[Robast-commits] r1187 - in pkg: RobLox RobLox/R RobLox/inst RobLox/man RobLoxBioC RobLoxBioC/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Mar 2 17:07:02 CET 2019


Author: ruckdeschel
Date: 2019-03-02 17:07:01 +0100 (Sat, 02 Mar 2019)
New Revision: 1187

Modified:
   pkg/RobLox/DESCRIPTION
   pkg/RobLox/R/rlOptIC.R
   pkg/RobLox/R/rlsOptIC_AL.R
   pkg/RobLox/R/roblox.R
   pkg/RobLox/R/rsOptIC.R
   pkg/RobLox/inst/NEWS
   pkg/RobLox/man/0RobLox-package.Rd
   pkg/RobLoxBioC/DESCRIPTION
   pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd
Log:
preparation for release of 1.2: merged back RobLox and RobLoxBioC from branch 1.2 to trunk

Modified: pkg/RobLox/DESCRIPTION
===================================================================
--- pkg/RobLox/DESCRIPTION	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLox/DESCRIPTION	2019-03-02 16:07:01 UTC (rev 1187)
@@ -1,11 +1,11 @@
 Package: RobLox
-Version: 1.1.0
-Date: 2018-08-01
+Version: 1.2.0
+Date: 2019-03-01
 Title: Optimally Robust Influence Curves and Estimators for Location and Scale
 Description: Functions for the determination of optimally robust influence curves and
         estimators in case of normal location and/or scale.
-Depends: R(>= 2.14.0), stats, distrMod(>= 2.5.2), RobAStBase(>= 0.9)
-Imports: methods, lattice, RColorBrewer, Biobase, RandVar(>= 0.9.2), distr(>= 2.5.2)
+Depends: R(>= 2.14.0), stats, distrMod(>= 2.8.0), RobAStBase(>= 1.2.0)
+Imports: methods, lattice, RColorBrewer, Biobase, RandVar(>= 1.1.0), distr(>= 2.8.0)
 Suggests: MASS
 Authors at R: c(person("Matthias", "Kohl", role=c("cre", "cph"),
         email="Matthias.Kohl at stamats.de"), person("Peter", "Ruckdeschel", role=c("aut",
@@ -16,4 +16,4 @@
 URL: http://robast.r-forge.r-project.org/
 LastChangedDate: {$LastChangedDate$}
 LastChangedRevision: {$LastChangedRevision$}
-VCS/SVNRevision: 1081
+VCS/SVNRevision: 1178

Modified: pkg/RobLox/R/rlOptIC.R
===================================================================
--- pkg/RobLox/R/rlOptIC.R	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLox/R/rlOptIC.R	2019-03-02 16:07:01 UTC (rev 1187)
@@ -18,12 +18,12 @@
                                biastype = symmetricBias(), 
                                normW = NormType())
 
-        modIC <- function(L2Fam, IC){
+        modIC <- function(L2Fam, IC, withMakeIC, ...){
             if(is(L2Fam, "L2LocationFamily") && is(distribution(L2Fam), "Norm")){
                 CallL2Fam(IC) <- L2Fam at fam.call
                 return(IC)
             }else{
-                makeIC(IC, L2Fam)
+                makeIC(IC, L2Fam, ...)
             }
         }
 

Modified: pkg/RobLox/R/rlsOptIC_AL.R
===================================================================
--- pkg/RobLox/R/rlsOptIC_AL.R	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLox/R/rlsOptIC_AL.R	2019-03-02 16:07:01 UTC (rev 1187)
@@ -157,7 +157,7 @@
                                biastype = symmetricBias(), 
                                normW = NormType())
 
-        modIC <- function(L2Fam, IC){
+        modIC <- function(L2Fam, IC, withMakeIC, ...){
             ICL2Fam <- eval(CallL2Fam(IC))
             if(is(L2Fam, "L2LocationScaleFamily") && is(distribution(L2Fam), "Norm")){
                 sdneu <- main(L2Fam)[2]
@@ -185,11 +185,13 @@
                             modifyIC = modifyIC(IC))
                 IC <- generateIC(neighbor = ContNeighborhood(radius = r),
                                  L2Fam = L2Fam, res = res)
-                addInfo(IC) <- c("modifyIC", "The IC has been modified")
-                addInfo(IC) <- c("modifyIC", "The entries in 'Infos' may be wrong")
+                if(!any(grepl("Some entries in 'Infos' may be wrong", Infos(IC)[,2]))){
+                    addInfo(IC) <- c("modifyIC", "The IC has been modified")
+                    addInfo(IC) <- c("modifyIC", "Some entries in 'Infos' may be wrong")
+                }
                 return(IC)
             }else{
-                makeIC(IC, L2Fam)
+                makeIC(IC, L2Fam, ...)
             }
         }
 

