UTC (rev 1259)
@@ -15,8 +15,8 @@
             "Ruckdeschel", role=c("aut", "cph")))
 ByteCompile: yes
 License: LGPL-3
-URL: http://robast.r-forge.r-project.org/
-Encoding: latin1
+URL: https://r-forge.r-project.org/projects/robast/
+Encoding: UTF-8
 LastChangedDate: {$LastChangedDate$}
 LastChangedRevision: {$LastChangedRevision$}
 VCS/SVNRevision: 1213

Modified: branches/robast-1.3/pkg/ROptEst/inst/CITATION
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/CITATION	2023-05-08 06:24:30 UTC (rev 1258)
+++ branches/robast-1.3/pkg/ROptEst/inst/CITATION	2023-05-08 14:02:58 UTC (rev 1259)
@@ -2,19 +2,19 @@
 year <- sub("-.*", "", meta$Date)
 note <- sprintf("R package version %s", meta$Version)
 
-citHeader("To cite package ROptEst in publications use:")
-
-citEntry(entry="Manual",
+bibentry(
+   bibtype = "Manual",
+   mheader = "To cite package ROptEst in publications use:",
          title = "ROptEst: Optimally robust estimation",
-         author = personList(as.person("M. Kohl"),
-                             as.person("P. Ruckdeschel")),
+         author = c(as.person("M. Kohl"),
+                    as.person("P. Ruckdeschel")),
          language = "English",
          year = year,
          note = note,
          type = "R package",
-         url = "http://robast.r-forge.r-project.org/",
+         url = "https://r-forge.r-project.org/projects/robast/",
          textVersion = paste("Kohl, M., and Ruckdeschel, P.",
                              sprintf("(%s).", year),
                              "ROptEst: Optimally robust estimation.",
                              paste(note, ".", sep = ""),
-                             "URL http://robast.r-forge.r-project.org/"))
+                             "URL https://r-forge.r-project.org/projects/robast/"))

Modified: branches/robast-1.3/pkg/ROptEst/inst/NEWS
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/NEWS	2023-05-08 06:24:30 UTC (rev 1258)
+++ branches/robast-1.3/pkg/ROptEst/inst/NEWS	2023-05-08 14:02:58 UTC (rev 1259)
@@ -17,6 +17,7 @@
 + fixed some broken URLs and changed URLs from http to https where possible
 + triggered by new NOTES uncovered by R CMD check, we deleted duplicate entries for items 
   in internal-interpolate.Rd
++ changed encoding to UTF-8 and updated URL for r-forge project homepage
   
 #######################################
 version 1.2.1

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R	2023-05-08 06:24:30 UTC (rev 1258)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/BinomialModel.R	2023-05-08 14:02:58 UTC (rev 1259)
@@ -49,11 +49,11 @@
 IC0 <- optIC(model = B, risk = asCov())
 IC0       # show IC
 
-#An object of class “IC”
+#An object of class ''IC''
 #### name:        Classical optimal influence curve for Binomial family
 #### L2-differentiable parametric family:         Binomial family
 #
-#### 'Curve':    An object of class “EuclRandVarList”
+#### 'Curve':    An object of class ''EuclRandVarList''
 #Domain: Real Space with dimension 1
 #[[1]]
 #length of Map:   1
@@ -101,7 +101,7 @@
 RobB1 <- InfRobModel(center = B, neighbor = ContNeighborhood(radius = 0.5))
 RobB1     # show RobB1
 
-#An object of class “InfRobModel”
+#An object of class ''InfRobModel''
 ####### center:  An object of class "BinomFamily"
 #### name:       Binomial family
 #
@@ -122,13 +122,13 @@
 #[1] "The Binomial family is symmetric with respect to prob = 0.5;"
 #[2] "i.e., d(Binom(size, prob))(k)=d(Binom(size,1-prob))(size-k)"
 #
-####### neighborhood:    An object of class “ContNeighborhood”
+####### neighborhood:    An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
 (RobB2 <- InfRobModel(center = B, neighbor = TotalVarNeighborhood(radius = 0.5)))
 
-#An object of class “InfRobModel”
+#An object of class ''InfRobModel''
 ####### center:  An object of class "BinomFamily"
 #### name:       Binomial family
 #
@@ -149,7 +149,7 @@
 #[1] "The Binomial family is symmetric with respect to prob = 0.5;"
 #[2] "i.e., d(Binom(size, prob))(k)=d(Binom(size,1-prob))(size-k)"
 #
-####### neighborhood:    An object of class “TotalVarNeighborhood”
+####### neighborhood:    An object of class ''TotalVarNeighborhood''
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -171,7 +171,7 @@
 
