[Robast-commits] r844 - branches/robast-1.0/pkg/ROptEst/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Jun 16 09:43:12 CEST 2015


Author: ruckdeschel
Date: 2015-06-16 09:43:12 +0200 (Tue, 16 Jun 2015)
New Revision: 844

Modified:
   branches/robast-1.0/pkg/ROptEst/man/0ROptEst-package.Rd
   branches/robast-1.0/pkg/ROptEst/man/CniperPointPlotWrapper.Rd
   branches/robast-1.0/pkg/ROptEst/man/asL1-class.Rd
   branches/robast-1.0/pkg/ROptEst/man/asL1.Rd
   branches/robast-1.0/pkg/ROptEst/man/asL4-class.Rd
   branches/robast-1.0/pkg/ROptEst/man/asL4.Rd
   branches/robast-1.0/pkg/ROptEst/man/cniperCont.Rd
   branches/robast-1.0/pkg/ROptEst/man/getAsGRiskFct-methods.Rd
   branches/robast-1.0/pkg/ROptEst/man/getBiasIC.Rd
   branches/robast-1.0/pkg/ROptEst/man/getInfCent.Rd
   branches/robast-1.0/pkg/ROptEst/man/getInfClip.Rd
   branches/robast-1.0/pkg/ROptEst/man/getInfGamma.Rd
   branches/robast-1.0/pkg/ROptEst/man/getInfRad.Rd
   branches/robast-1.0/pkg/ROptEst/man/getInfRobIC.Rd
   branches/robast-1.0/pkg/ROptEst/man/getInfStand.Rd
   branches/robast-1.0/pkg/ROptEst/man/getInfV.Rd
   branches/robast-1.0/pkg/ROptEst/man/getL1normL2deriv.Rd
   branches/robast-1.0/pkg/ROptEst/man/getL2normL2deriv.Rd
   branches/robast-1.0/pkg/ROptEst/man/getRadius.Rd
   branches/robast-1.0/pkg/ROptEst/man/getRiskIC.Rd
   branches/robast-1.0/pkg/ROptEst/man/getStartIC-methods.Rd
   branches/robast-1.0/pkg/ROptEst/man/getinfLM.Rd
   branches/robast-1.0/pkg/ROptEst/man/inputGenerator.Rd
   branches/robast-1.0/pkg/ROptEst/man/internals.Rd
   branches/robast-1.0/pkg/ROptEst/man/leastFavorableRadius.Rd
   branches/robast-1.0/pkg/ROptEst/man/lowerCaseRadius.Rd
   branches/robast-1.0/pkg/ROptEst/man/minmaxBias.Rd
   branches/robast-1.0/pkg/ROptEst/man/radiusMinimaxIC.Rd
   branches/robast-1.0/pkg/ROptEst/man/robest.Rd
   branches/robast-1.0/pkg/ROptEst/man/roptest.Rd
   branches/robast-1.0/pkg/ROptEst/man/updateNorm-methods.Rd
Log:
Mail-Adresse aktualisiert

Modified: branches/robast-1.0/pkg/ROptEst/man/0ROptEst-package.Rd
===================================================================
--- branches/robast-1.0/pkg/ROptEst/man/0ROptEst-package.Rd	2015-06-16 07:42:13 UTC (rev 843)
+++ branches/robast-1.0/pkg/ROptEst/man/0ROptEst-package.Rd	2015-06-16 07:43:12 UTC (rev 844)
@@ -1,79 +1,79 @@
-\name{ROptEst-package}
-\alias{ROptEst-package}
-\alias{ROptEst}
-\docType{package}
-\title{
-Optimally robust estimation
-}
-\description{
-Optimally robust estimation in general smoothly parameterized models 
-using S4 classes and methods.
-}
-\details{
-\tabular{ll}{
-Package: \tab ROptEst \cr
-Version: \tab 1.0 \cr
-Date: \tab 2015-05-03 \cr
-Depends: \tab R(>= 2.14.0), methods, distr(>= 2.5.2), distrEx(>= 2.5), distrMod(>= 2.5.2), 
-RandVar(>= 0.9.2), RobAStBase(>= 0.9) \cr
-Suggests: \tab RobLox, MASS \cr
-Imports: \tab startupmsg \cr
-ByteCompile: \tab yes \cr
-License: \tab LGPL-3 \cr
-URL: \tab http://robast.r-forge.r-project.org/\cr
-SVNRevision: \tab 728 \cr
-}
-}
-\author{
-Peter Ruckdeschel \email{Peter.Ruckdeschel at itwm.fraunhofer.de},\cr%
-Matthias Kohl \email{Matthias.Kohl at stamats.de}\cr
-
-Maintainer: Matthias Kohl  \email{matthias.kohl at stamats.de}}
-\references{
-  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
-  Dissertation. University of Bayreuth.
