[Robast-commits] r580 - in branches/robast-0.9/pkg/ROptEst: man tests/Examples

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Jan 31 20:03:44 CET 2013


Author: stamats
Date: 2013-01-31 20:03:44 +0100 (Thu, 31 Jan 2013)
New Revision: 580

Modified:
   branches/robast-0.9/pkg/ROptEst/man/cniperCont.Rd
   branches/robast-0.9/pkg/ROptEst/man/comparePlot.Rd
   branches/robast-0.9/pkg/ROptEst/man/getMaxIneff.Rd
   branches/robast-0.9/pkg/ROptEst/man/getReq.Rd
   branches/robast-0.9/pkg/ROptEst/man/plot-methods.Rd
   branches/robast-0.9/pkg/ROptEst/man/robest.Rd
   branches/robast-0.9/pkg/ROptEst/man/roptest.Rd
   branches/robast-0.9/pkg/ROptEst/tests/Examples/ROptEst-Ex.Rout.save
Log:
update of Rout.save, had to put a lot of examples in \dontrun

Modified: branches/robast-0.9/pkg/ROptEst/man/cniperCont.Rd
===================================================================
--- branches/robast-0.9/pkg/ROptEst/man/cniperCont.Rd	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/man/cniperCont.Rd	2013-01-31 19:03:44 UTC (rev 580)
@@ -171,12 +171,15 @@
 cniperPointPlot(P, neighbor = ContNeighborhood(radius = 0.5), 
                 risk = asMSE(), lower = 0, upper = 10)
 
+## Don't run to reduce check time on CRAN
+\dontrun{
 ## cniper point
 cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
             risk = asMSE(), lower = 0, upper = 4)
 cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
             risk = asMSE(), lower = 4, upper = 8)
 }
+}
 \concept{cniper contamination}
 \concept{cniper point}
 \keyword{robust}

Modified: branches/robast-0.9/pkg/ROptEst/man/comparePlot.Rd
===================================================================
--- branches/robast-0.9/pkg/ROptEst/man/comparePlot.Rd	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/man/comparePlot.Rd	2013-01-31 19:03:44 UTC (rev 580)
@@ -17,12 +17,12 @@
 to determine the number of evaluation points.
 }
 \examples{
-if(require(ROptEst)){
-
 N0 <- NormLocationScaleFamily(mean=0, sd=1)
 N0.Rob1 <- InfRobModel(center = N0,
            neighbor = ContNeighborhood(radius = 0.5))
 
+## Don't run to reduce check time on CRAN
+\dontrun{
 IC1 <- optIC(model = N0, risk = asCov())
 IC2 <- optIC(model = N0.Rob1, risk = asMSE())
 

Modified: branches/robast-0.9/pkg/ROptEst/man/getMaxIneff.Rd
===================================================================
--- branches/robast-0.9/pkg/ROptEst/man/getMaxIneff.Rd	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/man/getMaxIneff.Rd	2013-01-31 19:03:44 UTC (rev 580)
@@ -59,11 +59,13 @@
 getMaxIneff(N0.ICM,neighbor)
 getMaxIneff(N0.ICR,neighbor)
 
+## Don't run to reduce check time on CRAN
+\dontrun{
 N0ls <- NormLocationScaleFamily()
 ICsc <- makeIC(list(sin,cos),N0ls)
 getMaxIneff(ICsc,neighbor)
-
 }
+}
 \concept{Inefficiency}
 \concept{risk}
 \keyword{robust}

Modified: branches/robast-0.9/pkg/ROptEst/man/getReq.Rd
===================================================================
--- branches/robast-0.9/pkg/ROptEst/man/getReq.Rd	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/man/getReq.Rd	2013-01-31 19:03:44 UTC (rev 580)
@@ -42,11 +42,15 @@
 N0.ICA <- optIC(model = N0.Rob1, risk = asAnscombe(.95))
 ## MSE solution
 N0.ICM <- optIC(model=N0.Rob1, risk=asMSE())
+
+getReq(asMSE(),neighbor,N0.ICA,N0.ICM,n=1)
+getReq(asMSE(),neighbor,N0.ICA,N0.ICM,n=30)
+
+## Don't run to reduce check time on CRAN
+\dontrun{
 ## RMX solution
 N0.ICR <- radiusMinimaxIC(L2Fam=N0, neighbor=neighbor,risk=asMSE())
 
