[Robast-commits] r80 - in pkg: ROptEst ROptEst/R ROptEst/chm ROptEst/man RobAStBase RobAStBase/R RobAStBase/chm RobAStBase/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Mar 28 03:21:41 CET 2008


Author: ruckdeschel
Date: 2008-03-28 03:21:40 +0100 (Fri, 28 Mar 2008)
New Revision: 80

Added:
   pkg/ROptEst/R/LowerCaseMultivariate.R
   pkg/ROptEst/R/updateNorm.R
   pkg/ROptEst/chm/getInfV.html
   pkg/ROptEst/chm/updateNorm-methods.html
   pkg/ROptEst/man/updateNorm-methods.Rd
   pkg/RobAStBase/R/HampIC.R
   pkg/RobAStBase/R/getBiasIC.R
   pkg/RobAStBase/R/getRiskIC.R
   pkg/RobAStBase/R/getRiskIC_UnOvShoot.R
   pkg/RobAStBase/R/utils.R
   pkg/RobAStBase/chm/HampIC-class.html
   pkg/RobAStBase/chm/getBiasIC.html
   pkg/RobAStBase/chm/getRiskIC.html
   pkg/RobAStBase/chm/internals.html
   pkg/RobAStBase/chm/makeIC-methods.html
   pkg/RobAStBase/man/HampIC-class.Rd
   pkg/RobAStBase/man/getBiasIC.Rd
   pkg/RobAStBase/man/getRiskIC.Rd
   pkg/RobAStBase/man/internals.Rd
   pkg/RobAStBase/man/makeIC-methods.Rd
Removed:
   pkg/RobAStBase/chm/makeIC.html
   pkg/RobAStBase/man/makeIC.Rd
Modified:
   pkg/ROptEst/NAMESPACE
   pkg/ROptEst/R/AllGeneric.R
   pkg/ROptEst/R/L1L2normL2deriv.R
   pkg/ROptEst/R/getAsRisk.R
   pkg/ROptEst/R/getInfCent.R
   pkg/ROptEst/R/getInfClip.R
   pkg/ROptEst/R/getInfGamma.R
   pkg/ROptEst/R/getInfRobIC_asBias.R
   pkg/ROptEst/R/getInfRobIC_asGRisk.R
   pkg/ROptEst/R/getInfRobIC_asHampel.R
   pkg/ROptEst/R/getInfStand.R
   pkg/ROptEst/R/getInfV.R
   pkg/ROptEst/R/getRiskIC.R
   pkg/ROptEst/chm/00Index.html
   pkg/ROptEst/chm/ROptEst.chm
   pkg/ROptEst/chm/ROptEst.hhp
   pkg/ROptEst/chm/ROptEst.toc
   pkg/ROptEst/chm/getAsRisk.html
   pkg/ROptEst/chm/getBiasIC.html
   pkg/ROptEst/chm/getInfCent.html
   pkg/ROptEst/chm/getInfClip.html
   pkg/ROptEst/chm/getInfGamma.html
   pkg/ROptEst/chm/getInfRobIC.html
   pkg/ROptEst/chm/getInfStand.html
   pkg/ROptEst/chm/getL1normL2deriv.html
   pkg/ROptEst/chm/getRiskIC.html
   pkg/ROptEst/chm/lowerCaseRadius.html
   pkg/ROptEst/chm/minmaxBias.html
   pkg/ROptEst/man/getAsRisk.Rd
   pkg/ROptEst/man/getBiasIC.Rd
   pkg/ROptEst/man/getInfCent.Rd
   pkg/ROptEst/man/getInfClip.Rd
   pkg/ROptEst/man/getInfGamma.Rd
   pkg/ROptEst/man/getInfRobIC.Rd
   pkg/ROptEst/man/getInfStand.Rd
   pkg/ROptEst/man/getInfV.Rd
   pkg/ROptEst/man/getL1normL2deriv.Rd
   pkg/ROptEst/man/getRiskIC.Rd
   pkg/ROptEst/man/minmaxBias.Rd
   pkg/RobAStBase/NAMESPACE
   pkg/RobAStBase/R/AllClass.R
   pkg/RobAStBase/R/AllGeneric.R
   pkg/RobAStBase/R/ContIC.R
   pkg/RobAStBase/R/IC.R
   pkg/RobAStBase/R/TotalVarIC.R
   pkg/RobAStBase/R/Weights.R
   pkg/RobAStBase/R/generateICfct.R
   pkg/RobAStBase/chm/00Index.html
   pkg/RobAStBase/chm/ContIC-class.html
   pkg/RobAStBase/chm/ContIC.html
   pkg/RobAStBase/chm/RobAStBase.chm
   pkg/RobAStBase/chm/RobAStBase.hhp
   pkg/RobAStBase/chm/RobAStBase.toc
   pkg/RobAStBase/chm/RobWeight-class.html
   pkg/RobAStBase/chm/TotalVarIC-class.html
   pkg/RobAStBase/chm/getweight.html
   pkg/RobAStBase/man/ContIC-class.Rd
   pkg/RobAStBase/man/ContIC.Rd
   pkg/RobAStBase/man/RobWeight-class.Rd
   pkg/RobAStBase/man/TotalVarIC-class.Rd
   pkg/RobAStBase/man/getweight.Rd
Log:
a running version... checks still have to be done;
now available: weights, biastypes, normtypes...
still to be done: 
+algo for minmax-radius for
 non-standard norms...
+checks for consistency with previous versions
+checks  for lower case solutions...

Modified: pkg/ROptEst/NAMESPACE
===================================================================
--- pkg/ROptEst/NAMESPACE	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/NAMESPACE	2008-03-28 02:21:40 UTC (rev 80)
@@ -23,4 +23,5 @@
               "lowerCaseRadius",
               "minmaxBias", "getBiasIC", 
               "getL1normL2deriv")
-export("getL2normL2deriv")
\ No newline at end of file
+exportMethods("updateNorm")
+export("getL2normL2deriv")

Modified: pkg/ROptEst/R/AllGeneric.R
===================================================================
--- pkg/ROptEst/R/AllGeneric.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/AllGeneric.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -38,10 +38,6 @@
     setGeneric("getInfV", 
         function(L2deriv,  neighbor, biastype, ...) standardGeneric("getInfV"))
 }
-if(!isGeneric("getRiskIC")){
-    setGeneric("getRiskIC", 
-        function(IC, risk,  neighbor, L2Fam, ...) standardGeneric("getRiskIC"))
-}
 if(!isGeneric("optIC")){
     setGeneric("optIC", function(model, risk,  ...) standardGeneric("optIC"))
 }
@@ -72,11 +68,6 @@
     setGeneric("getL1normL2deriv", 
         function(L2deriv, ...) standardGeneric("getL1normL2deriv"))
 }
-if(!isGeneric("getBiasIC")){
-    setGeneric("getBiasIC", 
-        function(IC, neighbor, ...) standardGeneric("getBiasIC"))
+if(!isGeneric("updateNorm")){
+    setGeneric("updateNorm", function(normtype, ...) standardGeneric("updateNorm"))
 }
-if(!isGeneric(".evalBiasIC")){
-    setGeneric(".evalBiasIC", 
-        function(IC, neighbor, biastype, ...) standardGeneric(".evalBiasIC"))
-}

Modified: pkg/ROptEst/R/L1L2normL2deriv.R
===================================================================
--- pkg/ROptEst/R/L1L2normL2deriv.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/L1L2normL2deriv.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -7,11 +7,11 @@
     })
 
 setMethod("getL1normL2deriv", signature(L2deriv = "RealRandVariable"),
-    function(L2deriv, cent, stand, Distr, ...){
+    function(L2deriv, cent, stand, Distr, normtype, ...){
         integrandG <- function(x, L2, stand, cent){
             X <- evalRandVar(L2, as.matrix(x))[,,1] - cent
             Y <- apply(X, 2, "%*%", t(stand))
-            res <- sqrt(colSums(Y^2))
+            res <- fct(normtype)(Y)
             return((res > 0)*res)
         }
 

Added: pkg/ROptEst/R/LowerCaseMultivariate.R
===================================================================
--- pkg/ROptEst/R/LowerCaseMultivariate.R	                        (rev 0)
+++ pkg/ROptEst/R/LowerCaseMultivariate.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,65 @@
+.LowerCaseMultivariate <- function(L2deriv, neighbor, biastype,
+             normtype, Distr, L2derivDistrSymm, trafo, z.start,
+             A.start, maxiter, tol){
+
+        w <- new("HampelWeight")
+
+
+        if(is.null(z.start)) z.start <- numeric(ncol(trafo))
+        if(is.null(A.start)) A.start <- trafo
+
+        abs.fct <- function(x, L2, stand, cent, normtype){
+            X <- evalRandVar(L2, as.matrix(x))[,,1] - cent
+            Y <- stand %*% X
+            return(fct(normtype)(Y))
+        }
+
+        bmin.fct <- function(param, L2deriv, Distr, trafo, z.comp){
+            p <- nrow(trafo)
+            k <- ncol(trafo)
+            A <- matrix(param[1:(p*k)], ncol=k, nrow=p)
+            z <- numeric(k)
+            z[z.comp] <- param[(p*k+1):length(param)]
+
+            if (is(normtype,"SelfNorm")){
+               w0 <- w
+               cent(w0) <- z
+               stand(w0) <- A
+               weight(w0) <- minbiasweight(w0, neighbor = neighbor,
+                                           biastype = biastype,
+                                           normtype = normtype)
+               w <<- w0
+               normtype  <<- updateNorm(normtype = normtype, L2 = L2deriv,
+                                        neighbor = neighbor, biastype = biastype,
+                                        Distr = Distr, V.comp = matrix(TRUE, p,p),
+                                        cent = z, stand = A,  w = w,  ...)
+
+               }
+
+            E1 <- E(object = Distr, fun = abs.fct, L2 = L2deriv, stand = A,
+                     cent = z, normtype = normtype, useApply = FALSE)
+            stA <- if (is(normtype,"QFnorm"))
+                       QuadForm(normtype)%*%A else A
+
+            return(E1/sum(diag(stA %*% t(trafo))))
+        }
+
+        nrvalues <- length(L2deriv)
+        z.comp <- rep(TRUE, nrvalues)
+        for(i in 1:nrvalues)
+            if(is(L2derivDistrSymm[[i]], "SphericalSymmetry"))
+                if(L2derivDistrSymm[[i]]@SymmCenter == 0)
+                    z.comp[i] <- FALSE
+
+        A.vec <- as.vector(A.start)
+        force(normtype)
+
+        erg <- optim(c(A.vec, z.start[z.comp]), bmin.fct, method = "Nelder-Mead",
+                    control = list(reltol = tol, maxit = 100*maxiter),
+                    L2deriv = L2deriv, Distr = Distr, trafo = trafo, z.comp = z.comp)
+
+        return(list(erg=erg, w=w, normtype = normtype))
+    }
+
+
+

