[Robast-commits] r1229 - branches/robast-1.2/pkg/RandVar/tests branches/robast-1.3/pkg/RandVar branches/robast-1.3/pkg/RandVar/man branches/robast-1.3/pkg/RandVar/tests pkg/RandVar pkg/RandVar/man pkg/RandVar/tests

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Jan 18 02:19:06 CET 2020


Author: ruckdeschel
Date: 2020-01-18 02:19:06 +0100 (Sat, 18 Jan 2020)
New Revision: 1229

Modified:
   branches/robast-1.2/pkg/RandVar/tests/tests.Rout.save
   branches/robast-1.3/pkg/RandVar/DESCRIPTION
   branches/robast-1.3/pkg/RandVar/man/0RandVar-package.Rd
   branches/robast-1.3/pkg/RandVar/tests/tests.R
   branches/robast-1.3/pkg/RandVar/tests/tests.Rout.save
   pkg/RandVar/DESCRIPTION
   pkg/RandVar/man/0RandVar-package.Rd
   pkg/RandVar/tests/tests.R
   pkg/RandVar/tests/tests.Rout.save
Log:
RandVar [trunk|branches 1.2, 1.3] 
+ updated date, version, and SVN information in DESCRIPTION and 0RandVar-package.Rd
+ inserted an ## IGNORE_RDIFF_BEGIN ... ## IGNORE_RDIFF_END directive to tests.R 
  to exclude the output from (R1 <- RandVariable()) from comparison, as in some systems this gives
  ... 
  function(x){ } 
  ... 
  and in some 
  ... 
  function(x)
  { 
  }
  ... 
+ updated tests.Rout.save

Modified: branches/robast-1.2/pkg/RandVar/tests/tests.Rout.save
===================================================================
--- branches/robast-1.2/pkg/RandVar/tests/tests.Rout.save	2020-01-16 13:38:22 UTC (rev 1228)
+++ branches/robast-1.2/pkg/RandVar/tests/tests.Rout.save	2020-01-18 01:19:06 UTC (rev 1229)
@@ -1,2193 +1,2193 @@
-
-R version 3.6.2 Patched (2020-01-03 r77636) -- "Dark and Stormy Night"
-Copyright (C) 2020 The R Foundation for Statistical Computing
-Platform: x86_64-pc-linux-gnu (64-bit)
-
-R is free software and comes with ABSOLUTELY NO WARRANTY.
-You are welcome to redistribute it under certain conditions.
-Type 'license()' or 'licence()' for distribution details.
-
-R is a collaborative project with many contributors.
-Type 'contributors()' for more information and
-'citation()' on how to cite R or R packages in publications.
-
-Type 'demo()' for some demos, 'help()' for on-line help, or
-'help.start()' for an HTML browser interface to help.
-Type 'q()' to quit R.
-
-> library(RandVar)
-Loading required package: distr
-Loading required package: startupmsg
-:startupmsg>  Utilities for Start-Up Messages (version 0.9.6)
-:startupmsg> 
-:startupmsg>  For more information see ?"startupmsg",
-:startupmsg>  NEWS("startupmsg")
-
-Loading required package: sfsmisc
-:distr>  Object Oriented Implementation of Distributions (version
-:distr>  2.8.0)
-:distr> 
-:distr>  Attention: Arithmetics on distribution objects are
-:distr>  understood as operations on corresponding random variables
-:distr>  (r.v.s); see distrARITH().
-:distr> 
-:distr>  Some functions from package 'stats' are intentionally masked
-:distr>  ---see distrMASK().
-:distr> 
-:distr>  Note that global options are controlled by distroptions()
-:distr>  ---c.f. ?"distroptions".
-:distr> 
-:distr>  For more information see ?"distr", NEWS("distr"), as well as
-:distr>    http://distr.r-forge.r-project.org/
-:distr>  Package "distrDoc" provides a vignette to this package as
-:distr>  well as to several extension packages; try
-:distr>  vignette("distr").
-
-
-Attaching package: 'distr'
-
-The following objects are masked from 'package:stats':
-
-    df, qqplot, sd
-
-Loading required package: distrEx
-:distrEx>  Extensions of Package 'distr' (version 2.8.0)
-:distrEx> 
-:distrEx>  Note: Packages "e1071", "moments", "fBasics" should be
-:distrEx>  attached /before/ package "distrEx". See
-:distrEx>  distrExMASK().Note: Extreme value distribution
-:distrEx>  functionality has been moved to
-:distrEx> 
-:distrEx>        package "RobExtremes". See distrExMOVED().