Modified: pkg/RobLox/R/roblox.R
===================================================================
--- pkg/RobLox/R/roblox.R	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLox/R/roblox.R	2019-03-02 16:07:01 UTC (rev 1187)
@@ -171,6 +171,19 @@
     es.call <- match.call()
     if(missing(x))
         stop("'x' is missing with no default")
+
+    Tr.mat <- matrix(1,1,1)
+    if(missing(mean) && missing(sd)){
+       Tr.mat<- matrix(diag(2), 2,2, dimnames = list(c("mean","sd"),c("mean","sd")))
+    }else{if(missing(mean)){
+          Tr.mat<- matrix(1, 1,1, dimnames = list("mean","mean"))
+       }else{if(missing(sd)){
+             Tr.mat<- matrix(1, 1,1, dimnames = list("sd","sd"))
+            }
+       }
+    }
+    Tr <- list(fct = function(x){list(fval = x, mat = Tr.mat)}, mat = Tr.mat)
+
     if(!is.numeric(x)){
         if(is.data.frame(x))
             x <- data.matrix(x)
@@ -195,10 +208,11 @@
             Info.matrix <- matrix(c("roblox", 
                                   paste("median and MAD")),
                                   ncol = 2, dimnames = list(NULL, c("method", "message")))
-            return(new("ALEstimate", name = "Median and MAD", 
+            return(new("ALEstimate", name = "Median and MAD",
                        completecases = completecases,
                        estimate.call = es.call, estimate = robEst, 
-                       samplesize = length(x), asvar = NULL,
+                       untransformed.estimate = robEst,
+                       samplesize = length(x), asvar = NULL, trafo = Tr,
                        asbias = NULL, pIC = NULL, Infos = Info.matrix))
         }
         if(missing(mean)){
@@ -208,10 +222,11 @@
             Info.matrix <- matrix(c("roblox", 
                                   paste("median")),
                                   ncol = 2, dimnames = list(NULL, c("method", "message")))
-            return(new("ALEstimate", name = "Median", 
+            return(new("ALEstimate", name = "Median",
                        completecases = completecases,
                        estimate.call = es.call, estimate = robEst,
-                       samplesize = length(x), asvar = NULL,
+                       untransformed.estimate = robEst,
+                       samplesize = length(x), asvar = NULL, trafo = Tr,
                        asbias = NULL, pIC = NULL, Infos = Info.matrix))
         }
         if(missing(sd)){
@@ -223,10 +238,11 @@
             Info.matrix <- matrix(c("roblox", 
                                   paste("MAD")),
                                   ncol = 2, dimnames = list(NULL, c("method", "message")))
-            return(new("ALEstimate", name = "MAD", 
+            return(new("ALEstimate", name = "MAD",
                        completecases = completecases,
                        estimate.call = es.call, estimate = robEst,
-                       samplesize = length(x), asvar = NULL,
+                       untransformed.estimate = robEst,
+                       samplesize = length(x), asvar = NULL, trafo = Tr,
                        asbias = NULL, pIC = NULL, Infos = Info.matrix))
         }
     }
@@ -259,10 +275,11 @@
                 Info.matrix <- matrix(c("roblox", 
                                       paste("mean and sd")),
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
-                return(new("ALEstimate", name = "Mean and sd", 
+                return(new("ALEstimate", name = "Mean and sd",
                           completecases = completecases,
                           estimate.call = es.call, estimate = robEst,
-                          samplesize = n, asvar = NULL,
+                          untransformed.estimate = robEst,
+                          samplesize = n, asvar = NULL, trafo = Tr,
                           asbias = NULL, pIC = NULL, Infos = Info.matrix))
             }
             if(missing(mean)){
@@ -272,10 +289,11 @@
                 Info.matrix <- matrix(c("roblox", 
                                       paste("mean")),
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
-                return(new("ALEstimate", name = "Mean", 
+                return(new("ALEstimate", name = "Mean",
                           completecases = completecases,
                           estimate.call = es.call, estimate = robEst,
-                          samplesize = length(x), asvar = NULL,
+                          untransformed.estimate = robEst,
+                          samplesize = length(x), asvar = NULL, trafo = Tr,
                           asbias = NULL, pIC = NULL, Infos = Info.matrix))
             }
             if(missing(sd)){
@@ -286,10 +304,11 @@
                 Info.matrix <- matrix(c("roblox", 
                                       paste("sd")),
                                       ncol = 2, dimnames = list(NULL, c("method", "message")))
-                return(new("ALEstimate", name = "sd", 
+                return(new("ALEstimate", name = "sd",
                           completecases = completecases,
                           estimate.call = es.call, estimate = robEst,
-                          samplesize = n, asvar = NULL,
+                          untransformed.estimate = robEst,
+                          samplesize = n, asvar = NULL, trafo = Tr,
                           asbias = NULL, pIC = NULL, Infos = Info.matrix))