-getReq(asMSE(),neighbor,N0.ICA,N0.ICM,n=1)
-getReq(asMSE(),neighbor,N0.ICA,N0.ICM,n=30)
 getReq(asL1(),neighbor,N0.ICA,N0.ICM,n=30)
 getReq(asL4(),neighbor,N0.ICA,N0.ICM,n=30)
 getReq(asMSE(),neighbor,N0.ICA,N0.ICR,n=30)
@@ -54,6 +58,7 @@
 getReq(asL4(),neighbor,N0.ICA,N0.ICR,n=30)
 getReq(asMSE(),neighbor,N0.ICM,N0.ICR,n=30)
 
+
 ### when to use MAD and when Qn 
 ##  for Qn, see C. Croux, P. Rousseeuw (1993). Alternatives to the Median 
 ##      Absolute Deviation, JASA 88(424):1273-1283
@@ -65,6 +70,7 @@
 getReq(asMSE(), neighbor, IC.mad, IC.qn, radOrOutl = "Outlier", n = 30)
 # => MAD is better once r > 0.5144 (i.e. for more than 2 outliers for n = 30)
 }
+}
 \concept{Hampel risk}
 \concept{risk}
 \keyword{robust}

Modified: branches/robast-0.9/pkg/ROptEst/man/plot-methods.Rd
===================================================================
--- branches/robast-0.9/pkg/ROptEst/man/plot-methods.Rd	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/man/plot-methods.Rd	2013-01-31 19:03:44 UTC (rev 580)
@@ -17,10 +17,13 @@
 \examples{
 N <- NormLocationScaleFamily(mean=0, sd=1)
 IC <- optIC(model = N, risk = asCov())
+## Don't run to reduce check time on CRAN
+\dontrun{
 plot(IC, main = TRUE, panel.first= grid(),
      col = "blue", cex.main = 2, cex.inner = 0.6,
      withMBR=TRUE)
 }
+}
 \keyword{methods}
 \keyword{distribution}
 

Modified: branches/robast-0.9/pkg/ROptEst/man/robest.Rd
===================================================================
--- branches/robast-0.9/pkg/ROptEst/man/robest.Rd	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/man/robest.Rd	2013-01-31 19:03:44 UTC (rev 580)
@@ -58,6 +58,8 @@
           \code{\link[RobAStBase]{UncondNeighborhood-class}},
           \code{\link[distrMod]{RiskType-class}} }
 \examples{
+## Don't run to reduce check time on CRAN
+\dontrun{
 #############################
 ## 1. Binomial data
 #############################
@@ -76,6 +78,7 @@
 nb <- gennbCtrl(eps=0.05)
 robest1 <- robest(x, BF, nbCtrl = nb, steps = 3)
 estimate(robest1)
+
 confint(robest1, method = symmetricBias())
 ## neglecting bias
 confint(robest1)
@@ -127,6 +130,7 @@
 nb1 <- gennbCtrl(eps.upper = 0.1)
 robest <- robest(x, PF, nbCtrl = nb1, steps = 3)
 estimate(robest)
+
 confint(robest, symmetricBias())
 plot(pIC(robest))
 tmp <- qqplot(x, robest, cex.pch=1.5, exp.cex2.pch = -.25,
@@ -138,8 +142,8 @@
 estimate(robest1)
 confint(robest1, symmetricBias())
 plot(pIC(robest1))
+}
 
-
 #############################
 ## 3. Normal (Gaussian) location and scale
 #############################
@@ -155,6 +159,8 @@
 estimate(MLest)
 confint(MLest)
 
+## Don't run to reduce check time on CRAN
+\dontrun{
 ## compute optimally robust estimator (known contamination)
 ## takes some time -> you can use package RobLox for normal 
 ## location and scale which is optimized for speed
@@ -163,6 +169,7 @@
 estimate.call(robEst)
 attr(robEst,"timings")
 estimate(robest)
+
 confint(robest, symmetricBias())
 plot(pIC(robest))
 ## plot of relative and absolute information; cf. Kohl (2005)
@@ -173,17 +180,21 @@
               exp.cex2.lbl = .12,exp.fadcol.lbl = .45,
               nosym.pCI = TRUE, adj.lbl=c(1.7,.2),
               exact.pCI = FALSE, log ="xy")
-
+}
+             
 ## finite-sample correction
 if(require(RobLox)){
     n <- length(chem)
     r <- 0.05*sqrt(n)
     r.fi <- finiteSampleCorrection(n = n, r = r)
     fsCor0 <- r.fi/r
+    nb1 <- gennbCtrl(eps = 0.05)
     robest <- robest(chem, NF, nbCtrl = nb1, fsCor = fsCor0, steps = 3)
     estimate(robest)
 }
 