-
-  M. Kohl, P. Ruckdeschel, H. Rieder (2010). Infinitesimally Robust Estimation in 
-  General Smoothly Parametrized Models. Statistical Methods and Application 19(3):333–354. 
-}
-\seealso{
-\code{\link[distr:0distr-package]{distr-package}}, 
-\code{\link[distrEx:0distrEx-package]{distrEx-package}},
-\code{\link[distrMod:0distrMod-package]{distrMod-package}}, 
-\code{\link[RandVar:0RandVar-package]{RandVar-package}},
-\code{\link[RobAStBase:0RobAStBase-package]{RobAStBase-package}}
-}
-\section{Package versions}{
-Note: The first two numbers of package versions do not necessarily reflect
- package-individual development, but rather are chosen for the
- RobAStXXX family as a whole in order to ease updating "depends"
- information.
-}
-\examples{
-library(ROptEst)
-
-## Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)
-x <- c(rep(0, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532), 
-       rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27), 
-       rep(10, 10), rep(11, 4), rep(12, 0), rep(13, 1), rep(14, 1))
-
-## ML-estimate from package distrMod
-MLest <- MLEstimator(x, PoisFamily())
-MLest
-## confidence interval based on CLT
-confint(MLest)
-
-## compute optimally (w.r.t to MSE) robust estimator (unknown contamination)
-robEst <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
-estimate(robEst)
-## check influence curve
-pIC(robEst)
-checkIC(pIC(robEst))
-## plot influence curve
-plot(pIC(robEst))
-## confidence interval based on LAN - neglecting bias
-confint(robEst)
-## confidence interval based on LAN - including bias
-confint(robEst, method = symmetricBias())
-}
-\keyword{package}
+\name{ROptEst-package}
+\alias{ROptEst-package}
+\alias{ROptEst}
+\docType{package}
+\title{
+Optimally robust estimation
+}
+\description{
+Optimally robust estimation in general smoothly parameterized models 
+using S4 classes and methods.
+}
+\details{
+\tabular{ll}{
+Package: \tab ROptEst \cr
+Version: \tab 1.0 \cr
+Date: \tab 2015-05-03 \cr
+Depends: \tab R(>= 2.14.0), methods, distr(>= 2.5.2), distrEx(>= 2.5), distrMod(>= 2.5.2), 
+RandVar(>= 0.9.2), RobAStBase(>= 0.9) \cr
+Suggests: \tab RobLox, MASS \cr
+Imports: \tab startupmsg \cr
+ByteCompile: \tab yes \cr
+License: \tab LGPL-3 \cr
+URL: \tab http://robast.r-forge.r-project.org/\cr
+SVNRevision: \tab 728 \cr
+}
+}
+\author{
+Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de},\cr%
+Matthias Kohl \email{Matthias.Kohl at stamats.de}\cr
+
+Maintainer: Matthias Kohl  \email{matthias.kohl at stamats.de}}
+\references{
+  M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness.
+  Dissertation. University of Bayreuth.
+
+  M. Kohl, P. Ruckdeschel, H. Rieder (2010). Infinitesimally Robust Estimation in 
+  General Smoothly Parametrized Models. Statistical Methods and Application 19(3):333–354. 
+}
+\seealso{
+\code{\link[distr:0distr-package]{distr-package}}, 
+\code{\link[distrEx:0distrEx-package]{distrEx-package}},
+\code{\link[distrMod:0distrMod-package]{distrMod-package}}, 
+\code{\link[RandVar:0RandVar-package]{RandVar-package}},
+\code{\link[RobAStBase:0RobAStBase-package]{RobAStBase-package}}
+}
+\section{Package versions}{
+Note: The first two numbers of package versions do not necessarily reflect
+ package-individual development, but rather are chosen for the
+ RobAStXXX family as a whole in order to ease updating "depends"
+ information.