             }
         }
@@ -362,7 +381,7 @@
                                        biastype = symmetricBias(), 
                                        normW = NormType())
                 mse <- robEst$A1 + robEst$A2
-                modIC <- function(L2Fam, IC){
+                modIC <- function(L2Fam, IC, withMakeIC, ...){
                     ICL2Fam <- eval(CallL2Fam(IC))
                     if(is(L2Fam, "L2LocationScaleFamily") && is(distribution(L2Fam), "Norm")){
                         sdneu <- main(L2Fam)[2]
@@ -391,11 +410,13 @@
                                     modifyIC = modifyIC(IC))
                         IC <- generateIC(neighbor = ContNeighborhood(radius = r),
                                         L2Fam = L2Fam, res = res)
-                        addInfo(IC) <- c("modifyIC", "The IC has been modified")
-                        addInfo(IC) <- c("modifyIC", "The entries in 'Infos' may be wrong")
+                        if(!any(grepl("Some entries in 'Infos' may be wrong", Infos(IC)[,2]))){
+                           addInfo(IC) <- c("modifyIC", "The IC has been modified")
+                           addInfo(IC) <- c("modifyIC", "Some entries in 'Infos' may be wrong")
+                        }
                         return(IC)
                     }else{
-                        makeIC(L2Fam, IC)
+                        makeIC(L2Fam, IC, ...)
                     }
                 }
                 L2Fam <- substitute(NormLocationScaleFamily(mean = m1, sd = s1), 
@@ -414,14 +435,18 @@
                 return(new("kStepEstimate", name = "Optimally robust estimate", 
                            completecases = completecases,
                            estimate.call = es.call, estimate = robEst$est,
-                           samplesize = length(x), asvar = robEst$asvar,
+                           untransformed.estimate = robEst$est,
+                           untransformed.asvar = robEst$asvar,
+                           samplesize = length(x), asvar = robEst$asvar, trafo = Tr,
                            asbias = r*robEst$b, steps = k, pIC = IC1, Infos = Info.matrix,
                            start = mean.sd, startval = mean.sd, ustartval = mean.sd))
             }else
                 return(new("kStepEstimate", name = "Optimally robust estimate", 
                            completecases = completecases,
                            estimate.call = es.call, estimate = robEst$est,
-                           samplesize = length(x), asvar = robEst$asvar,
+                           untransformed.estimate = robEst$est,
+                           untransformed.asvar = robEst$asvar,
+                           samplesize = length(x), asvar = robEst$asvar, trafo = Tr,
                            asbias = r*robEst$b, steps = k, pIC = NULL, Infos = Info.matrix,
                            start = mean.sd, startval = mean.sd, ustartval = mean.sd))
         }else{
@@ -489,7 +514,7 @@
                                        biastype = symmetricBias(), 
                                        normW = NormType())
                 mse <- robEst$A1 + robEst$A2
-                modIC <- function(L2Fam, IC){
+                modIC <- function(L2Fam, IC, withMakeIC, ...){
                     ICL2Fam <- eval(CallL2Fam(IC))
                     if(is(L2Fam, "L2LocationScaleFamily") && is(distribution(L2Fam), "Norm")){
                         sdneu <- main(L2Fam)[2]
@@ -518,11 +543,13 @@
                                     modifyIC = modifyIC(IC))
                         IC <- generateIC(neighbor = ContNeighborhood(radius = r),
                                         L2Fam = L2Fam, res = res)
-                        addInfo(IC) <- c("modifyIC", "The IC has been modified")
-                        addInfo(IC) <- c("modifyIC", "The entries in 'Infos' may be wrong")
+                        if(!any(grepl("Some entries in 'Infos' may be wrong", Infos(IC)[,2]))){
+                           addInfo(IC) <- c("modifyIC", "The IC has been modified")
+                           addInfo(IC) <- c("modifyIC", "Some entries in 'Infos' may be wrong")
+                        }
                         return(IC)
                     }else{
-                        makeIC(L2Fam, IC)
+                        makeIC(L2Fam, IC, ...)
                     }
                 }
                 L2Fam <- substitute(NormLocationScaleFamily(mean = m1, sd = s1), 
@@ -541,14 +568,18 @@
                 return(new("kStepEstimate", name = "Optimally robust estimate", 
                            completecases = completecases,
                            estimate.call = es.call, estimate = robEst$est,
-                           samplesize = length(x), asvar = robEst$asvar,
+                           untransformed.estimate = robEst$est,
+                           untransformed.asvar = robEst$asvar,
+                           samplesize = length(x), asvar = robEst$asvar, trafo = Tr,
                            asbias = r*robEst$b, steps = k, pIC = IC1, Infos = Info.matrix,
                            start = mean.sd, startval = mean.sd, ustartval = mean.sd))
             }else
                 return(new("kStepEstimate", name = "Optimally robust estimate", 
                            completecases = completecases,
                            estimate.call = es.call, estimate = robEst$est,