+## Don't run to reduce check time on CRAN
+\dontrun{
 ## compute optimally robust estimator (unknown contamination)
 ## takes some time -> use package RobLox!
 nb2 <- gennbCtrl(eps.lower = 0.05, eps.upper = 0.1)
@@ -194,6 +205,7 @@
 ## plot of relative and absolute information; cf. Kohl (2005)
 infoPlot(pIC(robest1))
 }
+}
 \concept{k-step construction}
 \concept{optimally robust estimation}
 \keyword{robust}

Modified: branches/robast-0.9/pkg/ROptEst/man/roptest.Rd
===================================================================
--- branches/robast-0.9/pkg/ROptEst/man/roptest.Rd	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/man/roptest.Rd	2013-01-31 19:03:44 UTC (rev 580)
@@ -158,7 +158,7 @@
   Infinitesimally Robust Estimation in General Smoothly Parametrized Models.
   \emph{Stat. Methods Appl.}, \bold{19}, 333--354. 
 
- Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
+  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
 
   Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing
   the Radius. Statistical Methods and Applications \bold{17}(1) 13-40.
@@ -177,6 +177,8 @@
           \code{\link[RobAStBase]{UncondNeighborhood-class}},
           \code{\link[distrMod]{RiskType-class}} }
 \examples{
+## Don't run to reduce check time on CRAN
+\dontrun{
 #############################
 ## 1. Binomial data
 #############################
@@ -221,7 +223,6 @@
 confint(robest4, method = symmetricBias())
 plot(pIC(robest4))
 
-
 #############################
 ## 2. Poisson data
 #############################
@@ -239,6 +240,7 @@
 robest <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
 estimate(robest)
 confint(robest, symmetricBias())
+
 plot(pIC(robest))
 tmp <- qqplot(x, robest, cex.pch=1.5, exp.cex2.pch = -.25,
               exp.fadcol.pch = .55, jit.fac=.9)
@@ -249,8 +251,8 @@
 estimate(robest1)
 confint(robest1, symmetricBias())
 plot(pIC(robest1))
+}
 
-
 #############################
 ## 3. Normal (Gaussian) location and scale
 #############################
@@ -264,6 +266,8 @@
 estimate(MLest)
 confint(MLest)
 
+## Don't run to reduce check time on CRAN
+\dontrun{
 ## compute optimally robust estimator (known contamination)
 ## takes some time -> you can use package RobLox for normal 
 ## location and scale which is optimized for speed
@@ -279,6 +283,7 @@
               exp.cex2.lbl = .12,exp.fadcol.lbl = .45,
               nosym.pCI = TRUE, adj.lbl=c(1.7,.2),
               exact.pCI = FALSE, log ="xy")
+}
 
 ## finite-sample correction
 if(require(RobLox)){
@@ -291,6 +296,8 @@
     estimate(robest)
 }
 
+## Don't run to reduce check time on CRAN
+\dontrun{
 ## compute optimally robust estimator (unknown contamination)
 ## takes some time -> use package RobLox!
 robest1 <- roptest(chem, NormLocationScaleFamily(), eps.lower = 0.05, 
@@ -301,6 +308,7 @@
 ## plot of relative and absolute information; cf. Kohl (2005)
 infoPlot(pIC(robest1))
 }
+}
 \concept{k-step construction}
 \concept{optimally robust estimation}
 \keyword{robust}

Modified: branches/robast-0.9/pkg/ROptEst/tests/Examples/ROptEst-Ex.Rout.save
===================================================================
--- branches/robast-0.9/pkg/ROptEst/tests/Examples/ROptEst-Ex.Rout.save	2013-01-31 12:51:28 UTC (rev 579)
+++ branches/robast-0.9/pkg/ROptEst/tests/Examples/ROptEst-Ex.Rout.save	2013-01-31 19:03:44 UTC (rev 580)
@@ -1,6 +1,6 @@
 
-R version 2.15.1 Patched (2012-06-29 r59688) -- "Roasted Marshmallows"
-Copyright (C) 2012 The R Foundation for Statistical Computing
+R Under development (unstable) (2013-01-26 r61749) -- "Unsuffered Consequences"
+Copyright (C) 2013 The R Foundation for Statistical Computing
 ISBN 3-900051-07-0
 Platform: x86_64-unknown-linux-gnu (64-bit)
 
@@ -34,6 +34,13 @@
 :SweaveListingUtils>  Utilities for Sweave together with
 :SweaveListingUtils>  TeX listings package (version 0.6)
 :SweaveListingUtils> 
+:SweaveListingUtils>  NOTE: Support for this package
+:SweaveListingUtils>  will stop soon.
+:SweaveListingUtils> 
+:SweaveListingUtils>  Package 'knitr' is providing the
+:SweaveListingUtils>  same functionality in a better
+:SweaveListingUtils>  way.
+:SweaveListingUtils> 
 :SweaveListingUtils>  Some functions from package 'base'
 :SweaveListingUtils>  are intentionally masked ---see
 :SweaveListingUtils>  SweaveListingMASK().
@@ -53,7 +60,7 @@
 