-:distrEx> 
-:distrEx>  For more information see ?"distrEx", NEWS("distrEx"), as
-:distrEx>  well as
-:distrEx>    http://distr.r-forge.r-project.org/
-:distrEx>  Package "distrDoc" provides a vignette to this package
-:distrEx>  as well as to several related packages; try
-:distrEx>  vignette("distr").
-
-
-Attaching package: 'distrEx'
-
-The following objects are masked from 'package:stats':
-
-    IQR, mad, median, var
-
-:RandVar>  Implementation of Random Variables (version 1.2.1)
-:RandVar> 
-:RandVar>  For more information see ?"RandVar", NEWS("RandVar"), as
-:RandVar>  well as
-:RandVar>    http://robast.r-forge.r-project.org/
-:RandVar>  This package also includes a vignette; try
-:RandVar>  vignette("RandVar").
-
-> set.seed(123)
-> 
-> ###############################################################################
-> ## start of tests
-> ###############################################################################
-> 
-> ## RandVariable
-> (R1 <- new("RandVariable"))
-An object of class "RandVariable" 
-length of Map:	 1 
-Domain:	NULL
-Range:	NULL
-> (R1 <- RandVariable())
-An object of class "RandVariable" 
-length of Map:	 1 
-Domain:	NULL
-Range:	NULL
-> Map(R1)
-[[1]]
-function (x) 
-{
-}
-<environment: 0x56370ab5b4d0>
-
-> Domain(R1)
-NULL
-> Range(R1)
-NULL
-> Map(R1) <- list(function(x){ceiling(x)}, function(x){floor(x)})
-> Domain(R1) <- Reals()
-> Range(R1) <- Naturals()
-> R1
-An object of class "RandVariable" 
-length of Map:	 2 
-Domain:	Real Space with dimension 1 
-Range:	Grid of Naturals with dimension 1 
-> Map(R1)
-[[1]]
-function (x) 
-{
-    ceiling(x)
-}
-
-[[2]]
-function (x) 
-{
-    floor(x)
-}
-
-> length(R1)
-[1] 2
-> 
-> R2 <- R1
-> Domain(R2) <- Naturals()
-> compatibleDomains(R1, R2)
-[1] TRUE
-> Domain(R2) <- NULL
-> compatibleDomains(R1, R2)
-[1] FALSE
-> Domain(R2) <- EuclideanSpace(dimension = 1)
-> compatibleDomains(R1, R2)
-[1] TRUE
-> Domain(R2) <- EuclideanSpace(dimension = 2)
-> compatibleDomains(R1, R2)
-[1] FALSE
-> 
-> 
-> ## list of functions
-> L1 <- list(function(x){x}, function(x){x^2}, function(x){x^3}, function(x){x^4})
-> L2 <- list(function(x){x}, function(x){x^2}, function(x){x^3}, function(x){x^4}, 
-+            function(x){x^5}, function(x){x^6})
-> L3 <- list(function(x){x}, function(x){x^2}, function(x){x^3}, function(x){x^4}, 
-+            function(x){x^5}, function(x){x^6}, function(x){x^7}, function(x){x^8})
-> L4 <- list(function(x){exp(x)}, function(x){abs(x)}, 
-+            function(x){sin(x)}, function(x){floor(x)})
-> 
-> ## EuclRandVariable
-> (R3 <- new("EuclRandVariable", Map = L4, Domain = Reals(), Range = Reals()))
-An object of class "EuclRandVariable" 
-length of Map:	 4 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> (R3 <- EuclRandVariable(L1, Domain = Reals(), dimension = 1))
-An object of class "EuclRandVariable" 
-length of Map:	 4 
-Domain:	Real Space with dimension 1 
-Range:	Euclidean Space with dimension 1 
-> Map(R3)
-[[1]]
-function (x) 
-{
-    x
-}
-
-[[2]]
-function (x) 
-{
-    x^2
-}
-
-[[3]]
-function (x) 
-{
-    x^3
-}
-
-[[4]]
-function (x) 
-{
-    x^4
-}
-
-> Range(R3) <- Reals()
-> R3[2]
-An object of class "EuclRandVariable" 
-length of Map:	 1 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> Map(R3[3])
-[[1]]
-function (x) 
-{
-    x^3
-}
-
-> Map(R3[c(1,2,4)])
-[[1]]
-function (x) 
-{
-    x
-}
-
-[[2]]
-function (x) 
-{
-    x^2
-}
-
-[[3]]
-function (x) 
-{
-    x^4
-}
-
-> Map(R3[2:4])
-[[1]]
-function (x) 
-{
-    x^2
-}
-
-[[2]]
-function (x) 
-{
-    x^3
-}
-
-[[3]]
-function (x) 
-{
-    x^4
-}
-
-> evalRandVar(R3, rnorm(1))
-            [,1]
-[1,] -0.56047565
-[2,]  0.31413295
-[3,] -0.17606387
-[4,]  0.09867951
-> x <- as.matrix(rnorm(10))
-> res.R3 <- evalRandVar(R3, x)
-> res.R3[2,,] # results for Map(R3)[[2]](x)
- [1] 0.052981677 2.429571609 0.004971433 0.016715318 2.941447909 0.212443749
- [7] 1.600379927 0.471766840 0.198614592 1.498376247
-> res.R3[2,1,] # results for Map(R3)[[2]](x[1,])
-[1] 0.05298168
-> # assuming a probability space with 
-> # distribution Exp()
-> res.R31 <- evalRandVar(R3, x, Gammad())
-> res.R31[2,,] # results for Map(R3)[[2]](x)