-                           samplesize = length(x), asvar = robEst$asvar,
+                           untransformed.estimate = robEst$est,
+                           untransformed.asvar = robEst$asvar,
+                           samplesize = length(x), asvar = robEst$asvar, trafo = Tr,
                            asbias = r*robEst$b, steps = k, pIC = NULL, Infos = Info.matrix,
                            start = mean.sd, startval = mean.sd, ustartval = mean.sd))
         }
@@ -597,14 +628,14 @@
                     weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
                                            biastype = symmetricBias(), 
                                            normW = NormType())
-                    modIC <- function(L2Fam, IC){
+                    modIC <- function(L2Fam, IC, withMakeIC, ...){
                         if(is(L2Fam, "L2LocationFamily") && is(distribution(L2Fam), "Norm")){
                             CallL2New <- call("NormLocationFamily", 
                                               mean = main(L2Fam))
                             CallL2Fam(IC) <- CallL2New
                             return(IC)
                         }else{
-                            makeIC(L2Fam, IC)
+                            makeIC(L2Fam, IC, ...)
                         }
                     }
                     L2Fam <- substitute(NormLocationFamily(mean = m1, sd = s1), 
@@ -619,14 +650,18 @@
                     Infos(IC1) <- Info.matrix
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst,
+                               estimate.call = es.call, estimate = robEst, trafo = Tr,
+                               untransformed.estimate = robEst,
+                               untransformed.asvar = as.matrix(A-r^2*b^2),
                                samplesize = length(x), asvar = as.matrix(A-r^2*b^2),
                                asbias = r*b, steps = k, pIC = IC1, Infos = Info.matrix,
                            start = median, startval = matrix(mean,1,1), ustartval = matrix(mean,1,1)))
                 }else
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst,
+                               estimate.call = es.call, estimate = robEst, trafo = Tr,
+                               untransformed.estimate = robEst,
+                               untransformed.asvar = as.matrix(A-r^2*b^2),
                                samplesize = length(x), asvar = as.matrix(A-r^2*b^2),
                                asbias = r*b, steps = k, pIC = NULL, Infos = Info.matrix,
                            start = median, startval = matrix(mean,1,1), ustartval = matrix(mean,1,1)))
@@ -686,14 +721,14 @@
                     weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
                                        biastype = symmetricBias(), 
                                        normW = NormType())
-                    modIC <- function(L2Fam, IC){
+                    modIC <- function(L2Fam, IC, withMakeIC, ...){
                         if(is(L2Fam, "L2LocationFamily") && is(distribution(L2Fam), "Norm")){
                             CallL2New <- call("NormLocationFamily", 
                                               mean = main(L2Fam))
                             CallL2Fam(IC) <- CallL2New
                             return(IC)
                         }else{
-                            makeIC(L2Fam, IC)
+                            makeIC(L2Fam, IC, ...)
                         }
                     }
                     L2Fam <- substitute(NormLocationFamily(mean = m1, sd = s1), 
@@ -708,14 +743,18 @@
                     Infos(IC1) <- Info.matrix
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst,
+                               estimate.call = es.call, estimate = robEst, trafo = Tr,
+                               untransformed.estimate = robEst,
+                               untransformed.asvar = as.matrix(A-r^2*b^2),
                                samplesize = length(x), asvar = as.matrix(A-r^2*b^2),
                                asbias = r*b, steps = k, pIC = IC1, Infos = Info.matrix,
                            start = median, startval = matrix(mean,1,1), ustartval = matrix(mean,1,1)))
                 }else
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst,
+                               estimate.call = es.call, estimate = robEst, trafo = Tr,
+                               untransformed.estimate = robEst,
+                               untransformed.asvar = as.matrix(A-r^2*b^2),
                                samplesize = length(x), asvar = as.matrix(A-r^2*b^2),
                                asbias = r*b, steps = k, pIC = NULL, Infos = Info.matrix,
                            start = median, startval = matrix(mean,1,1), ustartval = matrix(mean,1,1)))
@@ -773,7 +812,7 @@
                     weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
                                        biastype = symmetricBias(), 
                                        normW = NormType())
-                    modIC <- function(L2Fam, IC){
+                    modIC <- function(L2Fam, IC, withMakeIC, ...){
                         ICL2Fam <- eval(CallL2Fam(IC))
                         if(is(L2Fam, "L2ScaleFamily") && is(distribution(L2Fam), "Norm")){
                             sdneu <- main(L2Fam)
