[Robast-commits] r955 - in branches/robast-1.1/pkg/RobLoxBioC: . R inst man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Jul 17 10:06:18 CEST 2018


Author: ruckdeschel
Date: 2018-07-17 10:06:17 +0200 (Tue, 17 Jul 2018)
New Revision: 955

Modified:
   branches/robast-1.1/pkg/RobLoxBioC/DESCRIPTION
   branches/robast-1.1/pkg/RobLoxBioC/R/AffySimStudyFunction.R
   branches/robast-1.1/pkg/RobLoxBioC/R/IlluminaSimStudyFunction.R
   branches/robast-1.1/pkg/RobLoxBioC/inst/NEWS
   branches/robast-1.1/pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd
Log:
[RobLoxBioC] in branch 1.1 + wherever possible also use q.l internally instead of q to 
  provide functionality in IRKernel


Modified: branches/robast-1.1/pkg/RobLoxBioC/DESCRIPTION
===================================================================
--- branches/robast-1.1/pkg/RobLoxBioC/DESCRIPTION	2018-07-17 08:01:06 UTC (rev 954)
+++ branches/robast-1.1/pkg/RobLoxBioC/DESCRIPTION	2018-07-17 08:06:17 UTC (rev 955)
@@ -1,11 +1,12 @@
 Package: RobLoxBioC
-Version: 1.0
-Date: 2015-05-03
+Version: 1.1.0
+Date: 2018-07-17
 Title: Infinitesimally Robust Estimators for Preprocessing -Omics Data
 Description: Functions for the determination of optimally robust influence curves and
         estimators for preprocessing omics data, in particular gene expression data.
 Depends: R(>= 2.14.0), methods, distr(>= 2.5.2), affy
-Imports: Biobase, BiocGenerics, beadarray, RobLox(>= 0.9.2), distrMod(>= 2.5.2), lattice, RColorBrewer
+Imports: Biobase, BiocGenerics, beadarray, RobLox(>= 0.9.2), distrMod(>= 2.5.2), lattice,
+        RColorBrewer
 Suggests: affydata, hgu95av2cdf, beadarrayExampleData, illuminaHumanv3.db
 Authors at R: person("Matthias", "Kohl", role=c("cre", "cph"), email="Matthias.Kohl at stamats.de")
 ByteCompile: yes
@@ -14,4 +15,4 @@
 Encoding: latin1
 LastChangedDate: {$LastChangedDate$}
 LastChangedRevision: {$LastChangedRevision$}
-SVNRevision: -Inf
+SVNRevision: 940

Modified: branches/robast-1.1/pkg/RobLoxBioC/R/AffySimStudyFunction.R
===================================================================
--- branches/robast-1.1/pkg/RobLoxBioC/R/AffySimStudyFunction.R	2018-07-17 08:01:06 UTC (rev 954)
+++ branches/robast-1.1/pkg/RobLoxBioC/R/AffySimStudyFunction.R	2018-07-17 08:06:17 UTC (rev 955)
@@ -1,120 +1,120 @@
-###############################################################################
-## Function to perform simulation study comparing Tukey's biweight with
-## rmx estimators
-###############################################################################
-AffySimStudy <- function(n, M, eps, seed = 123, eps.lower = 0, eps.upper = 0.05, 
-                         steps = 3L, fsCor = TRUE, contD, 
-                         plot1 = FALSE, plot2 = FALSE, plot3 = FALSE){
-    stopifnot(n >= 3)
-    stopifnot(eps >= 0, eps <= 0.5)
-    if(plot1){
-        from <- min(-6, q(contD)(1e-15))