 Attaching package: ‘SweaveListingUtils’
 
-The following object(s) are masked from ‘package:base’:
+The following object is masked from ‘package:base’:
 
     library, require
 
@@ -79,7 +86,7 @@
 
 Attaching package: ‘distr’
 
-The following object(s) are masked from ‘package:stats’:
+The following object is masked from ‘package:stats’:
 
     df, qqplot, sd
 
@@ -103,7 +110,7 @@
 
 Attaching package: ‘distrEx’
 
-The following object(s) are masked from ‘package:stats’:
+The following object is masked from ‘package:stats’:
 
     IQR, mad, median, var
 
@@ -141,19 +148,25 @@
 
 Attaching package: ‘distrMod’
 
-The following object(s) are masked from ‘package:stats4’:
+The following object is masked from ‘package:stats4’:
 
     confint
 
-The following object(s) are masked from ‘package:stats’:
+The following object is masked from ‘package:stats’:
 
     confint
 
-The following object(s) are masked from ‘package:base’:
+The following object is masked from ‘package:base’:
 
     norm
 
 Loading required package: RobAStBase
+Loading required package: rrcov
+Loading required package: robustbase
+Loading required package: pcaPP
+Loading required package: mvtnorm
+Scalable Robust Estimators with High Breakdown Point (version 1.3-02)
+
 :RobAStBase>  Robust Asymptotic Statistics (version 0.9)
 :RobAStBase> 
 :RobAStBase>  Some functions from pkg's 'stats' and 'graphics'
@@ -169,18 +182,29 @@
 
 Attaching package: ‘RobAStBase’
 
-The following object(s) are masked from ‘package:graphics’:
+The following object is masked from ‘package:graphics’:
 