@@ -795,11 +834,13 @@
                                         modifyIC = modifyIC(IC))
                             IC <- generateIC(neighbor = ContNeighborhood(radius = r),
                                             L2Fam = L2Fam, res = res)
-                            addInfo(IC) <- c("modifyIC", "The IC has been modified")
-                            addInfo(IC) <- c("modifyIC", "The entries in 'Infos' may be wrong")
+                            if(!any(grepl("Some entries in 'Infos' may be wrong", Infos(IC)[,2]))){
+                                addInfo(IC) <- c("modifyIC", "The IC has been modified")
+                                addInfo(IC) <- c("modifyIC", "Some entries in 'Infos' may be wrong")
+                            }
                             return(IC)
                         }else{
-                            makeIC(L2Fam, IC)
+                            makeIC(L2Fam, IC, ...)
                         }
                     }
                     L2Fam <- substitute(NormScaleFamily(mean = m1, sd = s1), 
@@ -815,14 +856,18 @@
                     Infos(IC1) <- Info.matrix
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst$est,
+                               estimate.call = es.call, estimate = robEst$est, trafo = Tr,
+                               untransformed.estimate = robEst,
+                               untransformed.asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                samplesize = length(x), asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                asbias = r*robEst$b, steps = k, pIC = IC1, Infos = Info.matrix,
                            start = mad, startval = matrix(sd,1,1), ustartval = matrix(sd,1,1)))
                 }else
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst$est,
+                               estimate.call = es.call, estimate = robEst$est, trafo = Tr,
+                               untransformed.estimate = robEst,
+                               untransformed.asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                samplesize = length(x), asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                asbias = r*robEst$b, steps = k, pIC = NULL, Infos = Info.matrix,
                            start = mad, startval = matrix(sd,1,1), ustartval = matrix(sd,1,1)))
@@ -884,7 +929,7 @@
                     weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
                                        biastype = symmetricBias(), 
                                        normW = NormType())
-                    modIC <- function(L2Fam, IC){
+                    modIC <- function(L2Fam, IC, withMakeIC, ...){
                         ICL2Fam <- eval(CallL2Fam(IC))
                         if(is(L2Fam, "L2ScaleFamily") && is(distribution(L2Fam), "Norm")){
                             sdneu <- main(L2Fam)
@@ -906,11 +951,13 @@
                                         modifyIC = modifyIC(IC))
                             IC <- generateIC(neighbor = ContNeighborhood(radius = r),
                                             L2Fam = L2Fam, res = res)
-                            addInfo(IC) <- c("modifyIC", "The IC has been modified")
-                            addInfo(IC) <- c("modifyIC", "The entries in 'Infos' may be wrong")
+                            if(!any(grepl("Some entries in 'Infos' may be wrong", Infos(IC)[,2]))){
+                               addInfo(IC) <- c("modifyIC", "The IC has been modified")
+                               addInfo(IC) <- c("modifyIC", "Some entries in 'Infos' may be wrong")
+                            }
                             return(IC)
                         }else{
-                            makeIC(L2Fam, IC)
+                            makeIC(L2Fam, IC, ...)
                         }
                     }
                     L2Fam <- substitute(NormScaleFamily(mean = m1, sd = s1), 
@@ -926,14 +973,18 @@
                     Infos(IC1) <- Info.matrix
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst$est,
+                               estimate.call = es.call, estimate = robEst$est, trafo = Tr,
+                               untransformed.estimate = robEst$est,
+                               untransformed.asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                samplesize = length(x), asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                asbias = r*robEst$b, steps = k, pIC = IC1, Infos = Info.matrix,
                            start = mad, startval = matrix(sd,1,1), ustartval = matrix(sd,1,1)))
                 }else
                     return(new("kStepEstimate", name = "Optimally robust estimate",
                                completecases = completecases,
-                               estimate.call = es.call, estimate = robEst$est,
+                               estimate.call = es.call, estimate = robEst$est, trafo = Tr,
+                               untransformed.estimate = robEst$est,
+                               untransformed.asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                samplesize = length(x), asvar = as.matrix(robEst$A-r^2*robEst$b^2),
                                asbias = r*robEst$b, steps = k, pIC = NULL, Infos = Info.matrix,
                            start = mad, startval = matrix(sd,1,1), ustartval = matrix(sd,1,1)))