-        to <- max(6, q(contD)(1-1e-15))
-        curve(pnorm, from = from, to = to, lwd = 2, n = 201, 
-              main = "Comparison: ideal vs. real", ylab = "cdf")
-        fun <- function(x) (1-eps)*pnorm(x) + eps*p(contD)(x)
-        curve(fun, from = from, to = to, add = TRUE, col = "orange", 
-              lwd = 2, n = 201, ylab = "cdf")
-        legend("topleft", legend = c("ideal", "real"), 
-              fill = c("black", "orange"))
-    }
-
-    set.seed(seed)
-    r <- rbinom(n*M, prob = eps, size = 1)
-    Mid <- rnorm(n*M)
-    Mcont <- r(contD)(n*M)
-    Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n)
-    ind <- rowSums(matrix(r, ncol = n)) >= n/2
-    while(any(ind)){
-        M1 <- sum(ind)
-        cat("Samples to re-simulate:\t", M1, "\n")
-        r <- rbinom(n*M1, prob = eps, size = 1)
-        Mid <- rnorm(n*M1)
-        Mcont <- r(contD)(n*M1)
-        Mre[ind,] <- (1-r)*Mid + r*Mcont
-        ind[ind] <- rowSums(matrix(r, ncol = n)) >= n/2
-    }
-    rm(Mid, Mcont, r, ind)
-
-
-    if(plot2){
-        ind <- if(M <= 20) 1:M else sample(1:M, 20)
-        if(plot1) dev.new()
-        M1 <- min(M, 20)
-        print(
-          stripplot(rep(1:M1, each = n) ~ as.vector(Mre[ind,]), 
-                    ylab = "samples", xlab = "x", pch = 20,
-                    main = ifelse(M <= 20, "Samples", "20 randomly chosen samples"))
-        )
-    }
-
-    ## ML-estimator: mean and sd
-    Mean <- rowMeans(Mre)
-    Sd <- sqrt(rowMeans((Mre-Mean)^2))
-    ## Median and MAD
-    Median <- rowMedians(Mre)
-    Mad <- rowMedians(abs(Mre - Median))/qnorm(0.75)
-    ## Tukey 1-step + MAD
-    Tukey <- apply(Mre, 1, function(x) tukey.biweight(x))
-    Tukey <- cbind(Tukey, Mad)
-
-    ## Radius-minimax estimator
-    RadMinmax <- estimate(rowRoblox(Mre, eps.lower = eps.lower, 
-                                    eps.upper = eps.upper, k = steps,
-                                    fsCor = fsCor))
-
-    if(plot3){
-        Ergebnis1 <- list(Mean, Median, Tukey[,1], RadMinmax[,1])
-        Ergebnis2 <- list(Sd, Mad, RadMinmax[,2])
-        myCol <- brewer.pal(4, "Dark2")
-        if(plot1 || plot2) dev.new()
-        layout(matrix(c(1, 1, 1, 1, 3, 2, 2, 2, 2, 3), ncol = 2))
-        boxplot(Ergebnis1, col = myCol, pch = 20, main = "Location")
-        abline(h = 0)
-        boxplot(Ergebnis2, col = myCol[c(1,2,4)], pch = 20, main = "Scale")
-        abline(h = 1)
-        op <- par(mar = rep(2, 4))
-        plot(c(0,1), c(1, 0), type = "n", axes = FALSE)
-        legend("center", c("ML", "Med/MAD", "biweight", "rmx"),
-               fill = myCol, ncol = 4, cex = 1.5)
-        on.exit(par(op))
-    }
-
-    ## ML-estimator
-    MSE1.1 <- n*mean(Mean^2)
-    ## Median + MAD
-    MSE2.1 <- n*mean(Median^2)
-    ## Tukey
-    MSE3.1 <- n*mean(Tukey[,1]^2)
-    ## Radius-minimax
-    MSE4.1 <- n*mean(RadMinmax[,1]^2)
