[Robast-commits] r1250 - in pkg/RobLoxBioC: . R inst man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat May 6 17:12:41 CEST 2023


Author: stamats
Date: 2023-05-06 17:12:41 +0200 (Sat, 06 May 2023)
New Revision: 1250

Modified:
   pkg/RobLoxBioC/DESCRIPTION
   pkg/RobLoxBioC/R/robloxbiocBeadLevelData.R
   pkg/RobLoxBioC/inst/CITATION
   pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd
   pkg/RobLoxBioC/man/SimStudies.Rd
Log:
some more changes and updates

Modified: pkg/RobLoxBioC/DESCRIPTION
===================================================================
--- pkg/RobLoxBioC/DESCRIPTION	2023-05-06 09:07:22 UTC (rev 1249)
+++ pkg/RobLoxBioC/DESCRIPTION	2023-05-06 15:12:41 UTC (rev 1250)
@@ -1,6 +1,6 @@
 Package: RobLoxBioC
-Version: 1.2.0
-Date: 2019-04-02
+Version: 1.2.1
+Date: 2023-05-06
 Title: Infinitesimally Robust Estimators for Preprocessing -Omics Data
 Description: Functions for the determination of optimally robust influence curves and
             estimators for preprocessing omics data, in particular gene expression data.
@@ -12,8 +12,8 @@
             email="Matthias.Kohl at stamats.de")
 ByteCompile: yes
 License: LGPL-3
-URL: http://robast.r-forge.r-project.org/
-Encoding: latin1
+URL: https://r-forge.r-project.org/projects/robast/
+Encoding: UTF-8
 LastChangedDate: {$LastChangedDate$}
 LastChangedRevision: {$LastChangedRevision$}
 VCS/SVNRevision: 1214

Modified: pkg/RobLoxBioC/R/robloxbiocBeadLevelData.R
===================================================================
--- pkg/RobLoxBioC/R/robloxbiocBeadLevelData.R	2023-05-06 09:07:22 UTC (rev 1249)
+++ pkg/RobLoxBioC/R/robloxbiocBeadLevelData.R	2023-05-06 15:12:41 UTC (rev 1250)
@@ -185,7 +185,7 @@
                 message(paste("Annotating control probes using package ", annoPkg, " Version:", annoVers, "\n", sep = ""))
                 mapEnv <- as.name(paste("illumina", annoName, "REPORTERGROUPNAME", sep = ""))
                 t <- try(eval(mapEnv), silent = TRUE)
-                if (class(t) == "try-error") {
+                if (inherits(t, "try-error")) {
                     message(paste("Could not find a REPORTERGROUPNAME mapping in annotation package ", annoPkg, 
                                   ". Perhaps it needs updating?", sep = ""))
                 }

Modified: pkg/RobLoxBioC/inst/CITATION
===================================================================
--- pkg/RobLoxBioC/inst/CITATION	2023-05-06 09:07:22 UTC (rev 1249)
+++ pkg/RobLoxBioC/inst/CITATION	2023-05-06 15:12:41 UTC (rev 1250)
@@ -1,19 +1,14 @@
-if(!exists("meta") || is.null(meta)) meta <- packageDescription("RobLoxBioC")
-year <- sub("-.*", "", meta$Date)
-note <- sprintf("R package version %s", meta$Version)
-
-citHeader("To cite package RobLoxBioC in publications use:")
-
-citEntry(entry="Article",
-         title = "Preprocessing of gene expression data by optimally robust estimators",
-         author = personList(as.person("M. Kohl"), as.person("H.P. Deigner")),
+bibentry(bibtype="Article",
+         title = "{Preprocessing of gene expression data by optimally robust estimators}",
+         author = c(as.person("M. Kohl"), as.person("H.P. Deigner")),
          journal = "BMC Bioinformatics",
          language = "English",
          year = 2010,
          Volume="11",
          Pages="583",
-         url = "http://www.biomedcentral.com/1471-2105/11/583/abstract",
+         url = "https://doi.org/10.1186/1471-2105-11-583",
          textVersion = paste("Kohl, M. and Deigner, H.P.",
                              "Preprocessing of gene expression data by optimally robust estimators.",
                              "BMC Bioinformatics 2010, 11:583",
-                             "URL http://www.biomedcentral.com/1471-2105/11/583/abstract"))
+                             "URL https://doi.org/10.1186/1471-2105-11-583"))
+