+}
+\examples{
+library(ROptEst)
+
+## Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)
+x <- c(rep(0, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532), 
+       rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27), 
+       rep(10, 10), rep(11, 4), rep(12, 0), rep(13, 1), rep(14, 1))
+
+## ML-estimate from package distrMod
+MLest <- MLEstimator(x, PoisFamily())
+MLest
+## confidence interval based on CLT
+confint(MLest)
+
+## compute optimally (w.r.t to MSE) robust estimator (unknown contamination)
+robEst <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
+estimate(robEst)
+## check influence curve
+pIC(robEst)
+checkIC(pIC(robEst))
+## plot influence curve
+plot(pIC(robEst))
+## confidence interval based on LAN - neglecting bias
+confint(robEst)
+## confidence interval based on LAN - including bias
+confint(robEst, method = symmetricBias())
+}
+\keyword{package}

Modified: branches/robast-1.0/pkg/ROptEst/man/CniperPointPlotWrapper.Rd
===================================================================
--- branches/robast-1.0/pkg/ROptEst/man/CniperPointPlotWrapper.Rd	2015-06-16 07:42:13 UTC (rev 843)
+++ branches/robast-1.0/pkg/ROptEst/man/CniperPointPlotWrapper.Rd	2015-06-16 07:43:12 UTC (rev 844)
@@ -1,49 +1,49 @@
-\name{CniperPointPlot}
-\alias{CniperPointPlot}
-\title{Wrapper function for cniperPointPlot - Computation and Plot
- of Cniper Contamination and Cniper Points}
-\usage{
-  CniperPointPlot(fam, ...,
-    lower = getdistrOption("DistrResolution"),
-    upper = 1 - getdistrOption("DistrResolution"),
-    with.legend = TRUE, rescale = FALSE, withCall = TRUE)
-}
-\arguments{
-  \item{fam}{object of class L2ParamFamily}
-
-  \item{...}{additional parameters (in particular to be
-  passed on to \code{plot})}
-
-  \item{lower}{the lower end point of the contamination
-  interval}
-
-  \item{upper}{the upper end point of the contamination
-  interval}
-
-  \item{with.legend}{the flag for showing the legend of the
-  plot}
-
-  \item{rescale}{the flag for rescaling the axes for better view of the plot}
-
-  \item{withCall}{the flag for the call output}
-}
-\value{
-  invisible(NULL)
-}
-\description{
-  The wrapper takes most of arguments to the
-  cniperPointPlot function by default and gives a user
-  possibility to run the function with low number of
-  arguments
-}
-\section{Details}{
-  Calls \code{cniperPointPlot} with suitably chosen
-  defaults; if \code{withCall == TRUE}, the call to
-  \code{cniperPointPlot} is returned.
-}
-\examples{
-L2fam <- NormLocationScaleFamily()
-CniperPointPlot(fam=L2fam, main = "Normal location and scale", 
-                lower = 0, upper = 2.5, withCall = FALSE)
-}
-
+\name{CniperPointPlot}
+\alias{CniperPointPlot}
+\title{Wrapper function for cniperPointPlot - Computation and Plot
+ of Cniper Contamination and Cniper Points}
+\usage{
+  CniperPointPlot(fam, ...,
+    lower = getdistrOption("DistrResolution"),
+    upper = 1 - getdistrOption("DistrResolution"),
+    with.legend = TRUE, rescale = FALSE, withCall = TRUE)
+}
+\arguments{
+  \item{fam}{object of class L2ParamFamily}
+
+  \item{...}{additional parameters (in particular to be
+  passed on to \code{plot})}
+
+  \item{lower}{the lower end point of the contamination
+  interval}
+
+  \item{upper}{the upper end point of the contamination
+  interval}
+
+  \item{with.legend}{the flag for showing the legend of the
+  plot}
+
+  \item{rescale}{the flag for rescaling the axes for better view of the plot}
+
+  \item{withCall}{the flag for the call output}
+}
+\value{
+  invisible(NULL)
+}
+\description{
+  The wrapper takes most of arguments to the
+  cniperPointPlot function by default and gives a user
+  possibility to run the function with low number of
+  arguments
+}
+\section{Details}{
+  Calls \code{cniperPointPlot} with suitably chosen
+  defaults; if \code{withCall == TRUE}, the call to
+  \code{cniperPointPlot} is returned.
+}
+\examples{
+L2fam <- NormLocationScaleFamily()
+CniperPointPlot(fam=L2fam, main = "Normal location and scale", 
+                lower = 0, upper = 2.5, withCall = FALSE)
+}
+

Modified: branches/robast-1.0/pkg/ROptEst/man/asL1-class.Rd
===================================================================
--- branches/robast-1.0/pkg/ROptEst/man/asL1-class.Rd	2015-06-16 07:42:13 UTC (rev 843)
+++ branches/robast-1.0/pkg/ROptEst/man/asL1-class.Rd	2015-06-16 07:43:12 UTC (rev 844)
@@ -32,7 +32,7 @@
   Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for
   General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
 }
-\author{Peter Ruckdeschel \email{peter.ruckdeschel at itwm.fraunhofer.de}}
+\author{Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de}}
 %\note{}
 \seealso{\code{\link{asGRisk-class}}, \code{\link{asMSE}}, \code{\link{asMSE-class}}, \code{\link{asL4-class}}, \code{\link{asL1}}}
 \examples{

Modified: branches/robast-1.0/pkg/ROptEst/man/asL1.Rd
===================================================================
--- branches/robast-1.0/pkg/ROptEst/man/asL1.Rd	2015-06-16 07:42:13 UTC (rev 843)
+++ branches/robast-1.0/pkg/ROptEst/man/asL1.Rd	2015-06-16 07:43:12 UTC (rev 844)
@@ -17,7 +17,7 @@
   Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for
   General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
 }
-\author{Peter Ruckdeschel \email{peter.ruckdeschel at itwm.fraunhofer.de}}
+\author{Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de}}
 %\note{}
 \seealso{\code{\link{asL1-class}}, \code{\link{asMSE}}, \code{\link{asL4}}}
 \examples{

Modified: branches/robast-1.0/pkg/ROptEst/man/asL4-class.Rd
===================================================================
--- branches/robast-1.0/pkg/ROptEst/man/asL4-class.Rd	2015-06-16 07:42:13 UTC (rev 843)
+++ branches/robast-1.0/pkg/ROptEst/man/asL4-class.Rd	2015-06-16 07:43:12 UTC (rev 844)
@@ -32,7 +32,7 @@
   Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for
   General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
 }
-\author{Peter Ruckdeschel \email{peter.ruckdeschel at itwm.fraunhofer.de}}
+\author{Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de}}
 %\note{}
 \seealso{\code{\link{asGRisk-class}}, \code{\link{asMSE}}, \code{\link{asMSE-class}}, \code{\link{asL1-class}}, \code{\link{asL4}}}
 \examples{

Modified: branches/robast-1.0/pkg/ROptEst/man/asL4.Rd
===================================================================
--- branches/robast-1.0/pkg/ROptEst/man/asL4.Rd	2015-06-16 07:42:13 UTC (rev 843)
+++ branches/robast-1.0/pkg/ROptEst/man/asL4.Rd	2015-06-16 07:43:12 UTC (rev 844)
@@ -17,7 +17,7 @@
   Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for
   General Loss Functions. Statistics & Decisions \emph{22}, 201-223.