- [1]          NA 2.429571609 0.004971433 0.016715318 2.941447909 0.212443749
- [7]          NA          NA          NA 1.498376247
-> res.R31[2,1,] # results for Map(R3)[[2]](x[1,])
-[1] NA
-> dimension(R3)
-[1] 4
-> 
-> R4 <- EuclRandVariable(L4, Domain = Reals(), dimension = 1)
-> DL1 <- imageDistr(R4, Norm())
-> plot(DL1)
-> 
-> Domain(R4) <- EuclideanSpace(dimension = 2)
-> Range(R4) <- EuclideanSpace(dimension = 2)
-> (X <- matrix(c(x, rnorm(10)), ncol = 2))
-             [,1]       [,2]
- [1,] -0.23017749  0.3598138
- [2,]  1.55870831  0.4007715
- [3,]  0.07050839  0.1106827
- [4,]  0.12928774 -0.5558411
- [5,]  1.71506499  1.7869131
- [6,]  0.46091621  0.4978505
- [7,] -1.26506123 -1.9666172
- [8,] -0.68685285  0.7013559
- [9,] -0.44566197 -0.4727914
-[10,]  1.22408180 -1.0678237
-> res2.R4 <- evalRandVar(R4, X)
-> res2.R4[3,,1] # results for Map(R4)[[3]](X[,1])
- [1] -0.22815034  0.99992694  0.07044998  0.12892786  0.98961131  0.44476889
- [7] -0.95362595 -0.63410681 -0.43105529  0.94049422
-> dimension(R4)
-[1] 8
-> 
-> 
-> ## EuclRandMatrix
-> (R5 <- as(R4, "EuclRandMatrix"))
-An object of class "EuclRandMatrix" 
-Dim of Map:	 4 1 
-Domain:	Euclidean Space with dimension 2 
-Range:	Euclidean Space with dimension 2 
-> dimension(R5)
-[1] 8
-> Domain(R5) <- Reals()
-> Range(R5) <- Reals()
-> (DL2 <- imageDistr(R5, Norm())) # list of distributions
-An object of class "DistrList"
- [[1]] Distribution Object of Class: AbscontDistribution
- [[2]] Distribution Object of Class: AbscontDistribution
- [[3]] Distribution Object of Class: AbscontDistribution
- [[4]] Distribution Object of Class: AbscontDistribution
-Warning messages:
-1: In (new("standardGeneric", .Data = function (object)  :
-  arithmetics on distributions are understood as operations on r.v.'s
-see 'distrARITH()'; for switching off this warning see '?distroptions'
-2: In (new("standardGeneric", .Data = function (object)  :
-  slots d,p,q have been filled using simulations; for switching off this warning see '?distroptions'
-> plot(DL2) # vgl. DL1
-> 
-> Domain(R5) <- EuclideanSpace(dimension = 2)
-> Range(R5) <- EuclideanSpace(dimension = 2)
-> #res1.R5 <- evalRandVar(R5, rnorm(2))
-> #res1.R5[1,1,] # result for map of R5[1,1]
-> 
-> res2.R5 <- evalRandVar(R5, X)
-> res2.R5[,,1,2] 
-[1] 1.4330626 0.3598138 0.3521000 0.0000000
-> res2.R5[,1,2,1:2] 
-          [,1]      [,2]
-[1,] 4.7526783 1.4929760
-[2,] 1.5587083 0.4007715
-[3,] 0.9999269 0.3901288
-[4,] 1.0000000 0.0000000
-> res2.R5[1,1,1:2,2]
-[1] 1.433063 1.492976
-> 
-> new("EuclRandMatrix", Map = L2, Dim = as.integer(c(3,2)), Domain = Reals(), Range = Reals())
-An object of class "EuclRandMatrix" 
-Dim of Map:	 3 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> (R6 <- EuclRandMatrix(Map = L2, ncol = 2, Domain = Reals(), Range = Reals()))
-An object of class "EuclRandMatrix" 
-Dim of Map:	 3 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> R6[1:2, 2]
-An object of class "EuclRandVariable" 
-length of Map:	 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> R6[1:2, 1:2]
-An object of class "EuclRandMatrix" 
-Dim of Map:	 2 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> Map(R6[1,2])
-[[1]]
-function (x) 
-{
-    x^4
-}
-
-> Map(t(R6)[2,1])
-[[1]]
-function (x) 
-{
-    f <- function (x) 
-    {
-        x^4
-    }
-    t(f(x))
-}
-<environment: 0x56370ed10f20>
-
-> dimension(R6)
-[1] 6
-> 
-> R7 <- EuclRandMatrix(Map = L4, ncol = 2, Domain = Reals(), dimension = 1)
-> dimension(R7)
-[1] 4
-> (DL3 <- imageDistr(R7, Norm()))
-An object of class "DistrList"
- [[1]] Distribution Object of Class: AbscontDistribution
- [[2]] Distribution Object of Class: AbscontDistribution
- [[3]] Distribution Object of Class: AbscontDistribution
- [[4]] Distribution Object of Class: AbscontDistribution
-Warning messages:
-1: In (new("standardGeneric", .Data = function (object)  :
-  arithmetics on distributions are understood as operations on r.v.'s
-see 'distrARITH()'; for switching off this warning see '?distroptions'
-2: In (new("standardGeneric", .Data = function (object)  :
-  slots d,p,q have been filled using simulations; for switching off this warning see '?distroptions'
-> plot(DL3) # vgl. DL1, DL2