Modified: pkg/ROptEst/R/getAsRisk.R
===================================================================
--- pkg/ROptEst/R/getAsRisk.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getAsRisk.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,22 +1,23 @@
 ###############################################################################
 ## asymptotic MSE
-###############################################################################
+###############################################################################           
 setMethod("getAsRisk", signature(risk = "asMSE",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "Neighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), 
-             clip = NULL, cent = NULL, stand, trafo){
+                                 neighbor = "Neighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, clip = NULL, cent = NULL, stand, trafo){
         if(!is.finite(neighbor at radius))
             mse <- Inf
         else
             mse <- as.vector(stand)*as.vector(trafo)
         return(list(asMSE = mse))
     })
+
 setMethod("getAsRisk", signature(risk = "asMSE",
                                  L2deriv = "EuclRandVariable",
-                                 neighbor = "Neighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), 
-             clip = NULL, cent = NULL, stand, trafo){
+                                 neighbor = "Neighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, clip = NULL, cent = NULL, stand, trafo){
         if(!is.finite(neighbor at radius))
             mse <- Inf
         else
@@ -29,8 +30,9 @@
 ###############################################################################
 setMethod("getAsRisk", signature(risk = "asBias",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "ContNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), trafo){
+                                 neighbor = "ContNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, trafo){
         z <- q(L2deriv)(0.5)                                
         bias <- abs(as.vector(trafo))/E(L2deriv, function(x, z){abs(x - z)}, 
                                         useApply = FALSE, z = z)
@@ -39,49 +41,26 @@
     })
 setMethod("getAsRisk", signature(risk = "asBias",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "TotalVarNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), trafo){
+                                 neighbor = "TotalVarNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype,  trafo){
         bias <- abs(as.vector(trafo))/(-m1df(L2deriv, 0))
 
         return(list(asBias = bias))
     })
 setMethod("getAsRisk", signature(risk = "asBias",
                                  L2deriv = "RealRandVariable",
-                                 neighbor = "ContNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), Distr, 
-             L2derivDistrSymm, trafo, 
-             z.start, A.start,  maxiter, tol){                
-        if(is.null(z.start)) z.start <- numeric(ncol(trafo))
-        if(is.null(A.start)) A.start <- trafo
-
-        abs.fct <- function(x, L2, stand, cent){
-            X <- evalRandVar(L2, as.matrix(x))[,,1] - cent
-            Y <- apply(X, 2, "%*%", t(stand)) 
-
-            return(sqrt(colSums(Y^2)))
-        }
-        bmin.fct <- function(param, L2deriv, Distr, trafo, z.comp){
-            p <- nrow(trafo)
-            k <- ncol(trafo)
-            A <- matrix(param[1:(p*k)], ncol=k, nrow=p)
-            z <- numeric(k)
-            z[z.comp] <- param[(p*k+1):length(param)]
-
-            return(E(object = Distr, fun = abs.fct, L2 = L2deriv, stand = A, 
-                     cent = z, useApply = FALSE)/sum(diag(A %*% t(trafo))))
-        }
+                                 neighbor = "ContNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, Distr, 
+             L2derivDistrSymm, trafo, z.start, A.start,  maxiter, tol){                
         
-        nrvalues <- length(L2deriv)
-        z.comp <- rep(TRUE, nrvalues)
-        for(i in 1:nrvalues)
-            if(is(L2derivDistrSymm[[i]], "SphericalSymmetry"))
-                if(L2derivDistrSymm[[i]]@SymmCenter == 0)
-                    z.comp[i] <- FALSE
-
-        A.vec <- as.vector(A.start)
-        erg <- optim(c(A.vec, z.start[z.comp]), bmin.fct, method = "Nelder-Mead", 
-                    control = list(reltol = tol, maxit = 100*maxiter), 
-                    L2deriv = L2deriv, Distr = Distr, trafo = trafo, z.comp = z.comp)
+        normtype <- normtype(risk)
+        biastype <- biastype(risk)
+        eerg <- .LowerCaseMultivariate(L2deriv, neighbor, biastype,
+             normtype, Distr, L2derivDistrSymm, trafo, z.start,
+             A.start, maxiter, tol)
+        erg <- eerg$erg
         bias <- 1/erg$value
         
         return(list(asBias = bias))
@@ -92,38 +71,47 @@
 ###############################################################################
 setMethod("getAsRisk", signature(risk = "asCov",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "ContNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), clip, cent, stand){
-        c0 <- clip/abs(as.vector(stand))
-        D1 <- L2deriv - cent/as.vector(stand)
-        Cov <- (clip^2*(p(D1)(-c0) + 1 - p(D1)(c0))
-                + as.vector(stand)^2*(m2df(D1, c0) - m2df(D1, -c0)))
-
-        return(list(asCov = Cov))
+                                 neighbor = "ContNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, clip, cent, stand){
+#        c0 <- clip/abs(as.vector(stand))
+#        D1 <- L2deriv - cent/as.vector(stand)
+#        Cov <- (clip^2*(p(D1)(-c0) + 1 - p(D1)(c0))
+#                + as.vector(stand)^2*(m2df(D1, c0) - m2df(D1, -c0)))
+        return(list(asCov = 
+        getInfV(L2deriv, neighbor, biastype(risk), clip/abs(as.vector(stand)), 
+                cent/abs(as.vector(stand)), abs(as.vector(stand)))
+               ))
     })
 setMethod("getAsRisk", signature(risk = "asCov",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "TotalVarNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), clip, cent, stand){
-        g0 <- cent/abs(as.vector(stand))
-        c0 <- clip/abs(as.vector(stand))
-        Cov <- (abs(as.vector(stand))^2*(g0^2*p(L2deriv)(g0) 
-                + (g0+c0)^2*(1 - p(L2deriv)(g0+c0))
-                + m2df(L2deriv, g0+c0) - m2df(L2deriv, g0)))
+                                 neighbor = "TotalVarNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, clip, cent, stand){
+#        g0 <- cent/abs(as.vector(stand))
+#        c0 <- clip/abs(as.vector(stand))
+#        Cov <- (abs(as.vector(stand))^2*(g0^2*p(L2deriv)(g0) 
+#                + (g0+c0)^2*(1 - p(L2deriv)(g0+c0))
+#                + m2df(L2deriv, g0+c0) - m2df(L2deriv, g0)))
+#        return(list(asCov = Cov))
+        return(list(asCov = 
+        getInfV(L2deriv, neighbor, biastype(risk), clip/abs(as.vector(stand)), 
+                cent/abs(as.vector(stand)), abs(as.vector(stand)))
+               ))
 
-        return(list(asCov = Cov))
     })
 setMethod("getAsRisk", signature(risk = "asCov",
                                  L2deriv = "RealRandVariable",
-                                 neighbor = "ContNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), Distr, clip, cent, 
-             stand, norm = EuclideanNorm){
-
-                 return(list(asCov = .asCovMB(L2deriv, stand, cent, clip, Distr, 
-                             norm = norm)))
+                                 neighbor = "ContNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, Distr, cent, 
+             stand, V.comp =  matrix(TRUE, ncol = nrow(stand), nrow = nrow(stand)), 
+             w){
+        return(getInfV(L2deriv = L2deriv, neighbor = neighbor, 
+                       biastype = biastype(risk), Distr = Distr, 
+                       V.comp = V.comp, cent = cent, 
+                       stand = stand, w = w))
         })
-
-
 #        Y <- as(stand %*% L2deriv - cent, "EuclRandVariable")
 #        absY <- sqrt(Y %*% Y)
 #        
@@ -140,59 +128,28 @@
 #        return(list(asCov = Cov))
 #    })
 
-### helping function
 
-.asCovMB <- function(L2, stand, cent, clip, Distr, norm){                 
-                 p <- nrow(stand)
-                 idx <- matrix(1:p^2,p,p)
-                 idx <- idx[col(idx)<=row(idx)]
-                 Cv <- matrix(0,p,p)
 
-                 if (clip == 0){
-                     Cv[idx] <- E(object = Distr, fun = function(x){
-                                X <- evalRandVar(L2, as.matrix(x))[,,1] - cent
-                                Y <- stand %*% X
-                                norm0 <- norm(Y)                      
-                                ind <- 1-.eq(norm0)                   
-                                Y0 <- Y*ind/(norm0+1-ind)
-                                Y02 <- apply(Y0,2,function(x)x%*%t(x))[idx,]
-                                }, useApply = FALSE)
-                 }else{
-                    Cv[idx] <- E(object = Distr, fun = function(x){
-                               X <- evalRandVar(L2, as.matrix(x))[,,1] - cent
-                               Y <- stand %*% X
-                               norm0 <- norm(Y)                      
-                               ind2 <- (norm0 < b/2)
-                               norm1 <- ind2*clip/2 + (1-ind2)*norm0
-                               ind1 <- (norm0 < b)
-                               ind1 + (1-ind1)*clip/norm1
-                               Y0 <- Y*ind1
-                               Y02 <- apply(Y0,2,function(x)x%*%t(x))[idx,]
-                       }, useApply = FALSE)
-                 }
-                 dCv <- diag(Cv)
-                 return(PosSemDefSymmMatrix(Cv + t(Cv) - dCv))
-        }
-
-
 ###############################################################################
 ## trace of asymptotic covariance
 ###############################################################################
 setMethod("getAsRisk", signature(risk = "trAsCov",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "UncondNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), clip, cent, stand){
+                                 neighbor = "UncondNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, clip, cent, stand){
         Cov <- getAsRisk(risk = asCov(), L2deriv = L2deriv, neighbor = neighbor,
-                         biastype = biastype, clip = clip, cent = cent, stand = stand)$asCov
+                         biastype = biastype(risk), clip = clip, cent = cent, stand = stand)$asCov
 
         return(list(trAsCov = as.vector(Cov)))
     })
 setMethod("getAsRisk", signature(risk = "trAsCov",
                                  L2deriv = "RealRandVariable",
-                                 neighbor = "ContNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), Distr, clip, cent, stand){
+                                 neighbor = "ContNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand){
         Cov <- getAsRisk(risk = asCov(), L2deriv = L2deriv, neighbor = neighbor,
-                         biastype = biastype, Distr = Distr, clip = clip, 
+                         biastype = biastype(risk), Distr = Distr, clip = clip, 
                          cent = cent, stand = stand)$asCov
 
         return(list(trAsCov = sum(diag(Cov))))
@@ -203,8 +160,9 @@
 ###############################################################################
 setMethod("getAsRisk", signature(risk = "asUnOvShoot",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "UncondNeighborhood", biastype = "BiasType"),
-    function(risk, L2deriv, neighbor, biastype = symmetricBias(), clip, cent, stand, trafo){
+                                 neighbor = "UncondNeighborhood", 
+                                 biastype = "ANY"),
+    function(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo){
         if(identical(all.equal(neighbor at radius, 0), TRUE))
             return(list(asUnOvShoot = pnorm(-risk at width/sqrt(as.vector(stand)))))
         
@@ -222,7 +180,8 @@
 ###############################################################################
 setMethod("getAsRisk", signature(risk = "asBias",
                                  L2deriv = "UnivariateDistribution",
-                                 neighbor = "ContNeighborhood", biastype = "onesidedBias"),
+                                 neighbor = "ContNeighborhood", 
+                                 biastype = "onesidedBias"),
     function(risk, L2deriv, neighbor, biastype, trafo){
 
         D1 <- L2deriv
@@ -270,7 +229,7 @@
                                  L2deriv = "UnivariateDistribution",
                                  neighbor = "Neighborhood", 
                                  biastype = "onesidedBias"),
-    function(risk, L2deriv, neighbor, biastype = positiveBias(), 
+    function(risk, L2deriv, neighbor, biastype, 
              clip, cent, stand, trafo){
         A <- as.vector(stand)*as.vector(trafo)
         r <- neighbor at radius

Modified: pkg/ROptEst/R/getInfCent.R
===================================================================
--- pkg/ROptEst/R/getInfCent.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfCent.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -4,7 +4,7 @@
 setMethod("getInfCent", signature(L2deriv = "UnivariateDistribution",
                                   neighbor = "ContNeighborhood",
                                   biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), 
+    function(L2deriv, neighbor, biastype, 
              clip, cent, tol.z, symm, trafo){
         if(symm) return(0)
 
@@ -20,7 +20,7 @@
 setMethod("getInfCent", signature(L2deriv = "UnivariateDistribution",
                                   neighbor = "TotalVarNeighborhood",
                                   biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), 
+    function(L2deriv, neighbor, biastype, 
              clip, cent, tol.z, symm, trafo){
         if(symm) return(-clip/2)
 