-    empMSE <- data.frame(ML = MSE1.1, Med = MSE2.1, Tukey = MSE3.1, "rmx" = MSE4.1)
-    rownames(empMSE) <- "n x empMSE (loc)"
-    relMSE <- empMSE[1,]/empMSE[1,4]
-    empMSE <- rbind(empMSE, relMSE)
-    rownames(empMSE)[2] <- "relMSE (loc)"
-
-    ## ML-estimator
-    MSE1.2 <- n*mean((Sd-1)^2)
-    ## Median + MAD
-    MSE2.2 <- n*mean((Mad-1)^2)
-    ## Tukey
-    MSE3.2 <- MSE2.2
-    ## Radius-minimax
-    MSE4.2 <- n*mean((RadMinmax[,2]-1)^2)
-    empMSE <- rbind(empMSE, c(MSE1.2, MSE2.2, MSE3.2, MSE4.2))
-    rownames(empMSE)[3] <- "n x empMSE (scale)"
-    relMSE <- empMSE[3,]/empMSE[3,4]
-    empMSE <- rbind(empMSE, relMSE)
-    rownames(empMSE)[4] <- "relMSE (scale)"
-    empMSE <- rbind(empMSE, c(MSE1.1 + MSE1.2, MSE2.1 + MSE2.2, MSE3.1 + MSE3.2, 
-                              MSE4.1 + MSE4.2))
-    rownames(empMSE)[5] <- "n x empMSE (loc + scale)"
-    relMSE <- empMSE[5,]/empMSE[5,4]
-    empMSE <- rbind(empMSE, relMSE)
-    rownames(empMSE)[6] <- "relMSE (loc + scale)"
-
-    empMSE
-}
-
-
+###############################################################################
+## Function to perform simulation study comparing Tukey's biweight with
+## rmx estimators
+###############################################################################
+AffySimStudy <- function(n, M, eps, seed = 123, eps.lower = 0, eps.upper = 0.05, 
+                         steps = 3L, fsCor = TRUE, contD, 
+                         plot1 = FALSE, plot2 = FALSE, plot3 = FALSE){
+    stopifnot(n >= 3)
+    stopifnot(eps >= 0, eps <= 0.5)
+    if(plot1){
+        from <- min(-6, q.l(contD)(1e-15))
+        to <- max(6, q.l(contD)(1-1e-15))
+        curve(pnorm, from = from, to = to, lwd = 2, n = 201, 
+              main = "Comparison: ideal vs. real", ylab = "cdf")
+        fun <- function(x) (1-eps)*pnorm(x) + eps*p(contD)(x)
+        curve(fun, from = from, to = to, add = TRUE, col = "orange", 
+              lwd = 2, n = 201, ylab = "cdf")
+        legend("topleft", legend = c("ideal", "real"), 
+              fill = c("black", "orange"))
+    }
+
+    set.seed(seed)
+    r <- rbinom(n*M, prob = eps, size = 1)
+    Mid <- rnorm(n*M)
+    Mcont <- r(contD)(n*M)
+    Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n)
+    ind <- rowSums(matrix(r, ncol = n)) >= n/2
+    while(any(ind)){
+        M1 <- sum(ind)
+        cat("Samples to re-simulate:\t", M1, "\n")
+        r <- rbinom(n*M1, prob = eps, size = 1)
+        Mid <- rnorm(n*M1)
+        Mcont <- r(contD)(n*M1)
+        Mre[ind,] <- (1-r)*Mid + r*Mcont
+        ind[ind] <- rowSums(matrix(r, ncol = n)) >= n/2
+    }
+    rm(Mid, Mcont, r, ind)
+
+
+    if(plot2){
+        ind <- if(M <= 20) 1:M else sample(1:M, 20)
+        if(plot1) dev.new()
+        M1 <- min(M, 20)
+        print(
+          stripplot(rep(1:M1, each = n) ~ as.vector(Mre[ind,]), 
+                    ylab = "samples", xlab = "x", pch = 20,