-> 
-> 
-> ## EuclRandVarList
-> new("EuclRandVarList")
-An object of class "EuclRandVarList" 
-Domain:	NULL
-[[1]]
-length of Map:	 1 
-Range:	Euclidean Space with dimension 1 
-> (RL1 <- EuclRandVarList(R3, R6, R7))
-An object of class "EuclRandVarList" 
-Domain:	Real Space with dimension 1 
-[[1]]
-length of Map:	 4 
-Range:	Real Space with dimension 1 
-[[2]]
-Dim of Map:	 3 2 
-Range:	Real Space with dimension 1 
-[[3]]
-Dim of Map:	 2 2 
-Range:	Euclidean Space with dimension 1 
-> dimension(RL1)
-[1] 14
-> as(R4, "EuclRandVarList")
-An object of class "EuclRandVarList" 
-Domain:	Euclidean Space with dimension 2 
-[[1]]
-length of Map:	 4 
-Range:	Euclidean Space with dimension 2 
-> as(R6, "EuclRandVarList")
-An object of class "EuclRandVarList" 
-Domain:	Real Space with dimension 1 
-[[1]]
-Dim of Map:	 3 2 
-Range:	Real Space with dimension 1 
-> Domain(R5) <- Reals()
-> Range(R5) <- Reals()
-> (RL2 <- EuclRandVarList(R5, R7))
-An object of class "EuclRandVarList" 
-Domain:	Real Space with dimension 1 
-[[1]]
-Dim of Map:	 4 1 
-Range:	Real Space with dimension 1 
-[[2]]
-Dim of Map:	 2 2 
-Range:	Euclidean Space with dimension 1 
-> (DL4 <- imageDistr(RL2, Norm()))
-An object of class "DistrList"
- [[1]] Distribution Object of Class: AbscontDistribution
- [[2]] Distribution Object of Class: AbscontDistribution
- [[3]] Distribution Object of Class: AbscontDistribution
- [[4]] Distribution Object of Class: AbscontDistribution
- [[5]] Distribution Object of Class: AbscontDistribution
- [[6]] Distribution Object of Class: AbscontDistribution
- [[7]] Distribution Object of Class: AbscontDistribution
- [[8]] Distribution Object of Class: AbscontDistribution
-Warning messages:
-1: In (new("standardGeneric", .Data = function (object)  :
-  arithmetics on distributions are understood as operations on r.v.'s
-see 'distrARITH()'; for switching off this warning see '?distroptions'
-2: In (new("standardGeneric", .Data = function (object)  :
-  slots d,p,q have been filled using simulations; for switching off this warning see '?distroptions'
-> plot(DL4)
-> 
-> 
-> ## "Math" group
-> Map(log(abs(R4)))
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            exp(x)
-        }
-        abs(f1(x))
-    }
-    log(f1(x))
-}
-<environment: 0x56370d3d86c8>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            abs(x)
-        }
-        abs(f1(x))
-    }
-    log(f1(x))
-}
-<environment: 0x56370d3d86c8>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            sin(x)
-        }
-        abs(f1(x))
-    }
-    log(f1(x))
-}
-<environment: 0x56370d3d86c8>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            floor(x)
-        }
-        abs(f1(x))
-    }
-    log(f1(x))
-}
-<environment: 0x56370d3d86c8>
-
-> Map(gamma(R7))
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        exp(x)
-    }
-    gamma(f1(x))
-}
-<environment: 0x563710782428>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        abs(x)
-    }
-    gamma(f1(x))
-}
-<environment: 0x563710782428>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        sin(x)
-    }
-    gamma(f1(x))
-}
-<environment: 0x563710782428>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        floor(x)
-    }
-    gamma(f1(x))
-}
-<environment: 0x563710782428>
-
-> Map(exp(RL1)[[1]])
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x
-    }
-    exp(f1(x))
-}
-<environment: 0x56370f35f2d8>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^2
-    }
-    exp(f1(x))
-}
-<environment: 0x56370f35f2d8>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^3
-    }
-    exp(f1(x))
-}
-<environment: 0x56370f35f2d8>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^4
-    }
-    exp(f1(x))
-}
-<environment: 0x56370f35f2d8>
-
-> 
-> 
-> ## "Arith" group
-> Map(3 + R3)
-[[1]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x
-    }
-    3 + f2(x)
-}
-<environment: 0x56370cf1f060>
-
-[[2]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^2
-    }
-    3 + f2(x)
-}
-<environment: 0x56370cf1f060>
-
-[[3]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^3
-    }
-    3 + f2(x)
-}
-<environment: 0x56370cf1f060>
-