 IC1
 
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -194,7 +194,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 
 checkIC(IC1)
 
@@ -216,13 +216,13 @@
 #[1] 0.1213661
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -248,7 +248,7 @@
 #prob 0.008544305
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -272,7 +272,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “ContNeighborhood”
+#An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
@@ -387,13 +387,13 @@
 #[1] 0.1213661
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -441,7 +441,7 @@
 #prob 0.008544305
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -465,7 +465,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “ContNeighborhood”
+#An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 #
@@ -505,7 +505,7 @@
 
 IC2
 
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -528,7 +528,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 
 checkIC(IC2)
 
@@ -550,13 +550,13 @@
 #[1] 0.2239858
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -582,7 +582,7 @@
 #prob 0.03342380
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -606,7 +606,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood”
+#An object of class ''TotalVarNeighborhood''
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 #
@@ -671,13 +671,13 @@
 #[1] 0.2239858
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -703,7 +703,7 @@
 #prob 0.03342380
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -727,7 +727,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood”
+#An object of class ''TotalVarNeighborhood''
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -738,7 +738,7 @@
 #-------------------------------------------------------------------------------
 (IC3 <- optIC(model=RobB1, risk=asBias()))
 
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -780,13 +780,13 @@
 #[1] 0.1098910
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -814,7 +814,7 @@
 #[1] 0.01011106
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -837,7 +837,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class “ContNeighborhood”
+#An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
@@ -845,7 +845,7 @@
 
 (IC4 <- optIC(model=RobB2, risk=asBias()))
 
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -886,13 +886,13 @@
 #[1] 0.2159161
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -920,7 +920,7 @@
 #[1] 0.01148091
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -943,7 +943,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood”
+#An object of class ''TotalVarNeighborhood''
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -956,7 +956,7 @@
 (IC5 <- optIC(model=RobB1, risk=asHampel(bound=clip(IC1))))
 
 #minimal bound:   0.1098910
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1001,13 +1001,13 @@
 #[1] 0.1213661
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1033,7 +1033,7 @@
 #prob 0.008544296
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1057,7 +1057,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “ContNeighborhood”
+#An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 
@@ -1067,7 +1067,7 @@
 (IC6 <- optIC(model=RobB2, risk=asHampel(bound=Risks(IC2)$asBias$value), maxiter = 200))
 
 #minimal bound:   0.2159161
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1112,13 +1112,13 @@
 #[1] 0.2239858
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1144,7 +1144,7 @@
 #prob 0.03342372
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1168,7 +1168,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood”
+#An object of class ''TotalVarNeighborhood''
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
@@ -1185,7 +1185,7 @@
 
 IC7
 
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1210,7 +1210,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 1]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.391"
-#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.103"
+#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.103"
 
 checkIC(IC7)
 
@@ -1232,13 +1232,13 @@
 #[1] 0.1269559
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1264,7 +1264,7 @@
 #prob 0.008272273
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1288,7 +1288,7 @@
 #[1] 0.3913008
 #
 #$asMSE$at
-#An object of class “ContNeighborhood”
+#An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.3913008
 
@@ -1301,7 +1301,7 @@
 
 IC8
 
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1326,7 +1326,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 1]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.266"
-#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.146"
+#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.146"
 
 checkIC(IC8)
 
@@ -1348,13 +1348,13 @@
 #[1] 0.2406692
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1380,7 +1380,7 @@
 #prob 0.01546324
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -1404,7 +1404,7 @@
 #[1] 0.2661058
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood”
+#An object of class ''TotalVarNeighborhood''
 #type:    (uncond.) total variation neighborhood
 #radius:  0.2661058
 
@@ -1491,7 +1491,7 @@
 
 #Evaluations of Minimum Kolmogorov distance estimate:
 #----------------------------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  MDEstimator(x = x, ParamFamily = BinomFamily(size = 25))
 #samplesize:   100
@@ -1525,7 +1525,7 @@
 
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  oneStepEstimator(x = x, IC = IC9, start = est0)
 #samplesize:   100
@@ -1548,7 +1548,7 @@
 #asymptotic bias:
 #[1] 0.06058743
 #(partial) influence curve:
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1571,7 +1571,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 #steps:
 #[1] 1
 
@@ -1794,7 +1794,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  kStepEstimator(x = x, IC = IC9, start = est0, steps = 3L)
 #samplesize:   100
@@ -1817,7 +1817,7 @@
 #asymptotic bias:
 #[1] 0.05992703
 #(partial) influence curve:
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1840,7 +1840,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 #steps:
 #[1] 3
 