Modified: pkg/RobLox/R/rsOptIC.R
===================================================================
--- pkg/RobLox/R/rsOptIC.R	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLox/R/rsOptIC.R	2019-03-02 16:07:01 UTC (rev 1187)
@@ -70,7 +70,7 @@
                                biastype = symmetricBias(), 
                                normW = NormType())
 
-        modIC <- function(L2Fam, IC){
+        modIC <- function(L2Fam, IC, withMakeIC, ...){
             ICL2Fam <- eval(CallL2Fam(IC))
             if(is(L2Fam, "L2ScaleFamily") && is(distribution(L2Fam), "Norm")){
                 sdneu <- main(L2Fam)
@@ -91,11 +91,13 @@
                             modifyIC = modifyIC(IC))
                 IC <- generateIC(neighbor = ContNeighborhood(radius = neighborRadius(IC)),
                                  L2Fam = L2Fam, res = res)
-                addInfo(IC) <- c("modifyIC", "The IC has been modified")
-                addInfo(IC) <- c("modifyIC", "The entries in 'Infos' may be wrong")
+                if(!any(grepl("Some entries in 'Infos' may be wrong", Infos(IC)[,2]))){
+                   addInfo(IC) <- c("modifyIC", "The IC has been modified")
+                   addInfo(IC) <- c("modifyIC", "Some entries in 'Infos' may be wrong")
+                }
                 return(IC)
             }else{
-                makeIC(IC, L2Fam)
+                makeIC(IC, L2Fam, ...)
             }
         }
 