 }
-\author{Peter Ruckdeschel \email{peter.ruckdeschel at itwm.fraunhofer.de}}
+\author{Peter Ruckdeschel \email{peter.ruckdeschel at uni-oldenburg.de}}
 %\note{}
 \seealso{\code{\link{asL4-class}}, \code{\link{asMSE}}, \code{\link{asL1}}}
 \examples{

Modified: branches/robast-1.0/pkg/ROptEst/man/cniperCont.Rd
===================================================================
--- branches/robast-1.0/pkg/ROptEst/man/cniperCont.Rd	2015-06-16 07:42:13 UTC (rev 843)
+++ branches/robast-1.0/pkg/ROptEst/man/cniperCont.Rd	2015-06-16 07:43:12 UTC (rev 844)
@@ -1,204 +1,211 @@
-\name{cniperCont}
-\alias{cniperCont}
-\alias{cniperPoint}
-\alias{cniperPointPlot}
-\title{ Functions for Computation and Plot of Cniper Contamination
-        and Cniper Points. }
-\description{
-  These functions and their methods can be used to determine cniper
-  contamination as well as cniper points. That is, under which (Dirac) 
-  contamination is the risk of one procedure larger than the risk of some
-  other procedure.
-}
-\usage{
-cniperCont(IC1, IC2, data = NULL, ...,
-               neighbor, risk, lower = getdistrOption("DistrResolution"),
-               upper = 1-getdistrOption("DistrResolution"), n = 101,
-               scaleX = FALSE, scaleX.fct, scaleX.inv,
-               scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=qnorm,
-               scaleN = 9, x.ticks = NULL, y.ticks = NULL,
-               cex.pts = 1, cex.pts.fun = NULL, col.pts = par("col"),
-               pch.pts = 19, jitter.fac = 1, with.lab = FALSE,
-               lab.pts = NULL, lab.font = NULL, alpha.trsp = NA,
-               which.lbs = NULL, which.Order  = NULL,
-               return.Order = FALSE, withSubst = TRUE)
-
-
-cniperPoint(L2Fam, neighbor, risk, lower, upper)
-
-cniperPointPlot(L2Fam, data=NULL, ..., neighbor, risk= asMSE(),
-                lower=getdistrOption("DistrResolution"),
-                upper=1-getdistrOption("DistrResolution"), n = 101,
-                withMaxRisk = TRUE,
-                scaleX = FALSE, scaleX.fct, scaleX.inv,
-                scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=qnorm,
-                scaleN = 9, x.ticks = NULL, y.ticks = NULL,
-                cex.pts = 1, cex.pts.fun = NULL, col.pts = par("col"),
-                pch.pts = 19, jitter.fac = 1, with.lab = FALSE,
-                lab.pts = NULL, lab.font = NULL, alpha.trsp = NA,
-                which.lbs = NULL, which.Order  = NULL,
-                return.Order = FALSE, withSubst = TRUE)
-
-}
-\arguments{
-  \item{IC1}{ object of class \code{IC} }
-  \item{IC2}{ object of class \code{IC} }
-  \item{L2Fam}{ object of class \code{L2ParamFamily} }
-  \item{neighbor}{ object of class \code{Neighborhood} }
-  \item{risk}{ object of class \code{RiskType} }
-  \item{\dots}{ additional parameters (in particular to be passed on to \code{plot}). }
-  \item{data}{data to be plotted in}
-  \item{lower, upper}{ the lower and upper end points of the 
-          contamination interval (in prob-scale). }
-  \item{n}{ number of points between \code{lower} and \code{upper}}
-  \item{withMaxRisk}{logical; if \code{TRUE}, for risk comparison
-     uses the maximal risk of the classically optimal IC \eqn{\psi}{psi} in all
-     situations with contamination in Dirac points 'no larger' than
-     the respective evaluation point and the optimally-robust
-     IC \eqn{\eta}{eta} at its least favorable contamination situation
-     ('over all real Dirac contamination points'). This is the default and
-     was the  behavior prior to package version 0.9).