@@ -38,8 +38,7 @@
 setMethod("getInfCent", signature(L2deriv = "RealRandVariable",
                                   neighbor = "ContNeighborhood",
                                   biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), 
-             Distr, z.comp, w){
+    function(L2deriv, neighbor, biastype, Distr, z.comp, w){
         integrand1 <- function(x){
             weight(w)(evalRandVar(L2deriv, as.matrix(x)) [,,1]) 
         }
@@ -67,7 +66,7 @@
 setMethod("getInfCent", signature(L2deriv = "UnivariateDistribution",
                                   neighbor = "ContNeighborhood",
                                   biastype = "onesidedBias"),
-    function(L2deriv, neighbor, biastype = positiveBias(), clip, cent, tol.z, symm, trafo){
+    function(L2deriv, neighbor, biastype, clip, cent, tol.z, symm, trafo){
         if (sign(biastype)> 0){
         z.fct <- function(z, c0, D1){
             return(c0 - (z+c0)*p(D1)(z+c0) + m1df(D1, z+c0))
@@ -88,7 +87,7 @@
 setMethod("getInfCent", signature(L2deriv = "UnivariateDistribution",
                                   neighbor = "ContNeighborhood",
                                   biastype = "asymmetricBias"),
-    function(L2deriv, neighbor, biastype = asymmetricBias(), clip, cent, tol.z, symm, trafo){
+    function(L2deriv, neighbor, biastype, clip, cent, tol.z, symm, trafo){
         nu1 <- nu(biastype)[1]
         nu2 <- nu(biastype)[2]
 

Modified: pkg/ROptEst/R/getInfClip.R
===================================================================
--- pkg/ROptEst/R/getInfClip.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfClip.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -5,7 +5,7 @@
                                   L2deriv = "UnivariateDistribution",
                                   risk = "asMSE", 
                                   neighbor = "ContNeighborhood"),
-    function(clip, L2deriv, risk, neighbor, biastype = symmetricBias(), 
+    function(clip, L2deriv, risk, neighbor, biastype, 
              cent, symm, trafo){
         return(neighbor at radius^2*clip + 
                getInfGamma(L2deriv = L2deriv, risk = risk, 
@@ -15,7 +15,7 @@
                                   L2deriv = "UnivariateDistribution",
                                   risk = "asMSE", 
                                   neighbor = "TotalVarNeighborhood"),
-    function(clip, L2deriv, risk, neighbor, biastype = symmetricBias(), 
+    function(clip, L2deriv, risk, neighbor, biastype, 
              cent, symm, trafo){
         if(symm){
             return(neighbor at radius^2*clip + 
@@ -31,7 +31,7 @@
                                   L2deriv = "EuclRandVariable",
                                   risk = "asMSE", 
                                   neighbor = "ContNeighborhood"),
-    function(clip, L2deriv, risk, neighbor, biastype = symmetricBias(), 
+    function(clip, L2deriv, risk, neighbor, biastype, 
              Distr, stand, cent, trafo){
         return(neighbor at radius^2*clip + 
                 getInfGamma(L2deriv = L2deriv, risk = risk, neighbor = neighbor, 
@@ -46,7 +46,7 @@
                                   L2deriv = "UnivariateDistribution",
                                   risk = "asUnOvShoot", 
                                   neighbor = "UncondNeighborhood"),
-    function(clip, L2deriv, risk, neighbor, biastype = symmetricBias(), 
+    function(clip, L2deriv, risk, neighbor, biastype, 
              cent, symm, trafo){
         if(symm){
             return(neighbor at radius/risk at width + 

Modified: pkg/ROptEst/R/getInfGamma.R
===================================================================
--- pkg/ROptEst/R/getInfGamma.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfGamma.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -5,7 +5,7 @@
                                    risk = "asMSE", 
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, risk, neighbor, biastype = symmetricBias(), cent, clip){
+    function(L2deriv, risk, neighbor, biastype, cent, clip){
         c1 <- cent - clip
         c2 <- cent + clip
         return(m1df(L2deriv, c2) + m1df(L2deriv, c1) 
@@ -19,7 +19,7 @@
                                    risk = "asGRisk", 
                                    neighbor = "TotalVarNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, risk, neighbor, biastype = symmetricBias(), cent, clip){
+    function(L2deriv, risk, neighbor, biastype, cent, clip){
         return(m1df(L2deriv, cent+clip) + (cent+clip)*(1-p(L2deriv)(cent+clip)))
     })
 
@@ -27,7 +27,7 @@
                                    risk = "asMSE", 
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, risk, neighbor, biastype = symmetricBias(), Distr, 
+    function(L2deriv, risk, neighbor, biastype, Distr, 
              stand, cent, clip){
         integrandG <- function(x, L2, stand, cent, clip){ 
             X <- evalRandVar(L2, as.matrix(x))[,,1] - cent
@@ -48,7 +48,7 @@
                                    risk = "asUnOvShoot", 
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, risk, neighbor, biastype = symmetricBias(), cent, clip){
+    function(L2deriv, risk, neighbor, biastype, cent, clip){
         return(2*(m1df(L2deriv, cent+clip) + (cent+clip)*(1-p(L2deriv)(cent+clip))))
     })
 
@@ -59,7 +59,7 @@
                                    risk = "asMSE",
                                    neighbor = "ContNeighborhood",
                                    biastype = "onesidedBias"),
-    function(L2deriv, risk, neighbor, biastype = positiveBias(), cent, clip){
+    function(L2deriv, risk, neighbor, biastype, cent, clip){
         c1 <- cent - clip 
         c2 <- cent + clip 
         if (sign(biastype)<0) 
@@ -75,7 +75,7 @@
                                    risk = "asMSE",
                                    neighbor = "ContNeighborhood",
                                    biastype = "asymmetricBias"),
-    function(L2deriv, risk, neighbor, biastype = asymmetricBias(), cent, clip){
+    function(L2deriv, risk, neighbor, biastype, cent, clip){
         nu1 <- nu(biastype)[1]
         nu2 <- nu(biastype)[2]
 

Modified: pkg/ROptEst/R/getInfRobIC_asBias.R
===================================================================
--- pkg/ROptEst/R/getInfRobIC_asBias.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfRobIC_asBias.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -4,21 +4,21 @@
 setMethod("getInfRobIC", signature(L2deriv = "UnivariateDistribution", 
                                    risk = "asBias", 
                                    neighbor = "UncondNeighborhood"),
-    function(L2deriv, risk, neighbor, symm, Finfo, trafo, upper, maxiter, 
-             tol, warn){
+    function(L2deriv, risk, neighbor, symm, trafo, maxiter, 
+             tol){
         minmaxBias(L2deriv, neighbor, biastype(risk), symm, 
-                   Finfo, trafo, upper, maxiter, tol, warn)
+                   trafo, maxiter, tol)
     })
 setMethod("getInfRobIC", signature(L2deriv = "RealRandVariable", 
                                    risk = "asBias", 
                                    neighbor = "ContNeighborhood"),
-    function(L2deriv, risk, neighbor, Distr, DistrSymm, L2derivSymm, 
-             L2derivDistrSymm, Finfo, z.start, A.start, trafo, upper, 
-             maxiter, tol, warn){                
-        minmaxBias(L2deriv, neighbor, biastype(risk), normtype(risk),
-             Distr, DistrSymm, L2derivSymm, L2derivDistrSymm, Finfo, 
-             z.start, A.start, trafo, upper, 
-             maxiter, tol, warn)
+    function(L2deriv, risk, neighbor, Distr, L2derivDistrSymm, z.start, 
+             A.start, trafo, maxiter, tol){                
+        minmaxBias(L2deriv = L2deriv, neighbor = neighbor, 
+                   biastype = biastype(risk), normtype = normtype(risk),
+             Distr = Distr, L2derivDistrSymm = L2derivDistrSymm, 
+             z.start = z.start, A.start = A.start, trafo = trafo,
+             maxiter = maxiter, tol = tol)
     })
 
 
@@ -26,7 +26,7 @@
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
     function(L2deriv, neighbor, biastype = symmetricBias(), symm, 
-             Finfo, trafo, upper, maxiter, tol, warn){
+             trafo, maxiter, tol){
         zi <- sign(as.vector(trafo))
         A <- as.matrix(zi)
         z <- q(L2deriv)(0.5)
@@ -60,8 +60,8 @@
                                    neighbor = "TotalVarNeighborhood",
                                    biastype = "BiasType"),
     function(L2deriv, neighbor, biastype = symmetricBias(),
-             symm, Finfo, trafo, 
-             upper, maxiter, tol, warn){
+             symm, trafo, 
+             maxiter, tol){
         zi <- sign(as.vector(trafo))
         A <- as.matrix(zi)
         b <- zi*as.vector(trafo)/(-m1df(L2deriv, 0))
@@ -92,54 +92,20 @@
 setMethod("minmaxBias", signature(L2deriv = "RealRandVariable", 
                                    neighbor = "ContNeighborhood", 
                                    biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), 
-             normtype = NormType(), Distr, DistrSymm, L2derivSymm, 
-             L2derivDistrSymm, Finfo, z.start, A.start, trafo, upper, 
-             maxiter, tol, warn){                
-        if(is.null(z.start)) z.start <- numeric(ncol(trafo))
-        if(is.null(A.start)) A.start <- trafo
+    function(L2deriv, neighbor, biastype, normtype, Distr, L2derivDistrSymm, 
+             z.start, A.start, trafo, maxiter, tol){                
+        eerg <- .LowerCaseMultivariate(L2deriv, neighbor, biastype,
+             normtype, Distr, L2derivDistrSymm, trafo, z.start,
+             A.start, maxiter, tol)
+        erg <- eerg$erg
 
-
-        
-        abs.fct <- function(x, L2, stand, cent, norm){ 
-            X <- evalRandVar(L2, as.matrix(x))[,,1] - cent
-            Y <- stand %*% X
-            return(fct(norm)(Y))
-        }
-
-        bmin.fct <- function(param, L2deriv, Distr, trafo, z.comp){
-            p <- nrow(trafo)
-            k <- ncol(trafo)
-            A <- matrix(param[1:(p*k)], ncol=k, nrow=p)
-            z <- numeric(k)
-            z[z.comp] <- param[(p*k+1):length(param)]
-            aL <- list(normtype = normtype, FI = Finfo, 
-                       L2 = L2deriv, stand = A, cent = z, clip = 0, 
-                       Distr = Distr, norm = fct(normtype))
-            normtype <<- do.call(updateNorm, aL) 
-            return(E(object = Distr, fun = abs.fct, L2 = L2deriv, stand = A, 
-                     cent = z, useApply = FALSE)/sum(diag(A %*% t(trafo))))
-        }
-        
-        nrvalues <- length(L2deriv)
-        z.comp <- rep(TRUE, nrvalues)
-        for(i in 1:nrvalues)
-            if(is(L2derivDistrSymm[[i]], "SphericalSymmetry"))
-                if(L2derivDistrSymm[[i]]@SymmCenter == 0)
-                    z.comp[i] <- FALSE
-
-        A.vec <- as.vector(A.start)
-        force(normtype)
-        erg <- optim(c(A.vec, z.start[z.comp]), bmin.fct, method = "Nelder-Mead", 
-                    control = list(reltol = tol, maxit = 100*maxiter), 
-                    L2deriv = L2deriv, Distr = Distr, trafo = trafo, z.comp = z.comp)
         b <- 1/erg$value
         param <- erg$par
         p <- nrow(trafo)
         k <- ncol(trafo)
         A <- matrix(param[1:(p*k)], ncol=k, nrow=p)
         z <- numeric(k)
-        z[z.comp] <- param[(p*k+1):length(param)]
+        z[erg$z.comp] <- param[(p*k+1):length(param)]
         a <- as.vector(A %*% z)
         d <- numeric(p)
         # computation of 'd', in case 'L2derivDistr' not abs. cont.
@@ -147,13 +113,9 @@
         info <- c("minimum asymptotic bias (lower case) solution")
         Risk <- list(asBias = b)
 