+                    main = ifelse(M <= 20, "Samples", "20 randomly chosen samples"))
+        )
+    }
+
+    ## ML-estimator: mean and sd
+    Mean <- rowMeans(Mre)
+    Sd <- sqrt(rowMeans((Mre-Mean)^2))
+    ## Median and MAD
+    Median <- rowMedians(Mre)
+    Mad <- rowMedians(abs(Mre - Median))/qnorm(0.75)
+    ## Tukey 1-step + MAD
+    Tukey <- apply(Mre, 1, function(x) tukey.biweight(x))
+    Tukey <- cbind(Tukey, Mad)
+
+    ## Radius-minimax estimator
+    RadMinmax <- estimate(rowRoblox(Mre, eps.lower = eps.lower, 
+                                    eps.upper = eps.upper, k = steps,
+                                    fsCor = fsCor))
+
+    if(plot3){
+        Ergebnis1 <- list(Mean, Median, Tukey[,1], RadMinmax[,1])
+        Ergebnis2 <- list(Sd, Mad, RadMinmax[,2])
+        myCol <- brewer.pal(4, "Dark2")
+        if(plot1 || plot2) dev.new()
+        layout(matrix(c(1, 1, 1, 1, 3, 2, 2, 2, 2, 3), ncol = 2))
+        boxplot(Ergebnis1, col = myCol, pch = 20, main = "Location")
+        abline(h = 0)
+        boxplot(Ergebnis2, col = myCol[c(1,2,4)], pch = 20, main = "Scale")
+        abline(h = 1)
+        op <- par(mar = rep(2, 4))
+        plot(c(0,1), c(1, 0), type = "n", axes = FALSE)
+        legend("center", c("ML", "Med/MAD", "biweight", "rmx"),
+               fill = myCol, ncol = 4, cex = 1.5)
+        on.exit(par(op))
+    }
+
+    ## ML-estimator
+    MSE1.1 <- n*mean(Mean^2)
+    ## Median + MAD
+    MSE2.1 <- n*mean(Median^2)
+    ## Tukey
+    MSE3.1 <- n*mean(Tukey[,1]^2)
+    ## Radius-minimax
+    MSE4.1 <- n*mean(RadMinmax[,1]^2)
+    empMSE <- data.frame(ML = MSE1.1, Med = MSE2.1, Tukey = MSE3.1, "rmx" = MSE4.1)
+    rownames(empMSE) <- "n x empMSE (loc)"
+    relMSE <- empMSE[1,]/empMSE[1,4]
+    empMSE <- rbind(empMSE, relMSE)
+    rownames(empMSE)[2] <- "relMSE (loc)"
+
+    ## ML-estimator
+    MSE1.2 <- n*mean((Sd-1)^2)
+    ## Median + MAD
+    MSE2.2 <- n*mean((Mad-1)^2)
+    ## Tukey
+    MSE3.2 <- MSE2.2
+    ## Radius-minimax
+    MSE4.2 <- n*mean((RadMinmax[,2]-1)^2)
+    empMSE <- rbind(empMSE, c(MSE1.2, MSE2.2, MSE3.2, MSE4.2))
+    rownames(empMSE)[3] <- "n x empMSE (scale)"
+    relMSE <- empMSE[3,]/empMSE[3,4]
+    empMSE <- rbind(empMSE, relMSE)
+    rownames(empMSE)[4] <- "relMSE (scale)"
+    empMSE <- rbind(empMSE, c(MSE1.1 + MSE1.2, MSE2.1 + MSE2.2, MSE3.1 + MSE3.2, 
+                              MSE4.1 + MSE4.2))
+    rownames(empMSE)[5] <- "n x empMSE (loc + scale)"
+    relMSE <- empMSE[5,]/empMSE[5,4]
+    empMSE <- rbind(empMSE, relMSE)
+    rownames(empMSE)[6] <- "relMSE (loc + scale)"
+
+    empMSE
+}
+
+

Modified: branches/robast-1.1/pkg/RobLoxBioC/R/IlluminaSimStudyFunction.R
===================================================================
--- branches/robast-1.1/pkg/RobLoxBioC/R/IlluminaSimStudyFunction.R	2018-07-17 08:01:06 UTC (rev 954)