-     If \code{FALSE} it uses exactly the situation
-     with Dirac contamination in the evaluation point for both ICs
-     \eqn{\psi}{psi} and \eqn{\eta}{eta} which amounts to calling \code{cniperCont}
-     with \code{IC1=psi}, \code{IC2=eta}.}
-  \item{scaleX}{logical; shall X-axis be rescaled (by default according to the cdf of
-          the underlying distribution)?}
-  \item{scaleY}{logical; shall Y-axis be rescaled (by default according to a probit scale)?}
-  \item{scaleX.fct}{an isotone, vectorized function mapping the domain of the IC(s)
-            to [0,1]; if \code{scaleX} is \code{TRUE} and \code{scaleX.fct} is
-            missing, the cdf of the underlying observation distribution.}
-  \item{scaleX.inv}{the inverse function to \code{scale.fct}, i.e., an isotone,
-            vectorized function mapping [0,1] to the domain of the IC(s)
-            such that for any \code{x} in the domain,
-            \code{scaleX.inv(scaleX.fct(x))==x}; if \code{scaleX} is \code{TRUE}
-            and \code{scaleX.inv} is
-            missing, the quantile function of the underlying observation distribution.}
-  \item{scaleY.fct}{an isotone, vectorized function mapping for each coordinate the
-            range of the respective coordinate of the IC(s)
-            to [0,1]; defaulting to the cdf of \eqn{{\cal N}(0,1)}{N(0,1)}.}
- \item{scaleY.inv}{an isotone, vectorized function mapping for each coordinate
-            the range [0,1] into the range of the respective coordinate of the IC(s);
-            defaulting to the quantile function of  \eqn{{\cal N}(0,1)}{N(0,1)}.}
-  \item{scaleN}{integer; defaults to 9; on rescaled axes, number of x
-                and y ticks if drawn automatically;}
-  \item{x.ticks}{numeric; defaults to NULL; (then ticks are chosen automatically);
-                 if non-NULL, user-given x-ticks (on original scale);}
-  \item{y.ticks}{numeric; defaults to NULL; (then ticks are chosen automatically);
-                 if non-NULL, user-given y-ticks (on original scale);}
-  \item{cex.pts}{size of the points of the second argument plotted}
-  \item{cex.pts.fun}{rescaling function for the size of the points to be plotted;
-        either \code{NULL} (default), then \code{log(1+abs(x))} is used for
-        the rescaling, or a function which is then used for the
-        rescaling.}
-  \item{col.pts}{color of the points of the second argument plotted}
-  \item{pch.pts}{symbol of the points of the second argument plotted}
-  \item{with.lab}{logical; shall labels be plotted to the observations?}
-  \item{lab.pts}{character or NULL; labels to be plotted to the observations; if \code{NULL}
-                 observation indices;}
-  \item{lab.font}{font to be used for labels}
-  \item{alpha.trsp}{alpha transparency to be added ex post to colors
-        \code{col.pch} and \code{col.lbl}; if one-dim and NA all colors are
-        left unchanged. Otherwise, with usual recycling rules \code{alpha.trsp}
-        gets shorted/prolongated to length the data-symbols to be plotted.
-        Coordinates of this vector \code{alpha.trsp} with NA are left unchanged,
-        while for the remaining ones, the alpha channel in rgb space is set
-        to the respective coordinate value of \code{alpha.trsp}. The non-NA
-        entries must be integers in [0,255] (0 invisible, 255 opaque).}
-  \item{jitter.fac}{jittering factor used in case of a \code{DiscreteDistribution}
-                    for plotting points of the second argument in a jittered fashion.}
-  \item{which.lbs}{either an integer vector with the indices of the observations
-          to be plotted into graph or \code{NULL} --- then no observation is excluded}
-  \item{which.Order}{we order the observations (descending) according to the norm given by
-           \code{normtype(object)}; then \code{which.Order}
-           either is an integer vector with the indices of the \emph{ordered}
-           observations (remaining after a possible reduction by argument \code{which.lbs})
-           to be plotted into graph or \code{NULL} --- then no (further) observation
-           is excluded.}
-  \item{return.Order}{logical; if \code{TRUE}, an order vector
-    is returned; more specifically, the order of the (remaining) observations
-    given by their original index is returned (remaining means: after a possible
-    reduction by argument \code{which.lbs}, and ordering is according to the norm given by
-           \code{normtype(object)});
-   otherwise we return \code{invisible()} as usual.}
-  \item{withSubst}{logical; if \code{TRUE} (default) pattern substitution for
-      titles and lables is used; otherwise no substitution is used. }
-}
-\details{
-  In case of \code{cniperCont} the difference between the risks of two ICs 
-  is plotted.