     clip
 
 > 
 > assign(".oldSearch", search(), pos = 'CheckExEnv')
+> assign(".ExTimings", "ROptEst-Ex.timings", pos = 'CheckExEnv')
+> cat("name\tuser\tsystem\telapsed\n", file=get(".ExTimings", pos = 'CheckExEnv'))
+> assign(".format_ptime",
++ function(x) {
++   if(!is.na(x[4L])) x[1L] <- x[1L] + x[4L]
++   if(!is.na(x[5L])) x[2L] <- x[2L] + x[5L]
++   format(x[1L:3L])
++ },
++ pos = 'CheckExEnv')
+> 
 > cleanEx()
 > nameEx("0ROptEst-package")
 > ### * 0ROptEst-package
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: ROptEst-package
 > ### Title: Optimally robust estimation
 > ### Aliases: ROptEst-package ROptEst
@@ -224,12 +248,35 @@
 MLEstimator(x = x, ParamFamily = PoisFamily())
 > 
 > ## compute optimally (w.r.t to MSE) robust estimator (unknown contamination)
-> robest <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
-> estimate(robest)
+> robEst <- roptest(x, PoisFamily(), eps.upper = 0.1, steps = 3)
+> estimate(robEst)
   lambda 
 3.908135 
 > ## check influence curve
-> checkIC(pIC(robest))
+> pIC(robEst)
+An object of class “ContIC” 
+### name:	 IC of contamination type 
+
+### L2-differentiable parametric family:	 Poisson family 
+### param:	An object of class "ParamFamParameter"
+name:	positive mean
+lambda:	3.90883569611022
+trafo:
+       lambda
+lambda      1
+
+### neighborhood radius:	 0.560986 
+
+### clip:	[1] 2.751564
+### cent:	[1] -0.2472607
+### stand:
+         lambda
+lambda 6.943887
+
+### Infos:
+     method  message                          
+[1,] "optIC" "optimally robust IC for ‘asMSE’"
+> checkIC(pIC(robEst))
 precision of centering:	 -2.707017e-08 
 precision of Fisher consistency:
               lambda
@@ -237,9 +284,10 @@
 maximum deviation 
      1.980378e-06 
 > ## plot influence curve
-> plot(pIC(robest))
+> plot(pIC(robEst))
+NULL
 > ## confidence interval based on LAN - neglecting bias
-> confint(robest)
+> confint(robEst)
 A[n] asymptotic (LAN-based) confidence interval:
           2.5 %   97.5 %
 lambda 3.826169 3.990102
@@ -248,7 +296,7 @@
 Call by which estimate was produced:
 roptest(x = x, L2Fam = PoisFamily(), eps.upper = 0.1, steps = 3)
 > ## confidence interval based on LAN - including bias
-> confint(robest, method = symmetricBias())
+> confint(robEst, method = symmetricBias())
 A[n] asymptotic (LAN-based), uniform (bias-aware)
  confidence interval:
 for symmetric Bias
@@ -261,12 +309,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("0ROptEst-package", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("asAnscombe-class")
 > ### * asAnscombe-class
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: asAnscombe-class
 > ### Title: Asymptotic Anscombe risk
 > ### Aliases: asAnscombe-class eff eff,asAnscombe-method
@@ -282,12 +334,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("asAnscombe-class", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("asAnscombe")
 > ### * asAnscombe
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: asAnscombe
 > ### Title: Generating function for asAnscombe-class
 > ### Aliases: asAnscombe
@@ -310,12 +366,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("asAnscombe", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("asL1-class")
 > ### * asL1-class
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: asL1-class
 > ### Title: Asymptotic mean absolute error
 > ### Aliases: asL1-class
@@ -329,12 +389,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("asL1-class", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("asL1")
 > ### * asL1
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: asL1
 > ### Title: Generating function for asMSE-class
 > ### Aliases: asL1
@@ -356,12 +420,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("asL1", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("asL4-class")
 > ### * asL4-class
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: asL4-class
 > ### Title: Asymptotic mean power 4 error
 > ### Aliases: asL4-class
@@ -375,12 +443,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("asL4-class", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("asL4")
 > ### * asL4
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: asL4
 > ### Title: Generating function for asL4-class
 > ### Aliases: asL4
@@ -402,21 +474,20 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("asL4", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("cniperCont")
 > ### * cniperCont
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: cniperCont
-> ### Title: Generic Functions for Computation and Plot of Cniper
-> ###   Contamination and Cniper Points.
-> ### Aliases: cniperCont cniperCont-methods
-> ###   cniperCont,IC,IC,L2ParamFamily,ContNeighborhood,asMSE-method
-> ###   cniperPoint cniperPoint-methods
-> ###   cniperPoint,L2ParamFamily,ContNeighborhood,asMSE-method
-> ###   cniperPointPlot cniperPointPlot-methods
-> ###   cniperPointPlot,L2ParamFamily,ContNeighborhood,asMSE-method
+> ### Title: Functions for Computation and Plot of Cniper Contamination and
+> ###   Cniper Points.
+> ### Aliases: cniperCont cniperPoint cniperPointPlot
 > ### Keywords: robust
 > 
 > ### ** Examples
@@ -427,7 +498,7 @@
 > IC1 <- optIC(model=RobP1, risk=asMSE())
 > RobP2 <- InfRobModel(center = P, neighbor = ContNeighborhood(radius = 1))
 > IC2 <- optIC(model=RobP2, risk=asMSE())