Modified: pkg/RobLox/inst/NEWS
===================================================================
--- pkg/RobLox/inst/NEWS	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLox/inst/NEWS	2019-03-02 16:07:01 UTC (rev 1187)
@@ -8,6 +8,15 @@
  information)
 
 #######################################
+version 1.2
+#######################################
+
+under the hood
++ the modifyIC functions gain argument withMakeIC to be consistent with the signature in RobAStBase
+  (the arg is ignored in the RobLox Code)
++ The warnings as to moved ICs have been condensed
+
+#######################################
 version 1.1
 #######################################
 

Modified: pkg/RobLox/man/0RobLox-package.Rd
===================================================================
--- pkg/RobLox/man/0RobLox-package.Rd	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLox/man/0RobLox-package.Rd	2019-03-02 16:07:01 UTC (rev 1187)
@@ -12,15 +12,15 @@
 \details{
 \tabular{ll}{
 Package: \tab RobLox \cr
-Version: \tab 1.1.0 \cr
-Date: \tab 2018-08-01 \cr
-Depends: \tab R(>= 2.14.0), stats, distrMod(>= 2.5.2), RobAStBase(>= 0.9) \cr
+Version: \tab 1.2.0 \cr
+Date: \tab 2019-03-01 \cr
+Depends: \tab R(>= 2.14.0), stats, distrMod(>= 2.8.0), RobAStBase(>= 1.2.0) \cr
 Imports: \tab lattice, RColorBrewer, Biobase, RandVar(>= 0.9.2), distr(>= 2.5.2) \cr
 Suggests: \tab MASS\cr
 ByteCompile: \tab yes \cr
 License: \tab LGPL-3 \cr
 URL: \tab http://robast.r-forge.r-project.org/\cr
-VCS/SVNRevision: \tab 1081 \cr
+VCS/SVNRevision: \tab 1178 \cr
 }
 }
 \author{Matthias Kohl  \email{matthias.kohl at stamats.de}}

Modified: pkg/RobLoxBioC/DESCRIPTION
===================================================================
--- pkg/RobLoxBioC/DESCRIPTION	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLoxBioC/DESCRIPTION	2019-03-02 16:07:01 UTC (rev 1187)
@@ -1,20 +1,19 @@
 Package: RobLoxBioC
-Version: 1.1.0
-Date: 2018-08-01
+Version: 1.2.0
+Date: 2019-03-01
 Title: Infinitesimally Robust Estimators for Preprocessing -Omics Data
 Description: Functions for the determination of optimally robust influence curves and
-        estimators for preprocessing omics data, in particular gene expression data;
-        see Kohl and Deigner (2019) <doi:10.1186/1471-2105-11-583>.
+        estimators for preprocessing omics data, in particular gene expression data.
 Depends: R(>= 2.14.0), methods, distr(>= 2.7.0), affy
 Imports: Biobase, BiocGenerics, beadarray, RobLox(>= 1.1.0), distrMod(>= 2.7.0), lattice,
         RColorBrewer, AnnotationDbi
 Suggests: affydata, hgu95av2cdf, beadarrayExampleData, illuminaHumanv3.db
 Authors at R: person("Matthias", "Kohl", role=c("aut", "cre", "cph"),
-        email="Matthias.Kohl at stamats.de", comment = c(ORCID = "0000-0001-9514-8910"))
+        email="Matthias.Kohl at stamats.de")
 ByteCompile: yes
 License: LGPL-3
 URL: http://robast.r-forge.r-project.org/
 Encoding: latin1
 LastChangedDate: {$LastChangedDate$}
 LastChangedRevision: {$LastChangedRevision$}
-VCS/SVNRevision: 1081
+VCS/SVNRevision: 1178

Modified: pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd
===================================================================
--- pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd	2019-03-02 16:06:30 UTC (rev 1186)
+++ pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd	2019-03-02 16:07:01 UTC (rev 1187)
@@ -12,15 +12,15 @@
 \details{
 \tabular{ll}{
 Package: \tab RobLoxBioC \cr
-Version: \tab 1.1.0 \cr
-Date: \tab 2018-08-01 \cr
+Version: \tab 1.2.0 \cr
+Date: \tab 2019-03-01 \cr
 Depends:\tab R(>= 2.14.0), methods, distr(>= 2.5.2), affy \cr
 Imports:\tab Biobase, BiocGenerics, beadarray, RobLox(>= 0.9.2), distrMod(>= 2.5.2), lattice, RColorBrewer \cr
 Suggests:\tab affydata, hgu95av2cdf, beadarrayExampleData, illuminaHumanv3.db \cr
 ByteCompile: \tab yes \cr
 License: \tab LGPL-3 \cr
 URL: \tab http://robast.r-forge.r-project.org/\cr
-VCS/SVNRevision: \tab 1081 \cr
+VCS/SVNRevision: \tab 1178 \cr
 Encoding: \tab latin1 \cr
 }
 }



More information about the Robast-commits mailing list