-
-  The function \code{cniperPoint} can be used to determine cniper
-  points. That is, points such that the optimally robust estimator
-  has smaller minimax risk than the classical optimal estimator under 
-  contamination with Dirac measures at the cniper points. 
-
-  As such points might be difficult to find, we provide the
-  function \code{cniperPointPlot} which can be used to obtain a plot
-  of the risk difference; in this function the usual arguments for
-  \code{plot} can be used. For arguments \code{col}, \code{lwd},
-  vectors can be used; then the first coordinate is taken for the
-  curve, the second one for the balancing line. For argument \code{lty},
-  a list can be used; its first component is then taken for the
-  curve, the second one for the balancing line.
-
-  If argument \code{withSubst} is \code{TRUE}, in all title 
-  and axis lable arguments of \code{cniperCont} and \code{cniperPointPlot}, 
-  the following patterns are substituted:
-  \describe{
-  \item{\code{"\%C"}}{class of argument \code{L2Fam} (for  \code{cniperPointPlot})}
-  \item{\code{"\%A"}}{deparsed argument  \code{L2Fam} (for  \code{cniperPointPlot})}
-  \item{\code{"\%C1"}}{class of argument \code{IC1} (for  \code{cniperCont})}
-  \item{\code{"\%A1"}}{deparsed argument  \code{IC1} (for  \code{cniperCont})}
-  \item{\code{"\%C2"}}{class of argument \code{IC2} (for  \code{cniperCont})}
-  \item{\code{"\%A2"}}{deparsed argument  \code{IC2} (for  \code{cniperCont})}
-  \item{\code{"\%D"}}{time/date-string when the plot was generated}
-  }
-
-  For more details about cniper contamination and cniper points we refer 
-  to Section~3.5 of Kohl et al. (2008) as well as Ruckdeschel (2004) and 
-  the Introduction of Kohl (2005).
-}
-\value{invisible() resp. cniper point is returned.}
-\references{
-  Kohl, M. and Ruckdeschel, H. and Rieder, H. (2008). Infinitesimally 
-  Robust Estimation in General Smoothly Parametrized Models. Unpublished
-  Manuscript.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-
-  Ruckdeschel, P. (2004). Higher Order Asymptotics for the MSE of M-Estimators
-  on Shrinking Neighborhoods. Unpublished Manuscript.
-}
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
-%\note{}
-%\seealso{ ~~objects to See Also as \code{\link{help}}, ~~~ }
-\examples{
-## cniper contamination
-P <- PoisFamily(lambda = 4)
-RobP1 <- InfRobModel(center = P, neighbor = ContNeighborhood(radius = 0.1))
-IC1 <- optIC(model=RobP1, risk=asMSE())
-RobP2 <- InfRobModel(center = P, neighbor = ContNeighborhood(radius = 1))
-IC2 <- optIC(model=RobP2, risk=asMSE())
-cniperCont(IC1 = IC1, IC2 = IC2,
-           neighbor = ContNeighborhood(radius = 0.5), 
-           risk = asMSE(),
-           lower = 0, upper = 8, n = 101)
-
-## cniper point plot
-cniperPointPlot(P, neighbor = ContNeighborhood(radius = 0.5), 
-                risk = asMSE(), lower = 0, upper = 10)
-
-## Don't run to reduce check time on CRAN
-\dontrun{
-## cniper point
-cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
-            risk = asMSE(), lower = 0, upper = 4)
-cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
-            risk = asMSE(), lower = 4, upper = 8)
-}
-}
-\concept{cniper contamination}
-\concept{cniper point}
-\keyword{robust}
+\name{cniperCont}
+\alias{cniperCont}
+\alias{cniperPoint}
+\alias{cniperPointPlot}
+\title{ Functions for Computation and Plot of Cniper Contamination
+        and Cniper Points. }
+\description{
+  These functions and their methods can be used to determine cniper
+  contamination as well as cniper points. That is, under which (Dirac) 
+  contamination is the risk of one procedure larger than the risk of some
+  other procedure.