Modified: pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd
===================================================================
--- pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd	2023-05-06 09:07:22 UTC (rev 1249)
+++ pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd	2023-05-06 15:12:41 UTC (rev 1250)
@@ -1,58 +1,61 @@
-\name{RobLoxBioC-package}
-\alias{RobLoxBioC-package}
-\alias{RobLoxBioC}
-\docType{package}
-\title{
-Infinitesimally robust estimators for preprocessing omics data
-}
-\description{
-Functions for the determination of optimally robust influence curves 
-and estimators for preprocessing omics data, in particular gene expression data.
-}
-\details{
-\tabular{ll}{
-Package: \tab RobLoxBioC \cr
-Version: \tab 1.2.0 \cr
-Date: \tab 2019-04-02 \cr
-Depends:\tab R(>= 2.14.0), methods, distr(>= 2.5.2), affy \cr
-Imports:\tab Biobase, BiocGenerics, beadarray, RobLox(>= 0.9.2),
-    distrMod(>= 2.5.2), lattice, RColorBrewer \cr
-Suggests:\tab affydata, hgu95av2cdf, beadarrayExampleData,
-    illuminaHumanv3.db \cr
-ByteCompile: \tab yes \cr
-License: \tab LGPL-3 \cr
-URL: \tab http://robast.r-forge.r-project.org/\cr
-VCS/SVNRevision: \tab 1214 \cr
-Encoding: \tab latin1 \cr
-}
-}
-\author{
-Matthias Kohl \email{Matthias.Kohl at stamats.de}\cr%
-Maintainer: Matthias Kohl  \email{matthias.kohl at stamats.de}}
-\references{
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-  Kohl M. and Deigner H.P. (2010). Preprocessing of gene expression data by optimally 
-  robust estimators. \emph{BMC Bioinformatics}, 11:583. 
-  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation 
-  in General Smoothly Parametrized Models. \emph{Statistical Methods and Application}, 
-  \bold{19}(3):333-354. 
-  
-  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
-  Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing
-  the Radius. \emph{Statistical Methods and Applications} \bold{17}(1) 13-40.
-  Extended version: \url{http://r-kurs.de/RRlong.pdf}
-}
-\seealso{
-\code{\link[RobLox]{roblox}}, \code{\link[RobLox]{rowRoblox}}
-}
-\section{Package versions}{
-Note: The first two numbers of package versions do not necessarily reflect
- package-individual development, but rather are chosen for the
- RobAStXXX family as a whole in order to ease updating "depends"
- information.
-}
-\examples{
-library(RobLoxBioC)
-}
-\keyword{package}
+\name{RobLoxBioC-package}
+\alias{RobLoxBioC-package}
+\alias{RobLoxBioC}
+\docType{package}
+\title{
+Infinitesimally robust estimators for preprocessing omics data
+}
+\description{
+Functions for the determination of optimally robust influence curves 
+and estimators for preprocessing omics data, in particular gene expression data.
+}
+\details{
+\tabular{ll}{
+Package: \tab RobLoxBioC \cr
+Version: \tab 1.2.1 \cr
+Date: \tab 2023-05-06 \cr
+Depends:\tab R(>= 2.14.0), methods, distr(>= 2.5.2), affy \cr
+Imports:\tab Biobase, BiocGenerics, beadarray, RobLox(>= 0.9.2),
+    distrMod(>= 2.5.2), lattice, RColorBrewer \cr
+Suggests:\tab affydata, hgu95av2cdf, beadarrayExampleData,
+    illuminaHumanv3.db \cr
+ByteCompile: \tab yes \cr
+License: \tab LGPL-3 \cr
+URL: \tab https://r-forge.r-project.org/projects/robast/\cr
+VCS/SVNRevision: \tab 1214 \cr
+Encoding: \tab latin1 \cr
+}
+}
+\author{
+Matthias Kohl \email{Matthias.Kohl at stamats.de}\cr%
+Maintainer: Matthias Kohl  \email{matthias.kohl at stamats.de}}
+\references{
+  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
+  Bayreuth: Dissertation.
+  
+  Kohl M. and Deigner H.P. (2010). Preprocessing of gene expression data by optimally 
+  robust estimators. \emph{BMC Bioinformatics}, 11:583. 
+  
+  M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation 
+  in General Smoothly Parametrized Models. \emph{Statistical Methods and Application}, 
+  \bold{19}(3):333-354. 
+  
+  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
+  
+  Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing
+  the Radius. \emph{Statistical Methods and Applications} \bold{17}(1) 13-40.
+  Extended version: \url{http://r-kurs.de/RRlong.pdf}
+}
+\seealso{
+\code{\link[RobLox]{roblox}}, \code{\link[RobLox]{rowRoblox}}
+}
+\section{Package versions}{
+Note: The first two numbers of package versions do not necessarily reflect
+ package-individual development, but rather are chosen for the
+ RobAStXXX family as a whole in order to ease updating "depends"
+ information.
+}
+\examples{
+library(RobLoxBioC)
+}
+\keyword{package}