-> cniperCont(IC1 = IC1, IC2 = IC2, L2Fam = P, 
+> cniperCont(IC1 = IC1, IC2 = IC2,
 +            neighbor = ContNeighborhood(radius = 0.5), 
 +            risk = asMSE(),
 +            lower = 0, upper = 8, n = 101)
@@ -436,24 +507,58 @@
 > cniperPointPlot(P, neighbor = ContNeighborhood(radius = 0.5), 
 +                 risk = asMSE(), lower = 0, upper = 10)
 > 
-> ## cniper point
-> cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
-+             risk = asMSE(), lower = 0, upper = 4)
-cniper point 
-   0.7803439 
-> cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
-+             risk = asMSE(), lower = 4, upper = 8)
-cniper point 
-    7.219656 
+> ## Don't run to reduce check time on CRAN
+> ## Not run: 
+> ##D ## cniper point
+> ##D cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
+> ##D             risk = asMSE(), lower = 0, upper = 4)
+> ##D cniperPoint(P, neighbor = ContNeighborhood(radius = 0.5), 
+> ##D             risk = asMSE(), lower = 4, upper = 8)
+> ## End(Not run)
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("cniperCont", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
+> nameEx("comparePlot")
+> ### * comparePlot
+> 
+> flush(stderr()); flush(stdout())
+> 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
+> ### Name: comparePlot-methods
+> ### Title: Compare - Plots
+> ### Aliases: comparePlot comparePlot-methods comparePlot,IC,IC-method
+> ### Keywords: robust
+> 
+> ### ** Examples
+> 
+> N0 <- NormLocationScaleFamily(mean=0, sd=1)
+> N0.Rob1 <- InfRobModel(center = N0,
++            neighbor = ContNeighborhood(radius = 0.5))
+> 
+> ## Don't run to reduce check time on CRAN
+> ## Not run: 
+> ##D IC1 <- optIC(model = N0, risk = asCov())
+> ##D IC2 <- optIC(model = N0.Rob1, risk = asMSE())
+> ##D 
+> ##D comparePlot(IC1,IC2, withMBR=TRUE)
+> ## End(Not run)
+> 
+> 
+> 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("comparePlot", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
+> cleanEx()
 > nameEx("getL1normL2deriv")
 > ### * getL1normL2deriv
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: getL1normL2deriv
 > ### Title: Calculation of L1 norm of L2derivative
 > ### Aliases: getL1normL2deriv getL1normL2deriv-methods
@@ -467,12 +572,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("getL1normL2deriv", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("getL2normL2deriv")
 > ### * getL2normL2deriv
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: getL2normL2deriv
 > ### Title: Calculation of L2 norm of L2derivative
 > ### Aliases: getL2normL2deriv
@@ -484,12 +593,16 @@
 > 
 > 
 > 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("getL2normL2deriv", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
 > nameEx("getMaxIneff")
 > ### * getMaxIneff
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: getMaxIneff
 > ### Title: getMaxIneff - computation of the maximal inefficiency of an IC
 > ### Aliases: getMaxIneff
@@ -541,25 +654,88 @@
 > getMaxIneff(N0.ICR,neighbor)
 [1] 1.180746
 > 
-> N0ls <- NormLocationScaleFamily()
-> ICsc <- makeIC(list(sin,cos),N0ls)
-> getMaxIneff(ICsc,neighbor)
-Warning in A[DA.comp] <- matrix(param[1:lA.comp], ncol = k, nrow = p) :
-  number of items to replace is not a multiple of replacement length
-[1] 2.679436
+> ## Don't run to reduce check time on CRAN
+> ## Not run: 
+> ##D N0ls <- NormLocationScaleFamily()
+> ##D ICsc <- makeIC(list(sin,cos),N0ls)
+> ##D getMaxIneff(ICsc,neighbor)
+> ## End(Not run)
 > 
 > 
 > 
 > 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("getMaxIneff", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
 > cleanEx()
+> nameEx("getRadius")
+> ### * getRadius
+> 
+> flush(stderr()); flush(stdout())
+> 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
+> ### Name: getRadius
+> ### Title: Computation of the Optimal Radius for Given Clipping Bound
+> ### Aliases: getRadius
+> ### Keywords: robust
+> 
+> ### ** Examples
+> 
+> N <- NormLocationFamily(mean=0, sd=1)
+> nb <- ContNeighborhood(); ri <- asMSE()
+> radIC <- radiusMinimaxIC(L2Fam=N, neighbor=nb, risk=ri, loRad=0.1, upRad=0.5)
+> getRadius(radIC, L2Fam=N, neighbor=nb, risk=ri)
+[1] 0.2853168
+> 
+> ## taken from script NormalScaleModel.R in folder scripts
+> N0 <- NormScaleFamily(mean=0, sd=1)
+> (N0.IC7 <- radiusMinimaxIC(L2Fam=N0, neighbor=nb, risk=ri, loRad=0, upRad=Inf))
+An object of class “ContIC” 
+### name:	 IC of contamination type 
+
+### L2-differentiable parametric family:	 normal scale family 
+### param:	An object of class "ParamWithScaleFamParameter"
+name:	scale
+sd:	1
+fixed part of param.:
+	mean:	0
+trafo:
+      scale
+scale     1
+
+### neighborhood radius:	 0.4989504 
+
+### clip:	[1] 1.430943
+### cent:	[1] -0.3562353
+### stand:
+        scale
+scale 1.26182
+
+### Infos:
+     method            message                                         
+[1,] "radiusMinimaxIC" "radius minimax IC for radius interval [0, Inf]"
+[2,] "radiusMinimaxIC" "least favorable radius: 0.499"                 
+[3,] "radiusMinimaxIC" "maximum ‘asMSE’-inefficiency: 1.504"           
+> ##
+> getRadius(N0.IC7, risk=asMSE(), neighbor=nb, L2Fam=N0)
+[1] 0.4989504
+> getRadius(N0.IC7, risk=asL4(), neighbor=nb, L2Fam=N0)
+[1] 0.6127672
+> 
+> 
+> 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("getRadius", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