+}
+\usage{
+cniperCont(IC1, IC2, data = NULL, ...,
+               neighbor, risk, lower = getdistrOption("DistrResolution"),
+               upper = 1-getdistrOption("DistrResolution"), n = 101,
+               scaleX = FALSE, scaleX.fct, scaleX.inv,
+               scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=qnorm,
+               scaleN = 9, x.ticks = NULL, y.ticks = NULL,
+               cex.pts = 1, cex.pts.fun = NULL, col.pts = par("col"),
+               pch.pts = 19, jitter.fac = 1, with.lab = FALSE,
+               lab.pts = NULL, lab.font = NULL, alpha.trsp = NA,
+               which.lbs = NULL, which.Order  = NULL,
+               return.Order = FALSE, 
+               draw.nonlbl = TRUE, cex.nonlbl=0.3, pch.nonlbl=".",
+               withSubst = TRUE)
+
+
+cniperPoint(L2Fam, neighbor, risk, lower, upper)
+
+cniperPointPlot(L2Fam, data=NULL, ..., neighbor, risk= asMSE(),
+                lower=getdistrOption("DistrResolution"),
+                upper=1-getdistrOption("DistrResolution"), n = 101,
+                withMaxRisk = TRUE,
+                scaleX = FALSE, scaleX.fct, scaleX.inv,
+                scaleY = FALSE, scaleY.fct = pnorm, scaleY.inv=qnorm,
+                scaleN = 9, x.ticks = NULL, y.ticks = NULL,
+                cex.pts = 1, cex.pts.fun = NULL, col.pts = par("col"),
+                pch.pts = 19, jitter.fac = 1, with.lab = FALSE,
+                lab.pts = NULL, lab.font = NULL, alpha.trsp = NA,
+                which.lbs = NULL, which.Order  = NULL,
+                return.Order = FALSE, 
+                draw.nonlbl = TRUE, cex.nonlbl=0.3, pch.nonlbl=".",
+                withSubst = TRUE)
+
+}
+\arguments{
+  \item{IC1}{ object of class \code{IC} }
+  \item{IC2}{ object of class \code{IC} }
+  \item{L2Fam}{ object of class \code{L2ParamFamily} }
+  \item{neighbor}{ object of class \code{Neighborhood} }
+  \item{risk}{ object of class \code{RiskType} }
+  \item{\dots}{ additional parameters (in particular to be passed on to \code{plot}). }
+  \item{data}{data to be plotted in}
+  \item{lower, upper}{ the lower and upper end points of the 
+          contamination interval (in prob-scale). }
+  \item{n}{ number of points between \code{lower} and \code{upper}}
+  \item{withMaxRisk}{logical; if \code{TRUE}, for risk comparison
+     uses the maximal risk of the classically optimal IC \eqn{\psi}{psi} in all
+     situations with contamination in Dirac points 'no larger' than
+     the respective evaluation point and the optimally-robust
+     IC \eqn{\eta}{eta} at its least favorable contamination situation
+     ('over all real Dirac contamination points'). This is the default and
+     was the  behavior prior to package version 0.9).
+     If \code{FALSE} it uses exactly the situation
+     with Dirac contamination in the evaluation point for both ICs
+     \eqn{\psi}{psi} and \eqn{\eta}{eta} which amounts to calling \code{cniperCont}
+     with \code{IC1=psi}, \code{IC2=eta}.}
+  \item{scaleX}{logical; shall X-axis be rescaled (by default according to the cdf of
+          the underlying distribution)?}
+  \item{scaleY}{logical; shall Y-axis be rescaled (by default according to a probit scale)?}
+  \item{scaleX.fct}{an isotone, vectorized function mapping the domain of the IC(s)
+            to [0,1]; if \code{scaleX} is \code{TRUE} and \code{scaleX.fct} is
+            missing, the cdf of the underlying observation distribution.}
+  \item{scaleX.inv}{the inverse function to \code{scale.fct}, i.e., an isotone,
+            vectorized function mapping [0,1] to the domain of the IC(s)
+            such that for any \code{x} in the domain,
+            \code{scaleX.inv(scaleX.fct(x))==x}; if \code{scaleX} is \code{TRUE}
+            and \code{scaleX.inv} is
+            missing, the quantile function of the underlying observation distribution.}
+  \item{scaleY.fct}{an isotone, vectorized function mapping for each coordinate the
+            range of the respective coordinate of the IC(s)
+            to [0,1]; defaulting to the cdf of \eqn{{\cal N}(0,1)}{N(0,1)}.}
+ \item{scaleY.inv}{an isotone, vectorized function mapping for each coordinate
+            the range [0,1] into the range of the respective coordinate of the IC(s);
+            defaulting to the quantile function of  \eqn{{\cal N}(0,1)}{N(0,1)}.}
+  \item{scaleN}{integer; defaults to 9; on rescaled axes, number of x
+                and y ticks if drawn automatically;}
+  \item{x.ticks}{numeric; defaults to NULL; (then ticks are chosen automatically);
+                 if non-NULL, user-given x-ticks (on original scale);}
+  \item{y.ticks}{numeric; defaults to NULL; (then ticks are chosen automatically);
+                 if non-NULL, user-given y-ticks (on original scale);}
+  \item{cex.pts}{size of the points of the second argument plotted}
+  \item{cex.pts.fun}{rescaling function for the size of the points to be plotted;
+        either \code{NULL} (default), then \code{log(1+abs(x))} is used for
+        the rescaling, or a function which is then used for the
+        rescaling.}
+  \item{col.pts}{color of the points of the second argument plotted}
+  \item{pch.pts}{symbol of the points of the second argument plotted}
+  \item{with.lab}{logical; shall labels be plotted to the observations?}
+  \item{lab.pts}{character or NULL; labels to be plotted to the observations; if \code{NULL}
+                 observation indices;}
+  \item{lab.font}{font to be used for labels}
+  \item{alpha.trsp}{alpha transparency to be added ex post to colors
+        \code{col.pch} and \code{col.lbl}; if one-dim and NA all colors are
+        left unchanged. Otherwise, with usual recycling rules \code{alpha.trsp}
+        gets shorted/prolongated to length the data-symbols to be plotted.