-[[4]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^4
-    }
-    3 + f2(x)
-}
-<environment: 0x56370cf1f060>
-
-> Map(c(1,3,5) * R3)
-[[1]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x
-    }
-    1 * f2(x)
-}
-<environment: 0x56370d14d468>
-
-[[2]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^2
-    }
-    3 * f2(x)
-}
-<environment: 0x56370d14d468>
-
-[[3]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^3
-    }
-    5 * f2(x)
-}
-<environment: 0x56370d14d468>
-
-[[4]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^4
-    }
-    1 * f2(x)
-}
-<environment: 0x56370d14d468>
-
-Warning message:
-In c(1, 3, 5) * R3 :
-  longer object length is not a multiple of shorter object length
-> try(1:5 * R3) # error
-Error in 1:5 * R3 : 
-  length of 'numeric' has to be less or equal dimension of 'EuclRandVariable'
-> Map(1:2 * R4)
-[[1]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        exp(x)
-    }
-    1:2 * f2(x)
-}
-<environment: 0x56370d777838>
-
-[[2]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        abs(x)
-    }
-    1:2 * f2(x)
-}
-<environment: 0x56370d777838>
-
-[[3]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        sin(x)
-    }
-    1:2 * f2(x)
-}
-<environment: 0x56370d777838>
-
-[[4]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        floor(x)
-    }
-    1:2 * f2(x)
-}
-<environment: 0x56370d777838>
-
-> Map(2/R6)
-[[1]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x
-    }
-    2/f2(x)
-}
-<environment: 0x56370e20c818>
-
-[[2]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^2
-    }
-    2/f2(x)
-}
-<environment: 0x56370e20c818>
-
-[[3]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^3
-    }
-    2/f2(x)
-}
-<environment: 0x56370e20c818>
-
-[[4]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^4
-    }
-    2/f2(x)
-}
-<environment: 0x56370e20c818>
-
-[[5]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^5
-    }
-    2/f2(x)
-}
-<environment: 0x56370e20c818>
-
-[[6]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^6
-    }
-    2/f2(x)
-}
-<environment: 0x56370e20c818>
-
-> Map(c(1,3,5) %% R6)
-[[1]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x
-    }
-    1%%f2(x)
-}
-<environment: 0x56370ef7df40>
-
-[[2]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^2
-    }
-    3%%f2(x)
-}
-<environment: 0x56370ef7df40>
-
-[[3]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^3
-    }
-    5%%f2(x)
-}
-<environment: 0x56370ef7df40>
-
-[[4]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^4
-    }
-    1%%f2(x)
-}
-<environment: 0x56370ef7df40>
-
-[[5]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^5
-    }
-    3%%f2(x)
-}
-<environment: 0x56370ef7df40>
-
-[[6]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^6
-    }
-    5%%f2(x)
-}
-<environment: 0x56370ef7df40>
-
-> Map(R4 - 5)
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        exp(x)
-    }
-    f1(x) - c(5, 5)
-}
-<environment: 0x56370e3d3dd0>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        abs(x)
-    }
-    f1(x) - c(5, 5)
-}
-<environment: 0x56370e3d3dd0>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        sin(x)
-    }
-    f1(x) - c(5, 5)
-}
-<environment: 0x56370e3d3dd0>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        floor(x)
-    }
-    f1(x) - c(5, 5)
-}
-<environment: 0x56370e3d3dd0>
-
-> Map(R6 %/% 2)
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x
-    }
-    f1(x)%/%2
-}
-<environment: 0x56370dbe5ad0>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^2
-    }
-    f1(x)%/%2
-}
-<environment: 0x56370dbe5ad0>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^3
-    }
-    f1(x)%/%2
-}
-<environment: 0x56370dbe5ad0>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^4
-    }
-    f1(x)%/%2
-}
-<environment: 0x56370dbe5ad0>
-
-[[5]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^5
-    }
-    f1(x)%/%2
-}
-<environment: 0x56370dbe5ad0>
-
-[[6]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^6
-    }
-    f1(x)%/%2
-}
-<environment: 0x56370dbe5ad0>
-
-> Map(R3 ^ R3)
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x
-    }
-    f2 <- function (x) 