Modified: pkg/RobLoxBioC/man/SimStudies.Rd
===================================================================
--- pkg/RobLoxBioC/man/SimStudies.Rd	2023-05-06 09:07:22 UTC (rev 1249)
+++ pkg/RobLoxBioC/man/SimStudies.Rd	2023-05-06 15:12:41 UTC (rev 1250)
@@ -1,70 +1,69 @@
-\name{SimStudies}
-\Rdversion{1.1}
-\alias{AffySimStudy}
-\alias{IlluminaSimStudy}
-\title{Perform Monte-Carlo Study.}
-\description{
-  The function \code{AffySimStudy} can be used to perform Monte-Carlo studies 
-  comparing Tukey's biweight and rmx estimators for normal location and scale. 
-  The function \code{IlluminaSimStudy} can be used to perform Monte-Carlo studies 
-  comparing Illumina's default method - a Huber-type skipped mean and sd 
-  (cf. Hampel (1985)) - and rmx estimators for normal location and scale.
-  In addition, maximum likelihood (ML) estimators (mean and sd) and median and 
-  MAD are computed. The comparison is based on the empirical MSE.
-}
-\usage{
-AffySimStudy(n, M, eps, seed = 123, eps.lower = 0, eps.upper = 0.05, 
-             steps = 3L, fsCor = TRUE, contD, plot1 = FALSE, 
-             plot2 = FALSE, plot3 = FALSE)
-IlluminaSimStudy(n, M, eps, seed = 123, eps.lower = 0, eps.upper = 0.05, 
-                 steps = 3L, fsCor = TRUE, contD, plot1 = FALSE, 
-                 plot2 = FALSE, plot3 = FALSE)
-}
-%- maybe also 'usage' for other objects documented here.
-\arguments{
-  \item{n}{integer; sample size, should be at least 3.}
-  \item{M}{integer; Monte-Carlo replications.}
-  \item{eps}{amount of contamination in [0, 0.5].}
-  \item{seed}{random seed.}
-  \item{eps.lower}{used by rmx estimator.}
-  \item{eps.upper}{used by rmx estimator.}
-  \item{steps}{integer; steps used for estimator construction.}
-  \item{fsCor}{logical; use finite-sample correction.}
-  \item{contD}{object of class \code{"UnivariateDistribution"}; contaminating distribution.}
-  \item{plot1}{logical; plot cdf of ideal and real distribution.}
-  \item{plot2}{logical; plot 20 (or M if M < 20) randomly selected samples.}
-  \item{plot3}{logical; generate boxplots of the results.}
-}
-\details{
-Normal location and scale with mean = 0 and sd = 1 is used as ideal model (without
-restriction due to equivariance).
-
-Since there is no estimator which yields reliable results if 50 percent or more of the
-observations are contaminated, we use a modification where we re-simulate all samples
-including at least 50 percent contaminated data.
-
-We use funtion \code{\link[RobLox]{rowRoblox}} for the computation of the rmx estimator.
-}
-\value{Data.frame including empirical MSE (standardized by sample size n) and
-relMSE with respect to the rmx estimator.
-}
-\references{
-  Affymetrix, Inc. (2002). \emph{Statistical Algorithms Description Document}.
-  Affymetrix, Santa Clara.
-
-  Hampel F.R. (1985). The breakdown points of the mean combined with some rejection
-  rules. Technometrics, 27(2):95-107.  
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-\seealso{\code{\link[RobLox]{rowRoblox}}}
-\examples{
-set.seed(123) # to have reproducible results for package checking
-
-AffySimStudy(n = 11, M = 100, eps = 0.02, contD = Norm(mean = 0, sd = 3), 
-             plot1 = TRUE, plot2 = TRUE, plot3 = TRUE)
-IlluminaSimStudy(n = 30, M = 100, eps = 0.02, contD = Norm(mean = 0, sd = 3), 