+        Coordinates of this vector \code{alpha.trsp} with NA are left unchanged,
+        while for the remaining ones, the alpha channel in rgb space is set
+        to the respective coordinate value of \code{alpha.trsp}. The non-NA
+        entries must be integers in [0,255] (0 invisible, 255 opaque).}
+  \item{jitter.fac}{jittering factor used in case of a \code{DiscreteDistribution}
+                    for plotting points of the second argument in a jittered fashion.}
+  \item{which.lbs}{either an integer vector with the indices of the observations
+          to be plotted into graph or \code{NULL} --- then no observation is excluded}
+  \item{which.Order}{we order the observations (descending) according to the norm given by
+           \code{normtype(object)}; then \code{which.Order}
+           either is an integer vector with the indices of the \emph{ordered}
+           observations (remaining after a possible reduction by argument \code{which.lbs})
+           to be plotted into graph or \code{NULL} --- then no (further) observation
+           is excluded.}
+  \item{return.Order}{logical; if \code{TRUE}, an order vector
+    is returned; more specifically, the order of the (remaining) observations
+    given by their original index is returned (remaining means: after a possible
+    reduction by argument \code{which.lbs}, and ordering is according to the norm given by
+           \code{normtype(object)});
+   otherwise we return \code{invisible()} as usual.}
+  \item{draw.nonlbl}{logical; should non-labelled observations be drawn?}
+  \item{cex.nonlbl}{character expansion(s) for non-labelled observations}
+  \item{pch.nonlbl}{plotting symbol(s) for non-labelled observations}
+  \item{withSubst}{logical; if \code{TRUE} (default) pattern substitution for
+      titles and lables is used; otherwise no substitution is used. }
+}
+\details{
+  In case of \code{cniperCont} the difference between the risks of two ICs 
+  is plotted.
+
+  The function \code{cniperPoint} can be used to determine cniper
+  points. That is, points such that the optimally robust estimator
+  has smaller minimax risk than the classical optimal estimator under 
+  contamination with Dirac measures at the cniper points. 
+
+  As such points might be difficult to find, we provide the
+  function \code{cniperPointPlot} which can be used to obtain a plot
+  of the risk difference; in this function the usual arguments for
+  \code{plot} can be used. For arguments \code{col}, \code{lwd},
+  vectors can be used; then the first coordinate is taken for the
+  curve, the second one for the balancing line. For argument \code{lty},
+  a list can be used; its first component is then taken for the
+  curve, the second one for the balancing line.
+
+  If argument \code{withSubst} is \code{TRUE}, in all title 
+  and axis lable arguments of \code{cniperCont} and \code{cniperPointPlot}, 
+  the following patterns are substituted:
+  \describe{
+  \item{\code{"\%C"}}{class of argument \code{L2Fam} (for  \code{cniperPointPlot})}
+  \item{\code{"\%A"}}{deparsed argument  \code{L2Fam} (for  \code{cniperPointPlot})}
+  \item{\code{"\%C1"}}{class of argument \code{IC1} (for  \code{cniperCont})}
+  \item{\code{"\%A1"}}{deparsed argument  \code{IC1} (for  \code{cniperCont})}
+  \item{\code{"\%C2"}}{class of argument \code{IC2} (for  \code{cniperCont})}
+  \item{\code{"\%A2"}}{deparsed argument  \code{IC2} (for  \code{cniperCont})}
+  \item{\code{"\%D"}}{time/date-string when the plot was generated}
+  }
+
+  For more details about cniper contamination and cniper points we refer 
+  to Section~3.5 of Kohl et al. (2008) as well as Ruckdeschel (2004) and 
+  the Introduction of Kohl (2005).
+}
+\value{invisible() resp. cniper point is returned.}
+\references{
+  Kohl, M. and Ruckdeschel, H. and Rieder, H. (2008). Infinitesimally 
+  Robust Estimation in General Smoothly Parametrized Models. Unpublished
+  Manuscript.
+
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robast -r 844


More information about the Robast-commits mailing list