+++ branches/robast-1.1/pkg/RobLoxBioC/R/IlluminaSimStudyFunction.R	2018-07-17 08:06:17 UTC (rev 955)
@@ -1,128 +1,128 @@
-###############################################################################
-## Function to perform simulation study comparing Illumina's default method 
-## with rmx estimators
-###############################################################################
-IlluminaSimStudy <- function(n, M, eps, seed = 123, 
-                             eps.lower = 0, eps.upper = 0.05, 
-                             steps = 3L, fsCor = TRUE, contD, 
-                             plot1 = FALSE, plot2 = FALSE, plot3 = FALSE){
-    stopifnot(n >= 3)
-    stopifnot(eps >= 0, eps <= 0.5)
-    if(plot1){
-        from <- min(-6, q(contD)(1e-15))
-        to <- max(6, q(contD)(1-1e-15))
-        curve(pnorm, from = from, to = to, lwd = 2, n = 201, 
-              main = "Comparison: ideal vs. real", ylab = "cdf")
-        fun <- function(x) (1-eps)*pnorm(x) + eps*p(contD)(x)
-        curve(fun, from = from, to = to, add = TRUE, col = "orange", 
-              lwd = 2, n = 201, ylab = "cdf")
-        legend("topleft", legend = c("ideal", "real"), 
-              fill = c("black", "orange"))
-    }
-
-    set.seed(seed)
-    r <- rbinom(n*M, prob = eps, size = 1)
-    Mid <- rnorm(n*M)
-    Mcont <- r(contD)(n*M)
-    Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n)
-    ind <- rowSums(matrix(r, ncol = n)) >= n/2
-    while(any(ind)){
-        M1 <- sum(ind)
-        cat("Samples to re-simulate:\t", M1, "\n")
-        r <- rbinom(n*M1, prob = eps, size = 1)
-        Mid <- rnorm(n*M1)
-        Mcont <- r(contD)(n*M1)
-        Mre[ind,] <- (1-r)*Mid + r*Mcont
-        ind[ind] <- rowSums(matrix(r, ncol = n)) >= n/2
-    }
-    rm(Mid, Mcont, r, ind)
-
-
-    if(plot2){
-        ind <- if(M <= 20) 1:M else sample(1:M, 20)
-        if(plot1) dev.new()
-        M1 <- min(M, 20)
-        print(
-          stripplot(rep(1:M1, each = n) ~ as.vector(Mre[ind,]), 
-                    ylab = "samples", xlab = "x", pch = 20,
-                    main = ifelse(M <= 20, "Samples", "20 randomly chosen samples"))
-        )
-    }
-
-    ## ML-estimator: mean and sd
-    Mean <- rowMeans(Mre)
-    Sd <- sqrt(rowMeans((Mre-Mean)^2))
-    ## Median and MAD
-    Median <- rowMedians(Mre)
-    Mad <- rowMedians(abs(Mre - Median))/qnorm(0.75)
-    ## Illumina method
-    ind <- (Mre < (Median - 3*Mad)) | (Mre > (Median + 3*Mad))
-    x.ill <- Mre
-    x.ill[ind] <- NA
-    Illum.mean <- rowMeans(x.ill, na.rm = TRUE)
-    n.ill <- rowSums(!is.na(x.ill))
-    n.ill[n.ill < 1] <- NA
-    Illum.sd <- sqrt(rowSums((x.ill - Illum.mean)^2, na.rm = TRUE)/(n.ill-1))
-    Illum <- cbind(Illum.mean, Illum.sd)
-
-    ## Radius-minimax estimator
-    RadMinmax <- estimate(rowRoblox(Mre, eps.lower = eps.lower, 
-                                    eps.upper = eps.upper, k = steps,
-                                    fsCor = fsCor))