-        w <- new("HampelWeight")
-        cent(w) <- z
-        stand(w) <- A
-        clip(w) <- b
-        weight(w) <- minbiasweight(w, neighbor = neighbor, biastype = biastype, 
-                               normtype = normtype)
-
+        w <- eerg$w
+        normtype <- eerg$normtype
+        
         return(list(A = A, a = a, b = b, d = d, risk = Risk, info = info, 
                     w = w, biastype = biastype, normtype = normtype))
     })
@@ -162,7 +124,7 @@
                                    neighbor = "ContNeighborhood", 
                                    biastype = "asymmetricBias"),
     function(L2deriv, neighbor, biastype, symm, 
-             Finfo, trafo, upper, maxiter, tol, warn){                
+             trafo, maxiter, tol){                
         nu1 <- nu(biastype)[1]
         nu2 <- nu(biastype)[2]
         zi <- sign(as.vector(trafo))
@@ -203,7 +165,7 @@
                                    neighbor = "ContNeighborhood", 
                                    biastype = "onesidedBias"),
     function(L2deriv, neighbor, biastype, symm, 
-             Finfo, trafo, upper, maxiter, tol, warn){                
+             trafo, maxiter, tol){                
 
         infotxt <- c("minimum asymptotic bias (lower case) solution")
         noIC <- function(){

Modified: pkg/ROptEst/R/getInfRobIC_asGRisk.R
===================================================================
--- pkg/ROptEst/R/getInfRobIC_asGRisk.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfRobIC_asGRisk.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -79,7 +79,10 @@
         Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor, 
                           biastype = biastype, clip = b, cent = a, stand = A, 
                           trafo = trafo)
-        Risk <- c(Risk, list(asBias = b))
+        Cov <- getInfV(L2deriv = L2deriv, neighbor = neighbor, 
+                       biastype = biastype, clip = b/A, cent = z, stand = A)
+                       
+        Risk <- c(Risk, list(asBias = b, asCov = Cov))
 
         w <- new("HampelWeight")
         cent(w) <- z
@@ -92,6 +95,12 @@
         return(list(A = A, a = a, b = b, d = NULL, risk = Risk, info = info, w = w,
                     biastype = biastype, normtype = normtype(risk)))
     })
+
+
+
+################################################################################
+
+
 setMethod("getInfRobIC", signature(L2deriv = "RealRandVariable", 
                                    risk = "asGRisk", 
                                    neighbor = "ContNeighborhood"),
@@ -101,6 +110,10 @@
              tol, warn){
         biastype <- biastype(risk)
         normtype <- normtype(risk)
+
+        FI <- solve(trafo%*%solve(Finfo)%*%t(trafo))
+        if(is(normtype,"InfoNorm") || is(normtype,"SelfNorm") ) 
+           {QuadForm(normtype) <- PosSemDefSymmMatrix(FI); normtype(risk) <- normtype}
         
         if(is.null(z.start)) z.start <- numeric(ncol(trafo))
         if(is.null(A.start)) A.start <- trafo %*% solve(Finfo)
@@ -112,7 +125,7 @@
             res <- getInfRobIC(L2deriv = L2deriv, risk = asCov(), neighbor = neighbor, 
                                Distr = Distr, Finfo = Finfo, trafo = trafo)
             Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor, 
-                              biastype = biastype, clip = res$b, cent = res$a, 
+                              biastype = biastype, cent = res$a, 
                               stand = res$A, trafo = trafo)
             res$risk <- c(Risk, res$risk)
             return(res)
@@ -151,20 +164,24 @@
             cent(w) <- z 
             stand(w) <- A 
             
-            normtype <- update(normtype = normtype, FI = Finfo, 
-                   L2 = L2deriv, stand = A, cent = z, clip = b,
-                   Distr = Distr, norm = fct(normtype))
-
+            if ((iter == 1)||is(normtype,"SelfNorm"))
+               {normtype(risk) <- normtype <- updateNorm(normtype = normtype, 
+                   FI = FI, L2 = L2deriv, neighbor = neighbor, biastype = biastype,
+                   Distr = Distr, V.comp = A.comp, cent = z, stand = A, w = w)}
+            
             weight(w) <- getweight(w, neighbor = neighbor, biastype = biastype, 
                                    normtype = normtype)
             ## new
             lower0 <- getL1normL2deriv(L2deriv = L2deriv, cent = z, stand = A, 
-                                       Distr = Distr)/(1+neighbor at radius^2)
-            upper0 <- sqrt( sum( diag(A%*%Finfo%*%t(A)) + (A%*%z)^2) / 
+                                       Distr = Distr, normtype = normtype)/(1+neighbor at radius^2)
+            QF <- if(is(normtype,"QFNorm")) QuadForm(normtype) else diag(nrow(A))
+            upper0 <- sqrt( (sum( diag(QF%*%A%*%Finfo%*%t(A))) + t(A%*%z)%*%QF%*%(A%*%z)) / 
                           ((1 + neighbor at radius^2)^2-1))
             if (!is.null(upper)|(iter == 1)) 
-                    {lower <- .Machine$double.eps^0.75
+                    {lower <- .Machine$double.eps^0.75; 
+                     if(is.null(upper)) upper <- 10*upper0
                 }else{ lower <- lower0; upper <- upper0}
+            print(c(iter, lower,upper, lower0, upper0))
             ##
             b <- try(uniroot(getInfClip, 
                   ## new
@@ -179,30 +196,36 @@
                              "=> the minimum asymptotic bias (lower case) solution is returned\n",
                              "If 'no' => Try again with modified starting values ",
                              "'z.start' and 'A.start'\n")
-                res <- getInfRobIC(L2deriv = L2deriv, risk =  asBias(biastype = biastype(risk),
-                                                              normtype = normtype(risk)), 
-                                neighbor = neighbor, Distr = Distr, DistrSymm = DistrSymm,
-                                L2derivSymm = L2derivSymm, L2derivDistrSymm = L2derivDistrSymm,
+                             res <- getInfRobIC(L2deriv = L2deriv, 
+                                        risk =  asBias(biastype = biastype(risk),
+                                                       normtype = normtype(risk)), 
+                                neighbor = neighbor, Distr = Distr, L2derivDistrSymm = L2derivDistrSymm,
                                 z.start = z.start, A.start = A.start, trafo = trafo, 
-                                upper = upper, maxiter = maxiter, tol = tol, warn = warn)
+                                maxiter = maxiter, tol = tol)
                 Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor, 
-                                  biastype = biastype, clip = res$b, cent = res$a, stand = res$A, 
-                                  trafo = trafo)
+                                  biastype = biastype, Distr = Distr,  
+                                  cent = res$a, stand = res$A, 
+                                  V.comp =  matrix(TRUE, ncol = nrow(res$A), 
+                                            nrow = nrow(res$A)), w = res$w)
                 res$risk <- c(Risk, res$risk)
                 return(res)
             }
             clip(w) <- b
-            normtype <- update(normtype = normtype, FI = Finfo, 
-                   L2 = L2deriv, stand = A, cent = z, clip = b,
-                   Distr = Distr, norm = fct(normtype))
+            
+            if (is(normtype,"SelfNorm"))
+                {normtype(risk) <- normtype <- updateNorm(normtype = normtype, 
+                   FI = FI, L2 = L2deriv, neighbor = neighbor, biastype = biastype,
+                   Distr = Distr, V.comp = A.comp, cent = z, stand = A, w = w)}
 
             weight(w) <- getweight(w, neighbor = neighbor, biastype = biastype, 
                                    normtype = normtype)
-            z <- getInfCent(L2deriv = L2deriv, neighbor = neighbor,  biastype = biastype,
-                            Distr = Distr, z.comp = z.comp, stand = A, cent = z, clip = b, w = w)
+            z <- getInfCent(L2deriv = L2deriv, neighbor = neighbor,  
+                            biastype = biastype, Distr = Distr, z.comp = z.comp, 
+                            w = w)
             A <- getInfStand(L2deriv = L2deriv, neighbor = neighbor, 
                          biastype = biastype, Distr = Distr, A.comp = A.comp, 
-                         stand = A, clip = b, cent = z, w = w, trafo = trafo)
+                         cent = z, trafo = trafo, w = w)
+
             prec <- max(abs(b-b.old), max(abs(A-A.old)), max(abs(z-z.old)))
             cat("current precision in IC algo:\t", prec, "\n")
             if(prec < tol) break
@@ -214,9 +237,10 @@
         if (onesetLM){
             cent(w) <- z 
             stand(w) <- A 
-            normtype <- update(normtype = normtype, FI = Finfo, 
-                   L2 = L2deriv, stand = A, cent = z, clip = b,
-                   Distr = Distr, norm = fct(normtype))
+            if (is(normtype,"SelfNorm"))
+                {normtype(risk) <- normtype <- updateNorm(normtype = normtype, 
+                 FI = FI, L2 = L2deriv, neighbor = neighbor, biastype = biastype,
+                   Distr = Distr, V.comp = A.comp, cent = z, stand = A, w = w)}
 
             weight(w) <- getweight(w, neighbor = neighbor, biastype = biastype, 
                                    normtype = normtype)
@@ -226,7 +250,11 @@
         Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor, 
                           biastype = biastype, clip = b, cent = a, stand = A, 
                           trafo = trafo)
-        Risk <- c(Risk, list(asBias = b))
+        Cov <- getInfV(L2deriv = L2deriv, neighbor = neighbor, 
+                       biastype = biastype, Distr = Distr, 
+                       V.comp = A.comp, cent = a, 
+                       stand = A, w = w)
+        Risk <- c(Risk, list(asBias = b, asCov = Cov))
 
         return(list(A = A, a = a, b = b, d = NULL, risk = Risk, info = info, w = w, 
                     biastype = biastype, normtype = normtype))    

Modified: pkg/ROptEst/R/getInfRobIC_asHampel.R
===================================================================
--- pkg/ROptEst/R/getInfRobIC_asHampel.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfRobIC_asHampel.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -8,6 +8,7 @@
              upper, maxiter, tol, warn){
         biastype <- biastype(risk)
         normtype <- normtype(risk)
+
         A <- trafo / E(L2deriv, function(x){x^2})
         b <- risk at bound
 
@@ -63,7 +64,7 @@
         info <- paste("optimally robust IC for 'asHampel' with bound =", round(b,3))
         a <- as.vector(A)*z
         Cov <- getInfV(L2deriv = L2deriv, neighbor = neighbor, 
-                       biastype = biastype, clip = c0, cent = z, stand = stand)
+                       biastype = biastype, clip = c0, cent = z, stand = A)
         
         # getAsRisk(risk = asHampel(), L2deriv = L2deriv, neighbor = neighbor, 
         #          biastype = biastype, clip = b, cent = a, stand = A)$asCov
@@ -91,6 +92,10 @@
         biastype <- biastype(risk)
         normtype <- normtype(risk)
 
+        FI <- solve(trafo%*%solve(Finfo)%*%t(trafo))
+        if(is(normtype,"InfoNorm") || is(normtype,"SelfNorm") ) 
+           {QuadForm(normtype) <- PosSemDefSymmMatrix(FI); normtype(risk) <- normtype}
+
         if(is.null(z.start)) z.start <- numeric(ncol(trafo))
         if(is.null(A.start)) A.start <- trafo
 