@@ -1946,7 +1946,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  kStepEstimator(x = x, IC = IC10, start = est0, steps = 3L)
 #samplesize:   100
@@ -1969,7 +1969,7 @@
 #asymptotic bias:
 #[1] 0.05982794
 #(partial) influence curve:
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -1992,7 +1992,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 #steps:
 #[1] 3
 
@@ -2114,7 +2114,7 @@
 
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  oneStepEstimator(x = x, IC = IC11, start = est0)
 #samplesize:   100
@@ -2137,7 +2137,7 @@
 #asymptotic bias:
 #[1] 0.07121993
 #(partial) influence curve:
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2162,7 +2162,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, Inf]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.601"
-#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.165"
+#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.165"
 #steps:
 #[1] 1
 
@@ -2184,7 +2184,7 @@
 (est3c1 <- roptest(x, BinomFamily(size = 25), eps.upper = 0.5))
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5)
 #samplesize:   100
@@ -2204,7 +2204,7 @@
 #asymptotic bias:
 #[1] 0.07044238
 #(partial) influence curve:
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2229,7 +2229,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 5]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.597"
-#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.159"
+#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.159"
 #steps:
 #[1] 1
 
@@ -2246,7 +2246,7 @@
 
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5,
 #    neighbor = TotalVarNeighborhood())
@@ -2267,7 +2267,7 @@
 #asymptotic bias:
 #[1] 0.07270451
 #(partial) influence curve:
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2292,7 +2292,7 @@
 #     method            message
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, 5]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.31"
-#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.166"
+#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.166"
 #steps:
 #[1] 1
 
@@ -2383,7 +2383,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  kStepEstimator(x = x, IC = IC11, start = est0, steps = 3L)
 #samplesize:   100
@@ -2406,7 +2406,7 @@
 #asymptotic bias:
 #[1] 0.07071585
 #(partial) influence curve:
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2429,7 +2429,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 #steps:
 #[1] 3
 
@@ -2447,7 +2447,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  kStepEstimator(x = x, IC = IC12, start = est0, steps = 3L)
 #samplesize:   100
@@ -2470,7 +2470,7 @@
 #asymptotic bias:
 #[1] 0.07293007
 #(partial) influence curve:
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2493,7 +2493,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 #steps:
 #[1] 3
 
@@ -2510,7 +2510,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5,
 #    steps = 3L)
@@ -2531,7 +2531,7 @@
 #asymptotic bias:
 #[1] 0.07030448
 #(partial) influence curve:
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2554,7 +2554,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 #steps:
 #[1] 3
 
@@ -2571,7 +2571,7 @@
 
 #Evaluations of 3-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  roptest(x = x, L2Fam = BinomFamily(size = 25), eps.upper = 0.5,
 #    neighbor = TotalVarNeighborhood(), steps = 3L)
@@ -2592,7 +2592,7 @@
 #asymptotic bias:
 #[1] 0.07266429
 #(partial) influence curve:
-#An object of class “TotalVarIC”
+#An object of class ''TotalVarIC''
 #### name:        IC of total variation type
 #
 #### L2-differentiable parametric family:         Binomial family
@@ -2615,7 +2615,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 #steps:
 #[1] 3
 

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/ExponentialScaleModel.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/ExponentialScaleModel.R	2023-05-08 06:24:30 UTC (rev 1258)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/ExponentialScaleModel.R	2023-05-08 14:02:58 UTC (rev 1259)
@@ -38,11 +38,11 @@
 ## classical optimal IC
 E1.IC0 <- optIC(model = E1, risk = asCov())
 E1.IC0       # show IC
-#An object of class “IC”
+#An object of class ''IC''
 #### name:        Classical optimal influence curve for Exponential scale family
 #### L2-differentiable parametric family:         Exponential scale family
 #
-#### 'Curve':    An object of class “EuclRandVarList”
+#### 'Curve':    An object of class ''EuclRandVarList''
 #Domain: Real Space with dimension 1
 #[[1]]
 #length of Map:   1
@@ -70,7 +70,7 @@
 ## L_2 family + infinitesimal neighborhood
 E1.Rob1 <- InfRobModel(center = E1, neighbor = ContNeighborhood(radius = 0.5))
 E1.Rob1     # show E1.Rob1
-#An object of class “InfRobModel”
+#An object of class ''InfRobModel''
 ####### center:  An object of class "ExpScaleFamily"
 #### name:       Exponential scale family
 #
@@ -91,11 +91,11 @@
 #[2] "the group of transformations 'g(y) = scale*y'"
 #[3] "with scale parameter 'scale'"
 #
-####### neighborhood:    An object of class “ContNeighborhood”
+####### neighborhood:    An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 (E1.Rob2 <- InfRobModel(center = E1, neighbor = TotalVarNeighborhood(radius = 0.5)))
-#An object of class “InfRobModel”
+#An object of class ''InfRobModel''
 ####### center:  An object of class "ExpScaleFamily"
 #### name:       Exponential scale family
 #
@@ -116,13 +116,13 @@
 #[2] "the group of transformations 'g(y) = scale*y'"
 #[3] "with scale parameter 'scale'"
 #
-####### neighborhood:    An object of class “TotalVarNeighborhood”
+####### neighborhood:    An object of class ''TotalVarNeighborhood''
 #type:    (uncond.) total variation neighborhood
 #radius:  0.5
 