-    {
-        x
-    }
-    f1(x)^f2(x)
-}
-<environment: 0x56370eebe9b8>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^2
-    }
-    f2 <- function (x) 
-    {
-        x^2
-    }
-    f1(x)^f2(x)
-}
-<environment: 0x56370eebe9b8>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^3
-    }
-    f2 <- function (x) 
-    {
-        x^3
-    }
-    f1(x)^f2(x)
-}
-<environment: 0x56370eebe9b8>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^4
-    }
-    f2 <- function (x) 
-    {
-        x^4
-    }
-    f1(x)^f2(x)
-}
-<environment: 0x56370eebe9b8>
-
-> Map(R7 * R7)
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        exp(x)
-    }
-    f2 <- function (x) 
-    {
-        exp(x)
-    }
-    f1(x) * f2(x)
-}
-<environment: 0x56370e33a5f8>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        abs(x)
-    }
-    f2 <- function (x) 
-    {
-        abs(x)
-    }
-    f1(x) * f2(x)
-}
-<environment: 0x56370e33a5f8>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        sin(x)
-    }
-    f2 <- function (x) 
-    {
-        sin(x)
-    }
-    f1(x) * f2(x)
-}
-<environment: 0x56370e33a5f8>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        floor(x)
-    }
-    f2 <- function (x) 
-    {
-        floor(x)
-    }
-    f1(x) * f2(x)
-}
-<environment: 0x56370e33a5f8>
-
-> Map((1 + RL1)[[1]])
-[[1]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x
-    }
-    1 + f2(x)
-}
-<environment: 0x56370f4d8260>
-
-[[2]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^2
-    }
-    1 + f2(x)
-}
-<environment: 0x56370f4d8260>
-
-[[3]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^3
-    }
-    1 + f2(x)
-}
-<environment: 0x56370f4d8260>
-
-[[4]]
-function (x) 
-{
-    f2 <- function (x) 
-    {
-        x^4
-    }
-    1 + f2(x)
-}
-<environment: 0x56370f4d8260>
-
-> Map((RL1 * 2)[[2]])
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x
-    }
-    f1(x) * 2
-}
-<environment: 0x56370c977998>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^2
-    }
-    f1(x) * 2
-}
-<environment: 0x56370c977998>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^3
-    }
-    f1(x) * 2
-}
-<environment: 0x56370c977998>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^4
-    }
-    f1(x) * 2
-}
-<environment: 0x56370c977998>
-
-[[5]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^5
-    }
-    f1(x) * 2
-}
-<environment: 0x56370c977998>
-
-[[6]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        x^6
-    }
-    f1(x) * 2
-}
-<environment: 0x56370c977998>
-
-> Map((RL1 %% RL1)[[3]])
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        exp(x)
-    }
-    f2 <- function (x) 
-    {
-        exp(x)
-    }
-    f1(x)%%f2(x)
-}
-<environment: 0x56370d7acc50>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        abs(x)
-    }
-    f2 <- function (x) 
-    {
-        abs(x)
-    }
-    f1(x)%%f2(x)
-}
-<environment: 0x56370d7acc50>
-
-[[3]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        sin(x)
-    }
-    f2 <- function (x) 
-    {
-        sin(x)
-    }
-    f1(x)%%f2(x)
-}
-<environment: 0x56370d7acc50>
-
-[[4]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        floor(x)
-    }
-    f2 <- function (x) 
-    {
-        floor(x)
-    }
-    f1(x)%%f2(x)
-}
-<environment: 0x56370d7acc50>
-
-> 
-> 
-> ## "%*%"
-> M1 <- matrix(1:16, ncol = 8)
-> (R8 <- M1 %*% R4)
-An object of class "EuclRandMatrix" 
-Dim of Map:	 2 1 
-Domain:	Euclidean Space with dimension 2 
-Range:	Real Space with dimension 1 
-> Map(R4)
-[[1]]
-function (x) 
-{
-    exp(x)
-}
-<bytecode: 0x56370e1be998>
-
-[[2]]
-function (x) 
-{
-    abs(x)
-}
-<bytecode: 0x56370c024de8>
-
-[[3]]
-function (x) 
-{
-    sin(x)
-}
-<bytecode: 0x563708678e90>
-
-[[4]]
-function (x) 
-{
-    floor(x)
-}
-<bytecode: 0x56370bf8cd88>
-
-> M1[1,]
-[1]  1  3  5  7  9 11 13 15
-> Map(R8)[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  exp(x)
-                }
-                c(1L, 3L) %*% f1(x)
-            }
-            f2 <- function (x) 
-            {
-                abs(x)
-            }
-            f1(x) + c(5L, 7L) %*% f2(x)
-        }
-        f2 <- function (x) 
-        {