-                 plot1 = TRUE, plot2 = TRUE, plot3 = TRUE)
-}
-\concept{Monte-Carlo study}
-\keyword{robust}
+\name{SimStudies}
+\alias{AffySimStudy}
+\alias{IlluminaSimStudy}
+\title{Perform Monte-Carlo Study.}
+\description{
+  The function \code{AffySimStudy} can be used to perform Monte-Carlo studies 
+  comparing Tukey's biweight and rmx estimators for normal location and scale. 
+  The function \code{IlluminaSimStudy} can be used to perform Monte-Carlo studies 
+  comparing Illumina's default method - a Huber-type skipped mean and sd 
+  (cf. Hampel (1985)) - and rmx estimators for normal location and scale.
+  In addition, maximum likelihood (ML) estimators (mean and sd) and median and 
+  MAD are computed. The comparison is based on the empirical MSE.
+}
+\usage{
+AffySimStudy(n, M, eps, seed = 123, eps.lower = 0, eps.upper = 0.05, 
+             steps = 3L, fsCor = TRUE, contD, plot1 = FALSE, 
+             plot2 = FALSE, plot3 = FALSE)
+IlluminaSimStudy(n, M, eps, seed = 123, eps.lower = 0, eps.upper = 0.05, 
+                 steps = 3L, fsCor = TRUE, contD, plot1 = FALSE, 
+                 plot2 = FALSE, plot3 = FALSE)
+}
+%- maybe also 'usage' for other objects documented here.
+\arguments{
+  \item{n}{integer; sample size, should be at least 3.}
+  \item{M}{integer; Monte-Carlo replications.}
+  \item{eps}{amount of contamination in [0, 0.5].}
+  \item{seed}{random seed.}
+  \item{eps.lower}{used by rmx estimator.}
+  \item{eps.upper}{used by rmx estimator.}
+  \item{steps}{integer; steps used for estimator construction.}
+  \item{fsCor}{logical; use finite-sample correction.}
+  \item{contD}{object of class \code{"UnivariateDistribution"}; contaminating distribution.}
+  \item{plot1}{logical; plot cdf of ideal and real distribution.}
+  \item{plot2}{logical; plot 20 (or M if M < 20) randomly selected samples.}
+  \item{plot3}{logical; generate boxplots of the results.}
+}
+\details{
+Normal location and scale with mean = 0 and sd = 1 is used as ideal model (without
+restriction due to equivariance).
+
+Since there is no estimator which yields reliable results if 50 percent or more of the
+observations are contaminated, we use a modification where we re-simulate all samples
+including at least 50 percent contaminated data.
+
+We use funtion \code{\link[RobLox]{rowRoblox}} for the computation of the rmx estimator.
+}
+\value{Data.frame including empirical MSE (standardized by sample size n) and
+relMSE with respect to the rmx estimator.
+}
+\references{
+  Affymetrix, Inc. (2002). \emph{Statistical Algorithms Description Document}.
+  Affymetrix, Santa Clara.
+
+  Hampel F.R. (1985). The breakdown points of the mean combined with some rejection
+  rules. Technometrics, 27(2):95-107.  
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+%\note{}
+\seealso{\code{\link[RobLox]{rowRoblox}}}
+\examples{
+set.seed(123) # to have reproducible results for package checking
+
+AffySimStudy(n = 11, M = 100, eps = 0.02, contD = Norm(mean = 0, sd = 3), 
+             plot1 = TRUE, plot2 = TRUE, plot3 = TRUE)
+IlluminaSimStudy(n = 30, M = 100, eps = 0.02, contD = Norm(mean = 0, sd = 3), 
+                 plot1 = TRUE, plot2 = TRUE, plot3 = TRUE)
+}
+\concept{Monte-Carlo study}
+\keyword{robust}



More information about the Robast-commits mailing list