 ## MSE solution
 (E1.IC1 <- optIC(model=E1.Rob1, risk=asMSE()))
-#An object of class “ContIC”
+#An object of class ''ContIC''
 #### name:        IC of contamination type
 #
 #### L2-differentiable parametric family:         Exponential scale family
@@ -145,7 +145,7 @@
 #
 #### Infos:
 #     method  message
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 checkIC(E1.IC1)
 #precision of centering:  -2.924022e-05
 #precision of Fisher consistency:
@@ -163,13 +163,13 @@
 #[1] 0.8449229
 #
 #$asBias$biastype
-#An object of class “symmetricBias”
+#An object of class ''symmetricBias''
 #Slot "name":
 #[1] "symmetric Bias"
 #
 #
 #$asBias$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -195,7 +195,7 @@
 #scale 0.3465008
 #
 #$trAsCov$normtype
-#An object of class “NormType”
+#An object of class ''NormType''
 #Slot "name":
 #[1] "EuclideanNorm"
 #
@@ -219,7 +219,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “ContNeighborhood”
+#An object of class ''ContNeighborhood''
 #type:    (uncond.) convex contamination neighborhood
 #radius:  0.5
 

Modified: branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R
===================================================================
--- branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R	2023-05-08 06:24:30 UTC (rev 1258)
+++ branches/robast-1.3/pkg/ROptEst/inst/scripts/NbinomModel.R	2023-05-08 14:02:58 UTC (rev 1259)
@@ -48,11 +48,11 @@
 IC0 <- optIC(model = N, risk = asCov())
 IC0       # show IC
 
-#An object of class “IC” 
+#An object of class ''IC'' 
 #### name:        Classical optimal influence curve for Negative Binomial family 
 #### L2-differentiable parametric family:         Negative Binomial family 
 #
-#### 'Curve':    An object of class “EuclRandVarList” 
+#### 'Curve':    An object of class ''EuclRandVarList'' 
 #Domain: Real Space with dimension 1 
 #[[1]]
 #length of Map:   1 
@@ -100,7 +100,7 @@
 RobN1 <- InfRobModel(center = N, neighbor = ContNeighborhood(radius = 0.5))
 RobN1     # show RobN1
 
-#An object of class “InfRobModel” 
+#An object of class ''InfRobModel'' 
 ####### center:  An object of class "NbinomFamily"
 #### name:       Negative Binomial family
 #
@@ -120,13 +120,13 @@
 #### props:
 #[1] ""
 #
-####### neighborhood:    An object of class “ContNeighborhood” 
+####### neighborhood:    An object of class ''ContNeighborhood'' 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
 (RobN2 <- InfRobModel(center = N, neighbor = TotalVarNeighborhood(radius = 0.5)))
 
-#An object of class “InfRobModel” 
+#An object of class ''InfRobModel'' 
 ####### center:  An object of class "NbinomFamily"
 #### name:       Negative Binomial family
 #
@@ -146,7 +146,7 @@
 #### props:
 #[1] ""
 #
-####### neighborhood:    An object of class “TotalVarNeighborhood” 
+####### neighborhood:    An object of class ''TotalVarNeighborhood'' 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -168,7 +168,7 @@
 
 IC1
 
-#An object of class “ContIC” 
+#An object of class ''ContIC'' 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -191,7 +191,7 @@
 #
 #### Infos:
 #     method  message                          
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 
 checkIC(IC1)
 
@@ -269,7 +269,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “ContNeighborhood” 
+#An object of class ''ContNeighborhood'' 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
@@ -433,7 +433,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “ContNeighborhood” 
+#An object of class ''ContNeighborhood'' 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 #
@@ -460,7 +460,7 @@
 