@@ -157,19 +162,19 @@
             A.old <- A
             cent(w) <- z 
             stand(w) <- A 
-            normtype <- update(normtype = normtype, FI = Finfo, 
-                   L2 = L2deriv, stand = A, cent = z, clip = b,
-                   Distr = Distr, norm = fct(normtype))
+            normtype(risk) <- normtype <- updateNorm(normtype = normtype, FI = FI, 
+                   L2 = L2deriv, neighbor = neighbor, biastype = biastype,
+                   Distr = Distr, V.comp = A.comp, cent = z, stand = A, w = w)
 
             weight(w) <- getweight(w, neighbor = neighbor, biastype = biastype, 
                                    normtype = normtype)
 
-            z <- getInfCent(L2deriv = L2deriv, neighbor = neighbor,  biastype = biastype,
-                            Distr = Distr, z.comp = z.comp, stand = A, cent = z, clip = b, 
+            z <- getInfCent(L2deriv = L2deriv, neighbor = neighbor,  
+                            biastype = biastype, Distr = Distr, z.comp = z.comp, 
                             w = w)
-            A <- getInfStand(L2deriv = L2deriv, neighbor = neighbor,  biastype = biastype, 
-                             clip = b, cent = z,  A.comp = A.comp, trafo = trafo, 
-                             Distr = Distr, stand = A, w = w)
+            A <- getInfStand(L2deriv = L2deriv, neighbor = neighbor, 
+                         biastype = biastype, Distr = Distr, A.comp = A.comp, 
+                         cent = z, trafo = trafo, w = w)
             prec <- max(max(abs(A-A.old)), max(abs(z-z.old)))
             cat("current precision in IC algo:\t", prec, "\n")
             if(prec < tol) break
@@ -181,9 +186,9 @@
         if (onesetLM){
             cent(w) <- z 
             stand(w) <- A 
-            normtype <- update(normtype = normtype, FI = Finfo, 
-                   L2 = L2deriv, stand = A, cent = z, clip = b,
-                   Distr = Distr, norm = fct(normtype))
+            normtype(risk) <- normtype <- updateNorm(normtype = normtype, FI = FI, 
+                   L2 = L2deriv, neighbor = neighbor, biastype = biastype,
+                   Distr = Distr, V.comp = A.comp, cent = z, stand = A, w = w)
 
             weight(w) <- getweight(w, neighbor = neighbor, biastype = biastype, 
                                    normtype = normtype)
@@ -191,12 +196,14 @@
         info <- paste("optimally robust IC for 'asHampel' with bound =", round(b,3))
         a <- as.vector(A %*% z)
         Cov <- getInfV(L2deriv = L2deriv, neighbor = neighbor, 
-                       biastype = biastype, clip = c0, cent = z, stand = stand,
-                       Distr = Distr, V.comp = A.comp, w = w)
+                       biastype = biastype, Distr = Distr, 
+                       V.comp = A.comp, cent = a, 
+                       stand = A, w = w)
         #getAsRisk(risk = asCov(), L2deriv = L2deriv, neighbor = neighbor, 
         #          biastype = biastype, Distr = Distr, clip = b, cent = a, 
         #          stand = A)$asCov
-        Risk <- list(trAsCov = sum(diag(Cov)), asCov = Cov, asBias = b, asMSE = sum(diag(Cov)) + neighbor at radius^2*b^2)
+        Risk <- list(trAsCov = sum(diag(Cov)), asCov = Cov, asBias = b, 
+                     asMSE = sum(diag(Cov)) + neighbor at radius^2*b^2)
 
         return(list(A = A, a = a, b = b, d = NULL, risk = Risk, info = info, 
                     w = w, biastype = biastype, normtype = normtype))

Modified: pkg/ROptEst/R/getInfStand.R
===================================================================
--- pkg/ROptEst/R/getInfStand.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfStand.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -4,7 +4,7 @@
 setMethod("getInfStand", signature(L2deriv = "UnivariateDistribution",
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), clip, cent, trafo){
+    function(L2deriv, neighbor, biastype, clip, cent, trafo){
         c1 <- cent - clip
         c2 <- cent + clip
         return(trafo/(m2df(L2deriv, c2) - m2df(L2deriv, c1)
@@ -13,7 +13,7 @@
 setMethod("getInfStand", signature(L2deriv = "UnivariateDistribution",
                                   neighbor = "TotalVarNeighborhood",
                                   biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), clip, cent, trafo){
+    function(L2deriv, neighbor, biastype, clip, cent, trafo){
         D1 <- sign(as.vector(trafo))*L2deriv
         return(trafo/(m2df(D1, cent+clip) - m2df(D1, cent) + cent*m1df(D1, cent) 
                 - (cent+clip)*m1df(D1, cent+clip)))
@@ -21,7 +21,7 @@
 setMethod("getInfStand", signature(L2deriv = "RealRandVariable",
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), 
+    function(L2deriv, neighbor, biastype, 
              Distr, A.comp, cent, trafo, w){
         w.fct <- function(x){
             weight(w)(evalRandVar(L2deriv, as.matrix(x)) [,,1]) 
@@ -50,7 +50,7 @@
 setMethod("getInfStand", signature(L2deriv = "UnivariateDistribution",
                                    neighbor = "ContNeighborhood",
                                    biastype = "onesidedBias"),
-    function(L2deriv, neighbor, biastype = positiveBias(), clip, cent, trafo){
+    function(L2deriv, neighbor, biastype, clip, cent, trafo){
         c1 <- if (sign(biastype)<0) cent - clip else -Inf
         c2 <- if (sign(biastype)>0) cent + clip else Inf
         m1 <- if (sign(biastype)<0) m2df(L2deriv, c1) else 0
@@ -66,7 +66,7 @@
 setMethod("getInfStand", signature(L2deriv = "UnivariateDistribution",
                                    neighbor = "ContNeighborhood",
                                    biastype = "asymmetricBias"),
-    function(L2deriv, neighbor, biastype = asymmetricBias(), clip, cent, trafo){
+    function(L2deriv, neighbor, biastype, clip, cent, trafo){
         nu1 <- nu(biastype)[1]
         nu2 <- nu(biastype)[2]
         c1 <- cent - clip/nu1

Modified: pkg/ROptEst/R/getInfV.R
===================================================================
--- pkg/ROptEst/R/getInfV.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getInfV.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -4,7 +4,7 @@
 setMethod("getInfV", signature(L2deriv = "UnivariateDistribution",
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), clip, cent, stand){
+    function(L2deriv, neighbor, biastype, clip, cent, stand){
         c1 <- cent - clip
         c2 <- cent + clip
         return(stand^2*(m2df(L2deriv, c2) - m2df(L2deriv, c1)
@@ -18,7 +18,7 @@
 setMethod("getInfV", signature(L2deriv = "UnivariateDistribution",
                                   neighbor = "TotalVarNeighborhood",
                                   biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = positiveBias(), clip, cent, stand){
+    function(L2deriv, neighbor, biastype, clip, cent, stand){
         c1 <- cent
         c2 <- clip+clip
         return(stand^2*(m2df(L2deriv, c2) - m2df(L2deriv, c1)
@@ -29,13 +29,16 @@
 setMethod("getInfV", signature(L2deriv = "RealRandVariable",
                                    neighbor = "ContNeighborhood",
                                    biastype = "BiasType"),
-    function(L2deriv, neighbor, biastype = symmetricBias(), Distr, V.comp, 
-             clip, cent, stand, w){
+    function(L2deriv, neighbor, biastype, Distr, V.comp, 
+             cent, stand, w){
         w.fct <- function(x){
             (weight(w)(evalRandVar(L2deriv, as.matrix(x)) [,,1]))^2 
         }
+        
+        cent0 <- solve(stand, cent)
+
         integrandV <- function(x, L2.i, L2.j, i, j){
-            return((L2.i(x) - cent[i])*(L2.j(x) - cent[j])*w.fct(x = x))
+            return((L2.i(x) - cent0[i])*(L2.j(x) - cent0[j])*w.fct(x = x))
         }
 
         nrvalues <- length(L2deriv)
@@ -58,7 +61,7 @@
 setMethod("getInfV", signature(L2deriv = "UnivariateDistribution",
                                    neighbor = "ContNeighborhood",
                                    biastype = "onesidedBias"),
-    function(L2deriv, neighbor, biastype = positiveBias(), clip, cent, stand){
+    function(L2deriv, neighbor, biastype, clip, cent, stand){
         c1 <- if (sign(biastype)<0) cent - clip else -Inf
         c2 <- if (sign(biastype)>0) cent + clip else Inf
         V1 <- if (sign(biastype)<0) m2df(L2deriv, c1) else 0
@@ -84,7 +87,7 @@
 setMethod("getInfV", signature(L2deriv = "UnivariateDistribution",
                                    neighbor = "ContNeighborhood",
                                    biastype = "asymmetricBias"),
-    function(L2deriv, neighbor, biastype = positiveBias(), clip, cent, stand){
+    function(L2deriv, neighbor, biastype, clip, cent, stand){
         nu1 <- nu(biastype)[1]
         nu2 <- nu(biastype)[2]
         c1 <- cent - clip/nu1

Modified: pkg/ROptEst/R/getRiskIC.R
===================================================================
--- pkg/ROptEst/R/getRiskIC.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/R/getRiskIC.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,553 +1,36 @@
 ###############################################################################
 ## asymptotic covariance
 ###############################################################################
-setMethod("getRiskIC", signature(IC = "IC", 
+setMethod("getRiskIC", signature(IC = "HampIC", 
                                  risk = "asCov",
                                  neighbor = "missing",
                                  L2Fam = "missing"),
-    function(IC, risk, tol = .Machine$double.eps^0.25){
+    function(IC, risk){
         L2Fam <- eval(IC at CallL2Fam)
-
-        trafo <- L2Fam at param@trafo
-        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
-
-        bias <- E(L2Fam, IC1)
-        Cov <- E(L2Fam, IC1 %*% t(IC1))
-        
-        prec <- checkIC(IC, out = FALSE)
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-        
-        return(list(asCov = list(distribution = .getDistr(L2Fam), value = Cov - bias %*% t(bias))))
+        getRiskIC(IC, risk, L2Fam)
     })
 
-setMethod("getRiskIC", signature(IC = "IC", 
+setMethod("getRiskIC", signature(IC = "HampIC", 
                                  risk = "asCov",
                                  neighbor = "missing",
-                                 L2Fam = "L2ParamFamily"),
-    function(IC, risk, L2Fam, tol = .Machine$double.eps^0.25){
-        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(L2Fam at distribution)))
-            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
-
-        trafo <- L2Fam at param@trafo
-        IC1 <- as(diag(dimension(IC at Curve)) %*% IC at Curve, "EuclRandVariable")
-
-        bias <- E(L2Fam, IC1)
-        Cov <- E(L2Fam, IC1 %*% t(IC1))
-
-        prec <- checkIC(IC, L2Fam, out = FALSE)
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-
-        return(list(asCov = list(distribution = .getDistr(L2Fam), value = Cov - bias %*% t(bias))))
-    })
-
-###############################################################################
-## trace of asymptotic covariance
-###############################################################################
-setMethod("getRiskIC", signature(IC = "IC", 
-                                 risk = "trAsCov",
-                                 neighbor = "missing",
                                  L2Fam = "missing"),
-    function(IC, risk, tol = .Machine$double.eps^0.25){
-        trCov <- getRiskIC(IC, risk = asCov())$asCov
-        trCov$value <- sum(diag(trCov$value))
-
-        prec <- checkIC(IC, out = FALSE)
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-
-        return(list(trAsCov = trCov))
+    function(IC, risk, L2Fam){
+        Cov <- IC at Risks[["asCov"]]        
+        return(list(asCov = list(distribution = .getDistr(IC at L2Fam), value = Cov)))
     })
-setMethod("getRiskIC", signature(IC = "IC", 
-                                 risk = "trAsCov",
-                                 neighbor = "missing",
-                                 L2Fam = "L2ParamFamily"),
-    function(IC, risk, L2Fam, tol = .Machine$double.eps^0.25){
-        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(L2Fam at distribution)))
-            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
 