-            sin(x)
-        }
-        f1(x) + c(9L, 11L) %*% f2(x)
-    }
-    f2 <- function (x) 
-    {
-        floor(x)
-    }
-    f1(x) + c(13L, 15L) %*% f2(x)
-}
-<environment: 0x56370df1b5d8>
-> M1[2,]
-[1]  2  4  6  8 10 12 14 16
-> Map(R8)[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  exp(x)
-                }
-                c(2L, 4L) %*% f1(x)
-            }
-            f2 <- function (x) 
-            {
-                abs(x)
-            }
-            f1(x) + c(6L, 8L) %*% f2(x)
-        }
-        f2 <- function (x) 
-        {
-            sin(x)
-        }
-        f1(x) + c(10L, 12L) %*% f2(x)
-    }
-    f2 <- function (x) 
-    {
-        floor(x)
-    }
-    f1(x) + c(14L, 16L) %*% f2(x)
-}
-<environment: 0x56370df1b5d8>
-> M2 <- matrix(1:2, ncol = 2)
-> (R9 <- M2 %*% R7)
-An object of class "EuclRandMatrix" 
-Dim of Map:	 1 2 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> Map(R7)
-[[1]]
-function (x) 
-{
-    exp(x)
-}
-<bytecode: 0x56370e1be998>
-
-[[2]]
-function (x) 
-{
-    abs(x)
-}
-<bytecode: 0x56370c024de8>
-
-[[3]]
-function (x) 
-{
-    sin(x)
-}
-<bytecode: 0x563708678e90>
-
-[[4]]
-function (x) 
-{
-    floor(x)
-}
-<bytecode: 0x56370bf8cd88>
-
-> Map(R9)
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            exp(x)
-        }
-        1L %*% f1(x)
-    }
-    f2 <- function (x) 
-    {
-        abs(x)
-    }
-    f1(x) + 2L %*% f2(x)
-}
-<environment: 0x56370b7429a8>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            sin(x)
-        }
-        1L %*% f1(x)
-    }
-    f2 <- function (x) 
-    {
-        floor(x)
-    }
-    f1(x) + 2L %*% f2(x)
-}
-<environment: 0x56370d74fc50>
-
-> Map(1:4 %*% R3) # inner product
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  x
-                }
-                1L %*% f1(x)
-            }
-            f2 <- function (x) 
-            {
-                x^2
-            }
-            f1(x) + 2L %*% f2(x)
-        }
-        f2 <- function (x) 
-        {
-            x^3
-        }
-        f1(x) + 3L %*% f2(x)
-    }
-    f2 <- function (x) 
-    {
-        x^4
-    }
-    f1(x) + 4L %*% f2(x)
-}
-<environment: 0x56370c86b3f0>
-
-> Map(1:2 %*% R7) # corresponds to Map(t(1:2) %*% R7)
-[[1]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            exp(x)
-        }
-        1L %*% f1(x)
-    }
-    f2 <- function (x) 
-    {
-        abs(x)
-    }
-    f1(x) + 2L %*% f2(x)
-}
-<environment: 0x56370b875c98>
-
-[[2]]
-function (x) 
-{
-    f1 <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            sin(x)
-        }
-        1L %*% f1(x)
-    }
-    f2 <- function (x) 
-    {
-        floor(x)
-    }
-    f1(x) + 2L %*% f2(x)
-}
-<environment: 0x56370d40f270>
-
-> Map(R4 %*% 1:8) # inner product
-[[1]]
-function (x) 
-{
-    f <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    f <- function (x) 
-                    {
-                      f <- function (x) 
-                      {
-                        exp(x)
-                      }
-                      t(f(x))
-                    }
-                    t(f(x))
-                  }
-                  1:2 %*% f1(x)
-                }
-                f2 <- function (x) 
-                {
-                  f <- function (x) 
-                  {
-                    f <- function (x) 
-                    {
-                      abs(x)
-                    }
-                    t(f(x))
-                  }
-                  t(f(x))
-                }
-                f1(x) + 3:4 %*% f2(x)
-            }
-            f2 <- function (x) 
-            {
-                f <- function (x) 
-                {
-                  f <- function (x) 
-                  {
-                    sin(x)
-                  }
-                  t(f(x))
-                }
-                t(f(x))
-            }
-            f1(x) + 5:6 %*% f2(x)
-        }
-        f2 <- function (x) 
-        {
-            f <- function (x) 
-            {
-                f <- function (x) 
-                {
-                  floor(x)
-                }
-                t(f(x))
-            }
-            t(f(x))
-        }