-
-    if(plot3){
-        Ergebnis1 <- list(Mean, Median, Illum[,1], RadMinmax[,1])
-        Ergebnis2 <- list(Sd, Mad, Illum[,2], RadMinmax[,2])
-        myCol <- brewer.pal(4, "Dark2")
-        if(plot1 || plot2) dev.new()
-        layout(matrix(c(1, 1, 1, 1, 3, 2, 2, 2, 2, 3), ncol = 2))
-        boxplot(Ergebnis1, col = myCol, pch = 20, main = "Location")
-        abline(h = 0)
-        boxplot(Ergebnis2, col = myCol, pch = 20, main = "Scale")
-        abline(h = 1)
-        op <- par(mar = rep(2, 4))
-        plot(c(0,1), c(1, 0), type = "n", axes = FALSE)
-        legend("center", c("ML", "Med/MAD", "Illumina", "rmx"),
-               fill = myCol, ncol = 4, cex = 1.5)
-        op$cin <- op$cra <- op$csi <- op$cxy <-  op$din <- NULL
-        on.exit(par(op))
-    }
-
-    ## ML-estimator
-    MSE1.1 <- n*mean(Mean^2)
-    ## Median + MAD
-    MSE2.1 <- n*mean(Median^2)
-    ## Illumina's default method
-    MSE3.1 <- n*mean(Illum[,1]^2)
-    ## Radius-minimax
-    MSE4.1 <- n*mean(RadMinmax[,1]^2)
-    empMSE <- data.frame(ML = MSE1.1, Med = MSE2.1, Illumina = MSE3.1, "rmx" = MSE4.1)
-    rownames(empMSE) <- "n x empMSE (loc)"
-    relMSE <- empMSE[1,]/empMSE[1,4]
-    empMSE <- rbind(empMSE, relMSE)
-    rownames(empMSE)[2] <- "relMSE (loc)"
-
-    ## ML-estimator
-    MSE1.2 <- n*mean((Sd-1)^2)
-    ## Median + MAD
-    MSE2.2 <- n*mean((Mad-1)^2)
-    ## Illumina's default method
-    MSE3.2 <- n*mean((Illum[,2]-1)^2)
-    ## Radius-minimax
-    MSE4.2 <- n*mean((RadMinmax[,2]-1)^2)
-    empMSE <- rbind(empMSE, c(MSE1.2, MSE2.2, MSE3.2, MSE4.2))
-    rownames(empMSE)[3] <- "n x empMSE (scale)"
-    relMSE <- empMSE[3,]/empMSE[3,4]
-    empMSE <- rbind(empMSE, relMSE)
-    rownames(empMSE)[4] <- "relMSE (scale)"
-    empMSE <- rbind(empMSE, c(MSE1.1 + MSE1.2, MSE2.1 + MSE2.2, MSE3.1 + MSE3.2, 
-                              MSE4.1 + MSE4.2))
-    rownames(empMSE)[5] <- "n x empMSE (loc + scale)"
-    relMSE <- empMSE[5,]/empMSE[5,4]
-    empMSE <- rbind(empMSE, relMSE)
-    rownames(empMSE)[6] <- "relMSE (loc + scale)"
-
-    empMSE
-}
-
-
+###############################################################################
+## Function to perform simulation study comparing Illumina's default method 
+## with rmx estimators
+###############################################################################
+IlluminaSimStudy <- function(n, M, eps, seed = 123, 
+                             eps.lower = 0, eps.upper = 0.05, 
+                             steps = 3L, fsCor = TRUE, contD, 
+                             plot1 = FALSE, plot2 = FALSE, plot3 = FALSE){
+    stopifnot(n >= 3)
+    stopifnot(eps >= 0, eps <= 0.5)
+    if(plot1){
+        from <- min(-6, q.l(contD)(1e-15))
+        to <- max(6, q.l(contD)(1-1e-15))
+        curve(pnorm, from = from, to = to, lwd = 2, n = 201, 
+              main = "Comparison: ideal vs. real", ylab = "cdf")