+> cleanEx()
 > nameEx("getReq")
 > ### * getReq
 > 
 > flush(stderr()); flush(stdout())
 > 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: getReq
 > ### Title: getReq - computation of the radius interval where IC1 is better
-> ###   than IC2
+> ###   than IC2.
 > ### Aliases: getReq
 > ### Keywords: robust
 > 
@@ -596,8 +772,6 @@
  achieved precision:	 0.04096877 
 > ## MSE solution
 > N0.ICM <- optIC(model=N0.Rob1, risk=asMSE())
-> ## RMX solution
-> N0.ICR <- radiusMinimaxIC(L2Fam=N0, neighbor=neighbor,risk=asMSE())
 > 
 > getReq(asMSE(),neighbor,N0.ICA,N0.ICM,n=1)
 Warning in .local(IC, risk, L2Fam, ...) :
@@ -609,97 +783,193 @@
   The maximum deviation from the exact IC properties is 0.0020208733776802
 This is larger than the specified 'tol' => the result may be wrong
 [1] 0.00000000 0.06848038
-> getReq(asL1(),neighbor,N0.ICA,N0.ICM,n=30)
-Warning in .local(IC, risk, L2Fam, ...) :
-  The maximum deviation from the exact IC properties is 0.0020208733776802
-This is larger than the specified 'tol' => the result may be wrong
-[1] 0.00000000 0.06544434
-> getReq(asL4(),neighbor,N0.ICA,N0.ICM,n=30)
-Warning in .local(IC, risk, L2Fam, ...) :
-  The maximum deviation from the exact IC properties is 0.0020208733776802
-This is larger than the specified 'tol' => the result may be wrong
-[1] 0.00000000 0.07542161
-> getReq(asMSE(),neighbor,N0.ICA,N0.ICR,n=30)
-Warning in .local(IC, risk, L2Fam, ...) :
-  The maximum deviation from the exact IC properties is 0.0020208733776802
-This is larger than the specified 'tol' => the result may be wrong
-[1] 0.00000000 0.07544307
-> getReq(asL1(),neighbor,N0.ICA,N0.ICR,n=30)
-Warning in .local(IC, risk, L2Fam, ...) :
-  The maximum deviation from the exact IC properties is 0.0020208733776802
-This is larger than the specified 'tol' => the result may be wrong
-[1] 0.00000000 0.07161849
-> getReq(asL4(),neighbor,N0.ICA,N0.ICR,n=30)
-Warning in .local(IC, risk, L2Fam, ...) :
-  The maximum deviation from the exact IC properties is 0.0020208733776802
-This is larger than the specified 'tol' => the result may be wrong
-[1] 0.00000000 0.08429762
-> getReq(asMSE(),neighbor,N0.ICM,N0.ICR,n=30)
-[1] 0.0000000 0.1016517
 > 
-> ### when to use MAD and when Qn 
-> ##  for Qn, see C. Croux, P. Rousseeuw (1993). Alternatives to the Median 
-> ##      Absolute Deviation, JASA 88(424):1273-1283
-> L2M <- NormScaleFamily()
-> IC.mad <- makeIC(function(x)sign(abs(x)-qnorm(.75)),L2M)
-$Curve
-An object of class “EuclRandVarList” 
-Domain:	Real Space with dimension 1 
-[[1]]
-length of Map:	 1 
-Range:	Real Space with dimension 1 
+> ## Don't run to reduce check time on CRAN
+> ## Not run: 
+> ##D ## RMX solution
+> ##D N0.ICR <- radiusMinimaxIC(L2Fam=N0, neighbor=neighbor,risk=asMSE())
+> ##D 
+> ##D getReq(asL1(),neighbor,N0.ICA,N0.ICM,n=30)
+> ##D getReq(asL4(),neighbor,N0.ICA,N0.ICM,n=30)
+> ##D getReq(asMSE(),neighbor,N0.ICA,N0.ICR,n=30)
+> ##D getReq(asL1(),neighbor,N0.ICA,N0.ICR,n=30)
+> ##D getReq(asL4(),neighbor,N0.ICA,N0.ICR,n=30)
+> ##D getReq(asMSE(),neighbor,N0.ICM,N0.ICR,n=30)
+> ##D 
+> ##D 
+> ##D ### when to use MAD and when Qn 
+> ##D ##  for Qn, see C. Croux, P. Rousseeuw (1993). Alternatives to the Median 
+> ##D ##      Absolute Deviation, JASA 88(424):1273-1283
+> ##D L2M <- NormScaleFamily()
+> ##D IC.mad <- makeIC(function(x)sign(abs(x)-qnorm(.75)),L2M)
+> ##D d.qn <- (2^.5*qnorm(5/8))^-1
+> ##D IC.qn <- makeIC(function(x) d.qn*(1/4 - pnorm(x+1/d.qn) + pnorm(x-1/d.qn)), L2M)
+> ##D getReq(asMSE(), neighbor, IC.mad, IC.qn)
+> ##D getReq(asMSE(), neighbor, IC.mad, IC.qn, radOrOutl = "Outlier", n = 30)
+> ##D # => MAD is better once r > 0.5144 (i.e. for more than 2 outliers for n = 30)
+> ## End(Not run)
+> 
+> 
+> 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("getReq", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
+> cleanEx()
+> nameEx("getRiskFctBV-methods")
+> ### * getRiskFctBV-methods
+> 
+> flush(stderr()); flush(stdout())
+> 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
+> ### Name: getRiskFctBV-methods
+> ### Title: Methods for Function getRiskFctBV in Package 'ROptEst'
+> ### Aliases: getRiskFctBV getRiskFctBV-methods getRiskFctBV,asL1,ANY-method
+> ###   getRiskFctBV,asL4,ANY-method
+> ### Keywords: classes
+> 
+> ### ** Examples
+> 
+> myrisk <- asMSE()
+> getRiskFctBV(myrisk)
+function (bias, var) 
+bias^2 + var
+<environment: 0xb596930>
+> 
+> 
+> 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("getRiskFctBV-methods", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
+> cleanEx()
+> nameEx("getRiskIC")
+> ### * getRiskIC
+> 
+> flush(stderr()); flush(stdout())
+> 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
+> ### Name: getRiskIC
+> ### Title: Generic function for the computation of a risk for an IC
+> ### Aliases: getRiskIC getRiskIC-methods
+> ###   getRiskIC,HampIC,asCov,missing,missing-method
+> ###   getRiskIC,HampIC,asCov,missing,L2ParamFamily-method
+> ###   getRiskIC,TotalVarIC,asCov,missing,L2ParamFamily-method
+> ### Keywords: robust
+> 
+> ### ** Examples
+> 
+> B <- BinomFamily(size = 25, prob = 0.25)
+> 
+> ## classical optimal IC
+> IC0 <- optIC(model = B, risk = asCov())
+> getRiskIC(IC0, asCov())
+$asCov
+$asCov$distribution
+[1] "Binom(25, 0.25)"
 