-        trCov <- getRiskIC(IC, risk = asCov(), L2Fam = L2Fam)$asCov
-        trCov$value <- sum(diag(trCov$value))
 
-        prec <- checkIC(IC, L2Fam, out = FALSE)
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-
-        return(list(trAsCov = trCov))
-    })
-
 ###############################################################################
-## asymptotic Bias
-###############################################################################
-setMethod("getRiskIC", signature(IC = "IC",
-                                 risk = "asBias",
-                                 neighbor = "UncondNeighborhood",
-                                 L2Fam = "missing"),
-    function(IC, risk, neighbor, tol = .Machine$double.eps^0.25){
-             getBiasIC(IC, neighbor, biastype(risk), normtype(risk), tol)
-    })
-setMethod("getRiskIC", signature(IC = "IC",
-                                 risk = "asBias",
-                                 neighbor = "UncondNeighborhood",
-                                 L2Fam = "L2ParamFamily"),
-    function(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25){
-             getBiasIC(IC, neighbor, L2Fam, biastype(risk), normtype(risk), tol)
-    })
-###############################################################################
-## asymptotic MSE
-###############################################################################
-setMethod("getRiskIC", signature(IC = "IC", 
-                                 risk = "asMSE",
-                                 neighbor = "UncondNeighborhood",
-                                 L2Fam = "missing"),
-    function(IC, risk, neighbor, tol = .Machine$double.eps^0.25){
-        rad <- neighbor at radius
-        if(rad == Inf) return(Inf)
-
-        trCov <- getRiskIC(IC = IC, risk = trAsCov())
-        Bias <- getRiskIC(IC = IC, risk = asBias(), neighbor = neighbor)
-
-        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
-
-        prec <- checkIC(IC, out = FALSE)
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-
-        return(list(asMSE = list(distribution = .getDistr(eval(IC at CallL2Fam)), 
-                                 neighborhood = nghb,
-                                 value = trCov$trAsCov$value + rad^2*Bias$asBias$value^2)))
-    })
-setMethod("getRiskIC", signature(IC = "IC", 
-                                 risk = "asMSE",
-                                 neighbor = "UncondNeighborhood",
-                                 L2Fam = "L2ParamFamily"),
-    function(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25){
-        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(L2Fam at distribution)))
-            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
-
-        rad <- neighbor at radius
-        if(rad == Inf) return(Inf)
-
-        trCov <- getRiskIC(IC = IC, risk = trAsCov(), L2Fam = L2Fam)
-        Bias <- getRiskIC(IC = IC, risk = asBias(), neighbor = neighbor, L2Fam = L2Fam, 
-                          biastype = biastype(risk))
-
-        prec <- checkIC(IC, L2Fam, out = FALSE)
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-
-        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
-
-        return(list(asMSE = list(distribution = .getDistr(L2Fam), 
-                                 neighborhood = nghb,
-                                 radius = neighbor at radius, 
-                                 value = trCov$trAsCov$value + rad^2*Bias$asBias$value^2)))
-    })
-
-###############################################################################
-## asymptotic under-/overshoot risk
-###############################################################################
-setMethod("getRiskIC", signature(IC = "TotalVarIC", 
-                                 risk = "asUnOvShoot",
-                                 neighbor = "UncondNeighborhood",
-                                 L2Fam = "missing"),
-    function(IC, risk, neighbor){
-        radius <- neighbor at radius
-        L2Fam <- eval(IC at CallL2Fam)
-        L2deriv <- L2Fam at L2derivDistr[[1]]
-        if((length(L2Fam at L2derivDistr) > 1) | !is(L2deriv, "UnivariateDistribution"))
-            stop("restricted to 1-dimensional parameteric models")
-
-        bound <- risk at width*(-m1df(L2deriv, 0))
-        if(is(neighbor, "ContNeighborhood")){
-            if(radius > 2*bound)
-                stop("boundedness condition is violated!")
-            if(radius == 2*bound){
-                zi <- sign(as.vector(trafo))
-                A <- as.matrix(zi)
-                b <- zi*as.vector(trafo)*2*risk at width/radius
-                p0 <- p(L2deriv)(0)
-                if(is(L2deriv, "AbscontDistribution"))
-                    ws0 <- 0
-                else
-                    ws0 <- d(L2deriv)(0)
-
-                if(zi == 1)
-                    a <- -b*(1-p0)/(1-ws0)
-                else
-                    a <- b*(p0-ws0)/(1-ws0)
-            
-                asCov <- a^2*(p0-ws0) + (zi*a+b)^2*(1-p0)
-                erg <- pnorm(-risk at width*sqrt(asCov))
-            }
-        }
-
-        if(is(neighbor, "TotalVarNeighborhood")){
-            if(radius > bound)
-                stop("boundedness condition is violated!")
-            if(radius == bound){
-                zi <- sign(as.vector(trafo))
-                A <- as.matrix(zi)
-                b <- zi*as.vector(trafo)*risk at width/radius
-                p0 <- p(L2deriv)(0)
-                if(is(L2deriv, "AbscontDistribution"))
-                    ws0 <- 0
-                else
-                    ws0 <- d(L2deriv)(0)
-
-                if(zi == 1)
-                    a <- -b*(1-p0)/(1-ws0)
-                else
-                    a <- b*(p0-ws0)/(1-ws0)
-            
-                asCov <- a^2*(p0-ws0) + (zi*a+b)^2*(1-p0)
-                erg <- pnorm(-risk at width*sqrt(asCov))
-            }
-        }
-
-        stand <- as.vector(stand(IC))
-        g0 <- clipLo(IC)/abs(stand)
-        c0 <- clipUp(IC)/abs(stand) - g0
-        s <- sqrt(g0^2*p(L2deriv)(g0) 
-                  + (g0+c0)^2*(1 - p(L2deriv)(g0+c0))
-                  + m2df(L2deriv, g0+c0) - m2df(L2deriv, g0))
-        erg <- pnorm(-risk at width*s)
-
-        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
-
-        return(list(asUnOvShoot = list(distribution = .getDistr(L2Fam), 
-                    neighborhood = nghb, value = erg)))
-    })
-###############################################################################
-## finite-sample under-/overshoot risk
-###############################################################################
-setMethod("getRiskIC", signature(IC = "IC", 
-                                 risk = "fiUnOvShoot",
-                                 neighbor = "ContNeighborhood",
-                                 L2Fam = "missing"),
-    function(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left"){
-        L2Fam <- eval(IC at CallL2Fam)
-        Distr <- L2Fam at distribution
-        if(!is(Distr, "Norm"))
-            stop("restricted to 1-dimensional normal location")
-
-        eps <- neighbor at radius
-        tau <- risk at width
-
-        if(!(is(IC, "ContIC") | is(IC, "TotalVarIC")))
-            stop("'IC' has to be of class 'ContIC' or 'TotalVarIC'")
-        if(is(IC, "ContIC"))
-            clip <- clip(IC)/as.vector(stand(IC))       
-        if(is(IC, "TotalVarIC"))
-            clip <- clipUp(IC)/as.vector(stand(IC))
-            
-        n <- sampleSize
-        m <- getdistrOption("DefaultNrFFTGridPointsExponent")
-
-        if(eps >= 1 - 1/(2*pnorm(risk at width))){
-            warning("disjointness condition is violated!")
-            erg <- 0.5
-        }else{
-            if(Algo == "B"){
-                if(cont == "left"){
-                    delta1 <- (1-eps)*(pnorm(-clip+tau) + pnorm(-clip-tau)) + eps
-                    K1 <- dbinom(0:n, size = n, prob = delta1)
-                    P1 <- (1-eps)*pnorm(-clip-tau) + eps
-                    p1 <- P1/delta1
-
-                    summe1 <- numeric(n+1)
-                    summe1[1] <- 1 - conv.tnorm(z = 0, A = -clip, B = clip, mu = -tau, n = n, m = m)
-                    summe1[n+1] <- (1 - 0.5*(pbinom(q = n/2, size = n, prob = p1) 
-                                    + pbinom(q = n/2-0.1, size = n, prob = p1)))
-                    for(k in 1:(n-1)){
-                        j <- 0:k
-                        z <- clip*(k-2*j)
-                        P1.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = -tau, n = n-k, m = m)
-                        summe1[k+1] <- sum((1-P1.ste)*dbinom(j, size = k, prob = p1))
-                    }
-                    erg <- sum(summe1*K1)
-                }else{
-                    delta2 <- (1-eps)*(pnorm(-clip+tau) + pnorm(-clip-tau)) + eps
-                    K2 <- dbinom(0:n, size = n, prob = delta2)
-                    P2 <- (1-eps)*pnorm(-clip+tau)
-                    p2 <- P2/delta2
-
-                    summe2 <- numeric(n+1)
-                    summe2[1] <- conv.tnorm(z = 0, A = -clip, B = clip, mu = tau, n = n, m = m)
-                    summe2[n+1] <- 0.5*(pbinom(q = n/2, size = n, prob = p2) 
-                                        + pbinom(q = n/2-0.1, size = n, prob = p2))
-                    for(k in 1:(n-1)){
-                        j <- 0:k
-                        z <- clip*(k-2*j)
-                        P2.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = tau, n = n-k, m = m)
-                        summe2[k+1] <- sum(P2.ste*dbinom(j, size=k, prob=p2))
-                   }
-                    erg <- sum(summe2*K2)
-                }
-            }else{
-                M <- 2^m
-                h <- 2*clip/M
-                x <- seq(from = -clip, to = clip, by = h)
-
-                if(cont == "right"){
-                    p1 <- pnorm(x+tau)
-                    p1 <- (1-eps)*(p1[2:(M + 1)] - p1[1:M])
-                    p1[1] <- p1[1] + (1-eps)*pnorm(-clip+tau)
-                    p1[M] <- p1[M] + (1-eps)*pnorm(-clip-tau) + eps
-                }else{
-                    p1 <- pnorm(x-tau)
-                    p1 <- (1-eps)*(p1[2:(M + 1)] - p1[1:M])
-                    p1[1] <- p1[1] + (1-eps)*pnorm(-clip-tau) + eps
-                    p1[M] <- p1[M] + (1-eps)*pnorm(-clip+tau)
-                }
-        
-                ## FFT
-                pn <- c(p1, numeric((n-1)*M))
-
-                ## convolution theorem for DFTs
-                pn <- Re(fft(fft(pn)^n, inverse = TRUE)) / (n*M)
-                pn <- (abs(pn) >= .Machine$double.eps)*pn
-                pn <- cumsum(pn)
-
-                k <- n*(M-1)/2
-                erg <- ifelse(n%%2 == 0, (pn[k]+pn[k+1])/2, pn[k+1])
-                if(cont == "right") erg <- 1 - erg
-            }
-        }
-
-        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
-
-        return(list(fiUnOvShoot = list(distribution = .getDistr(eval(IC at CallL2Fam)), 
-                    neighborhood = nghb, value = erg)))
-    })
-setMethod("getRiskIC", signature(IC = "IC", 
-                                 risk = "fiUnOvShoot",
-                                 neighbor = "TotalVarNeighborhood",
-                                 L2Fam = "missing"),
-    function(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left"){
-        L2Fam <- eval(IC at CallL2Fam)
-        Distr <- L2Fam at distribution
-        if(!is(Distr, "Norm"))
-            stop("restricted to 1-dimensional normal location")
-
-        delta <- neighbor at radius
-        tau <- risk at width
-
-        if(!(is(IC, "ContIC") | is(IC, "TotalVarIC")))
-            stop("'IC' has to be of class 'ContIC' or 'TotalVarIC'")
-        if(is(IC, "ContIC"))
-            clip <- clip(IC)/as.vector(stand(IC))    
-        if(is(IC, "TotalVarIC"))
-            clip <- clipUp(IC)/as.vector(stand(IC))
-
-        n <- sampleSize
-        m <- getdistrOption("DefaultNrFFTGridPointsExponent")
-
-        if(delta >= pnorm(risk at width) - 0.5){
-            warning("disjointness condition is violated!")
-            erg <- 0.5
-        }else{
-            if(Algo == "B"){
-                if(cont == "left"){
-                    delta1 <- min(pnorm(-clip-tau)+delta, 1) + 1 - min(pnorm(clip-tau)+delta, 1)
-                    K1 <- dbinom(0:n, size = n, prob = delta1)
-                    P1 <- min(pnorm(-clip-tau) + delta, 1)
-                    p1 <- min(P1/delta1, 1)
-
-                    summe1 <- numeric(n+1)
-                    summe1[1] <- 1 - conv.tnorm(z = 0, A = -clip, B = clip, mu = -tau, n = n, m = m)
-                    for(k in 1:(n-1)){
-                        j <- 0:k
-                        z <- clip*(k-2*j)
-                        P1.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = -tau, n = n-k, m = m)
-                        summe1[k+1] <- sum((1-P1.ste)*dbinom(j, size = k, prob = p1))
-                    }
-                    summe1[n+1] <- 1 - 0.5*(pbinom(q = n/2, size = n, prob = p1)
-                                            + pbinom(q = n/2-0.1, size = n, prob = p1))
-                    erg <- sum(summe1*K1)
-                }else{
-                    delta2 <- max(0, pnorm(-clip+tau)-delta) + 1 - max(0, pnorm(clip+tau)-delta)
-                    K2 <- dbinom(0:n, size = n, prob = delta2)
-                    P2 <- max(0, pnorm(-clip+tau) - delta)
-                    p2 <- P2/delta2
-
-                    summe2 <- numeric(n+1)
-                    summe2[1] <- conv.tnorm(z = 0, A = -clip, B = clip, mu = tau, n = n, m = m)
-                    for(k in 1:(n-1)){
-                        j <- 0:k
-                        z <- clip*(k-2*j)
-                        P2.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = tau, n = n-k, m = m)
-                        summe2[k+1] <- sum(P2.ste*dbinom(j, size = k, prob = p2))
-                    }
-                    summe2[n+1] <- 0.5*(pbinom(q = n/2, size = n, prob = p2) 
-                                        + pbinom(q = n/2-0.1, size = n, prob = p2))
-                    erg <- sum(summe2*K2)
-                }
-            }else{
-                M <- 2^m
-                h <- 2*clip/M
-                x <- seq(from = -clip, to = clip, by = h)
-
-                if(cont == "right"){
-                    p1 <- pnorm(x+tau)
-                    p1 <- p1[2:(M + 1)] - p1[1:M]
-                    p1[1] <- p1[1] + pnorm(-clip+tau) - delta
-                    p1[M] <- p1[M] + pnorm(-clip-tau) + delta
-                }else{
-                    p1 <- pnorm(x-tau)
-                    p1 <- p1[2:(M + 1)] - p1[1:M]
-                    p1[1] <- p1[1] + pnorm(-clip-tau) + delta
-                    p1[M] <- p1[M] + pnorm(-clip+tau) - delta
-                }
-
-                ## FFT
-                pn <- c(p1, numeric((n-1)*M))
-    
-                ## convolution theorem for DFTs
-                pn <- Re(fft(fft(pn)^n, inverse = TRUE)) / (n*M)
-                pn <- (abs(pn) >= .Machine$double.eps)*pn
-                pn <- cumsum(pn)
-    
-                k <- n*(M-1)/2
-                erg <- ifelse(n%%2 == 0, (pn[k]+pn[k+1])/2, pn[k+1])
-                if(cont == "right") erg <- 1-erg
-            }
-        }
-
-        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
-
-        return(list(fiUnOvShoot = list(distribution = .getDistr(eval(IC at CallL2Fam)), 
-                    neighborhood = nghb, value = erg)))
-    })
-
-
-###############################################################################
 ## asymptotic Bias for various types
 ###############################################################################
-setMethod("getBiasIC", signature(IC = "IC",
+setMethod("getBiasIC", signature(IC = "HampIC",
                                  neighbor = "UncondNeighborhood"),
-    function(IC, neighbor, L2Fam, biastype = symmetricBias(), 
-             normtype = NormType(), tol = .Machine$double.eps^0.25){
+    function(IC, neighbor, L2Fam){
         if(missing(L2Fam)) 
            {misF <- TRUE; L2Fam <- eval(IC at CallL2Fam)}
-        D1 <- L2Fam at distribution
-        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(D1)))
-            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
-        
-        x <- as.matrix(r(D1)(1e5))
-        x <- as.matrix(x[!duplicated(x),])  
 