-        f1(x) + 7:8 %*% f2(x)
-    }
-    t(f(x))
-}
-<environment: 0x56370c819b60>
-
-> Map(R9 %*% 3:4)
-[[1]]
-function (x) 
-{
-    f <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    f1 <- function (x) 
-                    {
-                      exp(x)
-                    }
-                    1L %*% f1(x)
-                  }
-                  f2 <- function (x) 
-                  {
-                    abs(x)
-                  }
-                  f1(x) + 2L %*% f2(x)
-                }
-                t(f(x))
-            }
-            3L %*% f1(x)
-        }
-        f2 <- function (x) 
-        {
-            f <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    sin(x)
-                  }
-                  1L %*% f1(x)
-                }
-                f2 <- function (x) 
-                {
-                  floor(x)
-                }
-                f1(x) + 2L %*% f2(x)
-            }
-            t(f(x))
-        }
-        f1(x) + 4L %*% f2(x)
-    }
-    t(f(x))
-}
-<environment: 0x56370f09cd20>
-
-> Map(R9 %*% matrix(1:4, nrow = 2))
-[[1]]
-function (x) 
-{
-    f <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    f1 <- function (x) 
-                    {
-                      exp(x)
-                    }
-                    1L %*% f1(x)
-                  }
-                  f2 <- function (x) 
-                  {
-                    abs(x)
-                  }
-                  f1(x) + 2L %*% f2(x)
-                }
-                t(f(x))
-            }
-            1L %*% f1(x)
-        }
-        f2 <- function (x) 
-        {
-            f <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    sin(x)
-                  }
-                  1L %*% f1(x)
-                }
-                f2 <- function (x) 
-                {
-                  floor(x)
-                }
-                f1(x) + 2L %*% f2(x)
-            }
-            t(f(x))
-        }
-        f1(x) + 2L %*% f2(x)
-    }
-    t(f(x))
-}
-<environment: 0x56371139a410>
-
-[[2]]
-function (x) 
-{
-    f <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    f1 <- function (x) 
-                    {
-                      exp(x)
-                    }
-                    1L %*% f1(x)
-                  }
-                  f2 <- function (x) 
-                  {
-                    abs(x)
-                  }
-                  f1(x) + 2L %*% f2(x)
-                }
-                t(f(x))
-            }
-            3L %*% f1(x)
-        }
-        f2 <- function (x) 
-        {
-            f <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    sin(x)
-                  }
-                  1L %*% f1(x)
-                }
-                f2 <- function (x) 
-                {
-                  floor(x)
-                }
-                f1(x) + 2L %*% f2(x)
-            }
-            t(f(x))
-        }
-        f1(x) + 4L %*% f2(x)
-    }
-    t(f(x))
-}
-<environment: 0x56371139a410>
-
-> (R10 <- R3 %*% matrix(1:16, ncol = 4))
-An object of class "EuclRandMatrix" 
-Dim of Map:	 1 4 
-Domain:	Real Space with dimension 1 
-Range:	Real Space with dimension 1 
-> Map(R10)
-[[1]]
-function (x) 
-{
-    f <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    x
-                  }
-                  1L %*% f1(x)
-                }
-                f2 <- function (x) 
-                {
-                  x^2
-                }
-                f1(x) + 5L %*% f2(x)
-            }
-            f2 <- function (x) 
-            {
-                x^3
-            }
-            f1(x) + 9L %*% f2(x)
-        }
-        f2 <- function (x) 
-        {
-            x^4
-        }
-        f1(x) + 13L %*% f2(x)
-    }
-    t(f(x))
-}
-<environment: 0x56370e6201c0>
-
-[[2]]
-function (x) 
-{
-    f <- function (x) 
-    {
-        f1 <- function (x) 
-        {
-            f1 <- function (x) 
-            {
-                f1 <- function (x) 
-                {
-                  f1 <- function (x) 
-                  {
-                    x
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robast -r 1229


More information about the Robast-commits mailing list