+        fun <- function(x) (1-eps)*pnorm(x) + eps*p(contD)(x)
+        curve(fun, from = from, to = to, add = TRUE, col = "orange", 
+              lwd = 2, n = 201, ylab = "cdf")
+        legend("topleft", legend = c("ideal", "real"), 
+              fill = c("black", "orange"))
+    }
+
+    set.seed(seed)
+    r <- rbinom(n*M, prob = eps, size = 1)
+    Mid <- rnorm(n*M)
+    Mcont <- r(contD)(n*M)
+    Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n)
+    ind <- rowSums(matrix(r, ncol = n)) >= n/2
+    while(any(ind)){
+        M1 <- sum(ind)
+        cat("Samples to re-simulate:\t", M1, "\n")
+        r <- rbinom(n*M1, prob = eps, size = 1)
+        Mid <- rnorm(n*M1)
+        Mcont <- r(contD)(n*M1)
+        Mre[ind,] <- (1-r)*Mid + r*Mcont
+        ind[ind] <- rowSums(matrix(r, ncol = n)) >= n/2
+    }
+    rm(Mid, Mcont, r, ind)
+
+
+    if(plot2){
+        ind <- if(M <= 20) 1:M else sample(1:M, 20)
+        if(plot1) dev.new()
+        M1 <- min(M, 20)
+        print(
+          stripplot(rep(1:M1, each = n) ~ as.vector(Mre[ind,]), 
+                    ylab = "samples", xlab = "x", pch = 20,
+                    main = ifelse(M <= 20, "Samples", "20 randomly chosen samples"))
+        )
+    }
+
+    ## ML-estimator: mean and sd
+    Mean <- rowMeans(Mre)
+    Sd <- sqrt(rowMeans((Mre-Mean)^2))
+    ## Median and MAD
+    Median <- rowMedians(Mre)
+    Mad <- rowMedians(abs(Mre - Median))/qnorm(0.75)
+    ## Illumina method
+    ind <- (Mre < (Median - 3*Mad)) | (Mre > (Median + 3*Mad))
+    x.ill <- Mre
+    x.ill[ind] <- NA
+    Illum.mean <- rowMeans(x.ill, na.rm = TRUE)
+    n.ill <- rowSums(!is.na(x.ill))
+    n.ill[n.ill < 1] <- NA
+    Illum.sd <- sqrt(rowSums((x.ill - Illum.mean)^2, na.rm = TRUE)/(n.ill-1))
+    Illum <- cbind(Illum.mean, Illum.sd)
+
+    ## Radius-minimax estimator
+    RadMinmax <- estimate(rowRoblox(Mre, eps.lower = eps.lower, 
+                                    eps.upper = eps.upper, k = steps,
+                                    fsCor = fsCor))
+
+    if(plot3){
+        Ergebnis1 <- list(Mean, Median, Illum[,1], RadMinmax[,1])
+        Ergebnis2 <- list(Sd, Mad, Illum[,2], RadMinmax[,2])
+        myCol <- brewer.pal(4, "Dark2")
+        if(plot1 || plot2) dev.new()
+        layout(matrix(c(1, 1, 1, 1, 3, 2, 2, 2, 2, 3), ncol = 2))
+        boxplot(Ergebnis1, col = myCol, pch = 20, main = "Location")
+        abline(h = 0)
+        boxplot(Ergebnis2, col = myCol, pch = 20, main = "Scale")
+        abline(h = 1)
+        op <- par(mar = rep(2, 4))
+        plot(c(0,1), c(1, 0), type = "n", axes = FALSE)
+        legend("center", c("ML", "Med/MAD", "Illumina", "rmx"),
+               fill = myCol, ncol = 4, cex = 1.5)
+        op$cin <- op$cra <- op$csi <- op$cxy <-  op$din <- NULL
+        on.exit(par(op))
+    }
+
+    ## ML-estimator
+    MSE1.1 <- n*mean(Mean^2)
+    ## Median + MAD