-        Bias <- .evalBiasIC(IC = IC, neighbor = neighbor, biastype = biastype, 
-                            normtype = normtype, x = x, trafo = L2Fam at param@trafo)
-
-        prec <- if(misF) checkIC(IC, out = FALSE) else 
-                         checkIC(IC, L2Fam, out = FALSE) 
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-
         return(list(asBias = list(distribution = .getDistr(L2Fam), 
-                    neighborhood = neighbor at type, value = Bias)))
+                    neighborhood = neighbor at type, value = IC at Risks[["asBias"]])))
     })
 
-setMethod("getBiasIC", signature(IC = "ContIC",
-                                 neighbor = "UncondNeighborhood"),
-    function(IC, neighbor, L2Fam, biastype = symmetricBias(), 
-             normtype = NormType(), tol = .Machine$double.eps^0.25){
-        if(missing(L2Fam)) 
-           {misF <- TRUE; L2Fam <- eval(IC at CallL2Fam)}
-        D1 <- L2Fam at distribution
-        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(D1)))
-            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
-        
-        x <- as.matrix(r(D1)(1e5))
-        x <- as.matrix(x[!duplicated(x),])  
 
-        Bias <- .evalBiasIC(IC = IC, neighbor = neighbor, biastype = biastype, 
-                            normtype = normtype, x = x, trafo = L2Fam at param@trafo)
-
-
-        prec <- if(misF) checkIC(IC, out = FALSE) else 
-                         checkIC(IC, L2Fam, out = FALSE) 
-        if(prec > tol)
-            warning("The maximum deviation from the exact IC properties is", prec, 
-                    "\nThis is larger than the specified 'tol' ",
-                    "=> the result may be wrong")
-
-        return(list(asBias = list(distribution = .getDistr(L2Fam), 
-                    neighborhood = neighbor at type, value = Bias)))
-    })
-
-setMethod(".evalBiasIC", signature(IC = "IC",
-                                 neighbor = "ContNeighborhood",
-                                 biastype = "BiasType"),
-    function(IC, neighbor, biastype, normtype, x, trafo){
-        ICx <- evalRandVar(as(diag(dimension(IC at Curve)) %*% IC at Curve, 
-                            "EuclRandVariable"),x)
-        
-        return(max(fct(normtype)(ICx)))}
-    )
-
-setMethod(".evalBiasIC", signature(IC = "IC",
-                                 neighbor = "TotalVarNeighborhood",
-                                 biastype = "BiasType"),
-    function(IC, neighbor, biastype, normtype, x, trafo){
-        if(nrow(trafo) > 1)
-            stop("not yet implemented for dimension > 1")
-        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
-        res <- evalRandVar(IC1, x)
-        return(max(res) - min(res))}
-    )
-
-setMethod(".evalBiasIC", signature(IC = "IC",
-                                 neighbor = "ContNeighborhood",
-                                 biastype = "onesidedBias"),
-    function(IC, neighbor, biastype, x, trafo){
-        if(nrow(trafo) > 1)
-            stop("not yet implemented for dimension > 1")
-        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
-        res <- evalRandVar(IC1, x)
-        if (sign(biastype)>0) 
-             return(max(res)) 
-        else return(-min(res))
-    })
-
-setMethod(".evalBiasIC", signature(IC = "IC",
-                                 neighbor = "ContNeighborhood",
-                                 biastype = "asymmetricBias"),
-    function(IC, neighbor, biastype, x, trafo){
-        if(nrow(trafo) > 1)
-            stop("not yet implemented for dimension > 1")
-        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
-        res <- evalRandVar(IC1, x)
-        return(max(res)/nu(biastype)[2] - 
-               min(res)/nu(biastype)[1])}
-    )
-
-.getDistr <- function(L2Fam){
-        slots <- slotNames(L2Fam at distribution@param)
-        slots <- slots[slots != "name"]
-        nrvalues <- length(slots)
-        if (nrvalues > 0) {
-            values = numeric(nrvalues)
-            for (i in 1:nrvalues) 
-                values[i] <- attributes(attributes(L2Fam at distribution)$param)[[slots[i]]]
-
-            paramstring <- paste("(", paste(values, collapse = ", "), ")", sep = "")
-        }
-        distr <- paste(class(L2Fam at distribution)[1], paramstring, sep = "")
-}
\ No newline at end of file

Added: pkg/ROptEst/R/updateNorm.R
===================================================================
--- pkg/ROptEst/R/updateNorm.R	                        (rev 0)
+++ pkg/ROptEst/R/updateNorm.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,11 @@
+setMethod("updateNorm", "NormType", function(normtype, ...) normtype)
+setMethod("updateNorm", "InfoNorm", function(normtype, FI, ...)
+           {QuadForm(normtype) <- PosSemDefSymmMatrix(FI); normtype})
+setMethod("updateNorm", "SelfNorm", function(normtype, L2, neighbor, biastype, 
+                         Distr, V.comp, cent, stand,  w,  ...)
+           {Cv <- getInfV(L2deriv = L2, neighbor = neighbor, 
+                       biastype = biastype, Distr = Distr, 
+                       V.comp = V.comp, cent = cent, stand = stand,  w = w)
+            QuadForm(normtype) <- PosSemDefSymmMatrix(solve(Cv)); normtype})
+
+                                                       
\ No newline at end of file