 IC2
 
-#An object of class “TotalVarIC” 
+#An object of class ''TotalVarIC'' 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -483,7 +483,7 @@
 #
 #### Infos:
 #     method  message                          
-#[1,] "optIC" "optimally robust IC for ‘asMSE’"
+#[1,] "optIC" "optimally robust IC for 'asMSE'"
 
 checkIC(IC2)
 
@@ -561,7 +561,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood” 
+#An object of class ''TotalVarNeighborhood'' 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 #
@@ -684,7 +684,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood” 
+#An object of class ''TotalVarNeighborhood'' 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -697,7 +697,7 @@
 (IC3 <- optIC(model=RobN1, risk=asBias()))
 
 
-#An object of class “ContIC” 
+#An object of class ''ContIC'' 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -797,7 +797,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class “ContNeighborhood” 
+#An object of class ''ContNeighborhood'' 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
@@ -806,7 +806,7 @@
 
 (IC4 <- optIC(model=RobN2, risk=asBias()))
 
-#An object of class “TotalVarIC” 
+#An object of class ''TotalVarIC'' 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -904,7 +904,7 @@
 #[1] 0.25
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood” 
+#An object of class ''TotalVarNeighborhood'' 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -918,7 +918,7 @@
 (IC5 <- optIC(model=RobN1, risk=asHampel(bound=clip(IC1))))
 
 #minimal bound:   0.05458835 
-#An object of class “ContIC” 
+#An object of class ''ContIC'' 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1020,7 +1020,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “ContNeighborhood” 
+#An object of class ''ContNeighborhood'' 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5 
 
@@ -1033,7 +1033,7 @@
 #minimal bound:   0.1089328 
 #maximum iterations reached!
 # achieved precision:     5.583403e-07 
-#An object of class “TotalVarIC” 
+#An object of class ''TotalVarIC'' 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1136,7 +1136,7 @@
 #[1] 0.5
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood” 
+#An object of class ''TotalVarNeighborhood'' 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.5 
 
@@ -1155,7 +1155,7 @@
 
 IC7
 
-#An object of class “ContIC” 
+#An object of class ''ContIC'' 
 #### name:        IC of contamination type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1180,7 +1180,7 @@
 #     method            message                                            
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0.01, 3.9]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.581"                    
-#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.177"    
+#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.177"    
 
 checkIC(IC7)
 
@@ -1258,7 +1258,7 @@
 #[1] 0.5814856
 #
 #$asMSE$at
-#An object of class “ContNeighborhood” 
+#An object of class ''ContNeighborhood'' 
 #type:    (uncond.) convex contamination neighborhood 
 #radius:  0.5814856 
 
@@ -1272,7 +1272,7 @@
 
 IC8
 
-#An object of class “TotalVarIC” 
+#An object of class ''TotalVarIC'' 
 #### name:        IC of total variation type 
 #
 #### L2-differentiable parametric family:         Negative Binomial family 
@@ -1297,7 +1297,7 @@
 #     method            message                                            
 #[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0.01, 1.8]"
 #[2,] "radiusMinimaxIC" "least favorable radius: 0.294"                    
-#[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.168"   
+#[3,] "radiusMinimaxIC" "maximum 'asMSE'-inefficiency: 1.168"   
 
 
 checkIC(IC8)
@@ -1377,7 +1377,7 @@
 #[1] 0.2944932
 #
 #$asMSE$at
-#An object of class “TotalVarNeighborhood” 
+#An object of class ''TotalVarNeighborhood'' 
 #type:    (uncond.) total variation neighborhood 
 #radius:  0.2944932 
 
@@ -1469,7 +1469,7 @@
 
 #Evaluations of Maximum likelihood estimate:
 #-------------------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  MLEstimator(x = x, ParamFamily = NbinomFamily(size = 25))
 #samplesize:   100
@@ -1492,7 +1492,7 @@
 
 #Evaluations of Minimum Kolmogorov distance estimate:
 #----------------------------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  MDEstimator(x = x, ParamFamily = NbinomFamily(size = 25))
 #samplesize:   100
@@ -1528,7 +1528,7 @@
 
 #Evaluations of 1-step estimate:
 #-------------------------------
-#An object of class “Estimate”
+#An object of class ''Estimate''
 #generated by call
 #  oneStepEstimator(x = x, IC = IC9, start = est0)
 #samplesize:   100
@@ -1551,7 +1551,7 @@
 #asymptotic bias:
 #[1] 0.03064529
 #(partial) influence curve:
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robast -r 1259


More information about the Robast-commits mailing list