-$CallL2Fam
-L2Fam at fam.call
+$asCov$value
+       [,1]
+[1,] 0.0075
 
-An object of class “IC” 
-### name:	 square integrable (partial) influence curve 
-### L2-differentiable parametric family:	 normal scale family 
 
-### 'Curve':	An object of class “EuclRandVarList” 
-Domain:	Real Space with dimension 1 
-[[1]]
-length of Map:	 1 
-Range:	Real Space with dimension 1 
+> 
+> 
+> 
+> 
+> assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv")
+> cat("getRiskIC", get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t")
+> cleanEx()
+> nameEx("inputGenerator")
+> ### * inputGenerator
+> 
+> flush(stderr()); flush(stdout())
+> 
+> assign(".ptime", proc.time(), pos = "CheckExEnv")
+> ### Name: inputGenerators
+> ### Title: Input generating functions for function 'robest'
+> ### Aliases: inputGenerators gennbCtrl genstartCtrl genkStepCtrl
+> ### Keywords: robust
+> 
+> ### ** Examples
+> 
+> genkStepCtrl()
+$useLast
+[1] FALSE
 
-### Infos:
-     method message
-> d.qn <- (2^.5*qnorm(5/8))^-1
-> IC.qn <- makeIC(function(x) d.qn*(1/4 - pnorm(x+1/d.qn) + pnorm(x-1/d.qn)), L2M)
-$Curve
-An object of class “EuclRandVarList” 
-Domain:	Real Space with dimension 1 
-[[1]]
-length of Map:	 1 
-Range:	Real Space with dimension 1 
+$withUpdateInKer
+[1] FALSE
 
-$CallL2Fam
-L2Fam at fam.call
+$IC.UpdateInKer
+getRobAStBaseOption("IC.UpdateInKer")
 
-An object of class “IC” 
-### name:	 square integrable (partial) influence curve 
-### L2-differentiable parametric family:	 normal scale family 
+$withICList
+[1] FALSE
 
-### 'Curve':	An object of class “EuclRandVarList” 
-Domain:	Real Space with dimension 1 
-[[1]]
-length of Map:	 1 
-Range:	Real Space with dimension 1 
+$withPICList
+[1] FALSE
 
-### Infos:
-     method message
-> getReq(asMSE(), neighbor, IC.mad, IC.qn)
-[1] 0.5074459       Inf
-> # => MAD is better once r > 0.5144 (i.e. for more than 2 outliers for n = 30)
+$scalename
+[1] "scale"
+
+$withLogScale
+[1] TRUE
+
+> genstartCtrl()
+$distance
+function (e1, e2, ...) 
+standardGeneric("CvMDist")
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/robast -r 580


More information about the Robast-commits mailing list