+    MSE2.1 <- n*mean(Median^2)
+    ## Illumina's default method
+    MSE3.1 <- n*mean(Illum[,1]^2)
+    ## Radius-minimax
+    MSE4.1 <- n*mean(RadMinmax[,1]^2)
+    empMSE <- data.frame(ML = MSE1.1, Med = MSE2.1, Illumina = MSE3.1, "rmx" = MSE4.1)
+    rownames(empMSE) <- "n x empMSE (loc)"
+    relMSE <- empMSE[1,]/empMSE[1,4]
+    empMSE <- rbind(empMSE, relMSE)
+    rownames(empMSE)[2] <- "relMSE (loc)"
+
+    ## ML-estimator
+    MSE1.2 <- n*mean((Sd-1)^2)
+    ## Median + MAD
+    MSE2.2 <- n*mean((Mad-1)^2)
+    ## Illumina's default method
+    MSE3.2 <- n*mean((Illum[,2]-1)^2)
+    ## Radius-minimax
+    MSE4.2 <- n*mean((RadMinmax[,2]-1)^2)
+    empMSE <- rbind(empMSE, c(MSE1.2, MSE2.2, MSE3.2, MSE4.2))
+    rownames(empMSE)[3] <- "n x empMSE (scale)"
+    relMSE <- empMSE[3,]/empMSE[3,4]
+    empMSE <- rbind(empMSE, relMSE)
+    rownames(empMSE)[4] <- "relMSE (scale)"
+    empMSE <- rbind(empMSE, c(MSE1.1 + MSE1.2, MSE2.1 + MSE2.2, MSE3.1 + MSE3.2, 
+                              MSE4.1 + MSE4.2))
+    rownames(empMSE)[5] <- "n x empMSE (loc + scale)"
+    relMSE <- empMSE[5,]/empMSE[5,4]
+    empMSE <- rbind(empMSE, relMSE)
+    rownames(empMSE)[6] <- "relMSE (loc + scale)"
+
+    empMSE
+}
+
+

Modified: branches/robast-1.1/pkg/RobLoxBioC/inst/NEWS
===================================================================
--- branches/robast-1.1/pkg/RobLoxBioC/inst/NEWS	2018-07-17 08:01:06 UTC (rev 954)
+++ branches/robast-1.1/pkg/RobLoxBioC/inst/NEWS	2018-07-17 08:06:17 UTC (rev 955)
@@ -8,6 +8,14 @@
  information)
 
 #######################################
+version 1.1
+#######################################
+
+under the hood:
++ wherever possible also use q.l internally instead of q to 
+  provide functionality in IRKernel
+
+#######################################
 version 1.0
 #######################################
 

Modified: branches/robast-1.1/pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd
===================================================================
--- branches/robast-1.1/pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd	2018-07-17 08:01:06 UTC (rev 954)
+++ branches/robast-1.1/pkg/RobLoxBioC/man/0RobLoxBioC-package.Rd	2018-07-17 08:06:17 UTC (rev 955)
@@ -12,15 +12,15 @@
 \details{
 \tabular{ll}{
 Package: \tab RobLoxBioC \cr
-Version: \tab 1.0 \cr
-Date: \tab 2015-05-03 \cr
+Version: \tab 1.1.0 \cr
+Date: \tab 2018-07-17 \cr
 Depends:\tab R(>= 2.14.0), methods, distr(>= 2.5.2), affy \cr
 Imports:\tab Biobase, BiocGenerics, beadarray, RobLox(>= 0.9.2), distrMod(>= 2.5.2), lattice, RColorBrewer \cr
 Suggests:\tab affydata, hgu95av2cdf, beadarrayExampleData, illuminaHumanv3.db \cr
 ByteCompile: \tab yes \cr
 License: \tab LGPL-3 \cr
 URL: \tab http://robast.r-forge.r-project.org/\cr
-SVNRevision: \tab -Inf \cr
+SVNRevision: \tab 940 \cr
 Encoding: \tab latin1 \cr
 }
 }



More information about the Robast-commits mailing list