Modified: pkg/ROptEst/chm/00Index.html
===================================================================
--- pkg/ROptEst/chm/00Index.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/00Index.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -18,6 +18,7 @@
 <a href="#M">M</a>
 <a href="#O">O</a>
 <a href="#R">R</a>
+<a href="#U">U</a>
 </p>
 <table width="100%">
 </table>
@@ -27,39 +28,39 @@
 <table width="100%">
 <tr><td width="25%"><a href="getAsRisk.html">getAsRisk</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,RealRandVariable,ContNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,RealRandVariable,ContNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,ANY-method</a></td>
+<td>Generic Function for Computation of Asymptotic Risks</td></tr>
 <tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,asymmetricBias-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,BiasType-method</a></td>
-<td>Generic Function for Computation of Asymptotic Risks</td></tr>
 <tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,onesidedBias-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asCov,RealRandVariable,ContNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asCov,RealRandVariable,ContNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asMSE,EuclRandVariable,Neighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asMSE,EuclRandVariable,Neighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asMSE,UnivariateDistribution,Neighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asMSE,UnivariateDistribution,Neighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
 <tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asSemivar,UnivariateDistribution,Neighborhood,onesidedBias-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
-<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,BiasType-method</a></td>
+<tr><td width="25%"><a href="getAsRisk.html">getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,ANY-method</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
 <tr><td width="25%"><a href="getAsRisk.html">getAsRisk-methods</a></td>
 <td>Generic Function for Computation of Asymptotic Risks</td></tr>
 <tr><td width="25%"><a href="getBiasIC.html">getBiasIC</a></td>
 <td>Generic function for the computation of the asymptotic bias for an IC</td></tr>
-<tr><td width="25%"><a href="getBiasIC.html">getBiasIC,IC,UncondNeighborhood-method</a></td>
+<tr><td width="25%"><a href="getBiasIC.html">getBiasIC,HampIC,UncondNeighborhood-method</a></td>
 <td>Generic function for the computation of the asymptotic bias for an IC</td></tr>
 <tr><td width="25%"><a href="getBiasIC.html">getBiasIC-methods</a></td>
 <td>Generic function for the computation of the asymptotic bias for an IC</td></tr>
@@ -173,6 +174,20 @@
 <td>Generic Function for the Computation of the Standardizing Matrix </td></tr>
 <tr><td width="25%"><a href="getInfStand.html">getInfStand-methods</a></td>
 <td>Generic Function for the Computation of the Standardizing Matrix </td></tr>
+<tr><td width="25%"><a href="getInfV.html">getInfV</a></td>
+<td>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</td></tr>
+<tr><td width="25%"><a href="getInfV.html">getInfV,RealRandVariable,ContNeighborhood,BiasType-method</a></td>
+<td>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</td></tr>
+<tr><td width="25%"><a href="getInfV.html">getInfV,UnivariateDistribution,ContNeighborhood,asymmetricBias-method</a></td>
+<td>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</td></tr>
+<tr><td width="25%"><a href="getInfV.html">getInfV,UnivariateDistribution,ContNeighborhood,BiasType-method</a></td>
+<td>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</td></tr>
+<tr><td width="25%"><a href="getInfV.html">getInfV,UnivariateDistribution,ContNeighborhood,onesidedBias-method</a></td>
+<td>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</td></tr>
+<tr><td width="25%"><a href="getInfV.html">getInfV,UnivariateDistribution,TotalVarNeighborhood,BiasType-method</a></td>
+<td>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</td></tr>
+<tr><td width="25%"><a href="getInfV.html">getInfV-methods</a></td>
+<td>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</td></tr>
 <tr><td width="25%"><a href="getL1normL2deriv.html">getL1normL2deriv</a></td>
 <td>Calculation of L1 norm of L2derivative</td></tr>
 <tr><td width="25%"><a href="getL1normL2deriv.html">getL1normL2deriv,RealRandVariable-method</a></td>
@@ -185,28 +200,10 @@
 <td>Calculation of L2 norm of L2derivative</td></tr>
 <tr><td width="25%"><a href="getRiskIC.html">getRiskIC</a></td>
 <td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method</a></td>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,HampIC,asCov,missing,L2ParamFamily-method</a></td>
 <td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asBias,UncondNeighborhood,missing-method</a></td>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,HampIC,asCov,missing,missing-method</a></td>
 <td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asCov,missing,L2ParamFamily-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asCov,missing,missing-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asMSE,UncondNeighborhood,missing-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,trAsCov,missing,L2ParamFamily-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,trAsCov,missing,missing-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
-<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method</a></td>
-<td>Generic function for the computation of a risk for an IC</td></tr>
 <tr><td width="25%"><a href="getRiskIC.html">getRiskIC-methods</a></td>
 <td>Generic function for the computation of a risk for an IC</td></tr>
 </table>
@@ -230,6 +227,8 @@
 <td>Computation of the lower case radius</td></tr>
 <tr><td width="25%"><a href="lowerCaseRadius.html">lowerCaseRadius,L2ParamFamily,TotalVarNeighborhood,asMSE,ANY-method</a></td>
 <td>Computation of the lower case radius</td></tr>
+<tr><td width="25%"><a href="lowerCaseRadius.html">lowerCaseRadius,UnivariateDistribution,ContNeighborhood,asMSE,onesidedBias-method</a></td>
+<td>Computation of the lower case radius</td></tr>
 <tr><td width="25%"><a href="lowerCaseRadius.html">lowerCaseRadius-methods</a></td>
 <td>Computation of the lower case radius</td></tr>
 </table>
@@ -245,6 +244,8 @@
 <td>Generic Function for the Computation of Bias-Optimally Robust ICs </td></tr>
 <tr><td width="25%"><a href="minmaxBias.html">minmaxBias,UnivariateDistribution,ContNeighborhood,BiasType-method</a></td>
 <td>Generic Function for the Computation of Bias-Optimally Robust ICs </td></tr>
+<tr><td width="25%"><a href="minmaxBias.html">minmaxBias,UnivariateDistribution,ContNeighborhood,onesidedBias-method</a></td>
+<td>Generic Function for the Computation of Bias-Optimally Robust ICs </td></tr>
 <tr><td width="25%"><a href="minmaxBias.html">minmaxBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method</a></td>
 <td>Generic Function for the Computation of Bias-Optimally Robust ICs </td></tr>
 <tr><td width="25%"><a href="minmaxBias.html">minmaxBias-methods</a></td>
@@ -286,4 +287,19 @@
 <tr><td width="25%"><a href="radiusMinimaxIC.html">radiusMinimaxIC-methods</a></td>
 <td>Generic function for the computation of the radius minimax IC</td></tr>
 </table>
+
+<h2><a name="U">-- U --</a></h2>
+
+<table width="100%">
+<tr><td width="25%"><a href="updateNorm-methods.html">updateNorm</a></td>
+<td>Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo; </td></tr>
+<tr><td width="25%"><a href="updateNorm-methods.html">updateNorm,InfoNorm-method</a></td>
+<td>Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo; </td></tr>
+<tr><td width="25%"><a href="updateNorm-methods.html">updateNorm,NormType-method</a></td>
+<td>Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo; </td></tr>
+<tr><td width="25%"><a href="updateNorm-methods.html">updateNorm,SelfNorm-method</a></td>
+<td>Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo; </td></tr>
+<tr><td width="25%"><a href="updateNorm-methods.html">updateNorm-methods</a></td>
+<td>Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo; </td></tr>
+</table>
 </body></html>

Modified: pkg/ROptEst/chm/ROptEst.chm
===================================================================
(Binary files differ)

Modified: pkg/ROptEst/chm/ROptEst.hhp
===================================================================
--- pkg/ROptEst/chm/ROptEst.hhp	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/ROptEst.hhp	2008-03-28 02:21:40 UTC (rev 80)
@@ -23,6 +23,7 @@
 getInfGamma.html
 getInfRobIC.html
 getInfStand.html
+getInfV.html
 getL1normL2deriv.html
 getL2normL2deriv.html
 getRiskIC.html
@@ -32,3 +33,4 @@
 optIC.html
 optRisk.html
 radiusMinimaxIC.html
+updateNorm-methods.html

Modified: pkg/ROptEst/chm/ROptEst.toc
===================================================================
--- pkg/ROptEst/chm/ROptEst.toc	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/ROptEst.toc	2008-03-28 02:21:40 UTC (rev 80)
@@ -14,15 +14,15 @@
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asBias,RealRandVariable,ContNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asBias,RealRandVariable,ContNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,asymmetricBias-method">
+<param name="Name" value="getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,asymmetricBias-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
@@ -30,27 +30,27 @@
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asCov,RealRandVariable,ContNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asCov,RealRandVariable,ContNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asMSE,EuclRandVariable,Neighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asMSE,EuclRandVariable,Neighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asMSE,UnivariateDistribution,Neighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asMSE,UnivariateDistribution,Neighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
@@ -58,15 +58,15 @@
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,BiasType-method">
+<param name="Name" value="getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,ANY-method">
 <param name="Local" value="getAsRisk.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
@@ -78,7 +78,7 @@
 <param name="Local" value="getBiasIC.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getBiasIC,IC,UncondNeighborhood-method">
+<param name="Name" value="getBiasIC,HampIC,UncondNeighborhood-method">
 <param name="Local" value="getBiasIC.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
@@ -306,74 +306,66 @@
 <param name="Local" value="getInfStand.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getL1normL2deriv">
-<param name="Local" value="getL1normL2deriv.html">
+<param name="Name" value="getInfV">
+<param name="Local" value="getInfV.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getL1normL2deriv,RealRandVariable-method">
-<param name="Local" value="getL1normL2deriv.html">
+<param name="Name" value="getInfV,RealRandVariable,ContNeighborhood,BiasType-method">
+<param name="Local" value="getInfV.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getL1normL2deriv,UnivariateDistribution-method">
-<param name="Local" value="getL1normL2deriv.html">
+<param name="Name" value="getInfV,UnivariateDistribution,ContNeighborhood,asymmetricBias-method">
+<param name="Local" value="getInfV.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getL1normL2deriv-methods">
-<param name="Local" value="getL1normL2deriv.html">
+<param name="Name" value="getInfV,UnivariateDistribution,ContNeighborhood,BiasType-method">
+<param name="Local" value="getInfV.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getL2normL2deriv">
-<param name="Local" value="getL2normL2deriv.html">
+<param name="Name" value="getInfV,UnivariateDistribution,ContNeighborhood,onesidedBias-method">
+<param name="Local" value="getInfV.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC">
-<param name="Local" value="getRiskIC.html">
+<param name="Name" value="getInfV,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
+<param name="Local" value="getInfV.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method">
-<param name="Local" value="getRiskIC.html">
+<param name="Name" value="getInfV-methods">
+<param name="Local" value="getInfV.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,asBias,UncondNeighborhood,missing-method">
-<param name="Local" value="getRiskIC.html">
+<param name="Name" value="getL1normL2deriv">
+<param name="Local" value="getL1normL2deriv.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,asCov,missing,L2ParamFamily-method">
-<param name="Local" value="getRiskIC.html">
+<param name="Name" value="getL1normL2deriv,RealRandVariable-method">
+<param name="Local" value="getL1normL2deriv.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,asCov,missing,missing-method">
-<param name="Local" value="getRiskIC.html">
+<param name="Name" value="getL1normL2deriv,UnivariateDistribution-method">
+<param name="Local" value="getL1normL2deriv.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method">
-<param name="Local" value="getRiskIC.html">
+<param name="Name" value="getL1normL2deriv-methods">
+<param name="Local" value="getL1normL2deriv.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,asMSE,UncondNeighborhood,missing-method">
-<param name="Local" value="getRiskIC.html">
+<param name="Name" value="getL2normL2deriv">
+<param name="Local" value="getL2normL2deriv.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method">
+<param name="Name" value="getRiskIC">
 <param name="Local" value="getRiskIC.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method">
+<param name="Name" value="getRiskIC,HampIC,asCov,missing,L2ParamFamily-method">
 <param name="Local" value="getRiskIC.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,trAsCov,missing,L2ParamFamily-method">
+<param name="Name" value="getRiskIC,HampIC,asCov,missing,missing-method">
 <param name="Local" value="getRiskIC.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,IC,trAsCov,missing,missing-method">
-<param name="Local" value="getRiskIC.html">
-</OBJECT>
-<LI> <OBJECT type="text/sitemap">
-<param name="Name" value="getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method">
-<param name="Local" value="getRiskIC.html">
-</OBJECT>
-<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="getRiskIC-methods">
 <param name="Local" value="getRiskIC.html">
 </OBJECT>
@@ -410,6 +402,10 @@
 <param name="Local" value="lowerCaseRadius.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="lowerCaseRadius,UnivariateDistribution,ContNeighborhood,asMSE,onesidedBias-method">
+<param name="Local" value="lowerCaseRadius.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="lowerCaseRadius-methods">
 <param name="Local" value="lowerCaseRadius.html">
 </OBJECT>
@@ -430,6 +426,10 @@
 <param name="Local" value="minmaxBias.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="minmaxBias,UnivariateDistribution,ContNeighborhood,onesidedBias-method">
+<param name="Local" value="minmaxBias.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="minmaxBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
 <param name="Local" value="minmaxBias.html">
 </OBJECT>
@@ -489,6 +489,26 @@
 <param name="Name" value="radiusMinimaxIC-methods">
 <param name="Local" value="radiusMinimaxIC.html">
 </OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="updateNorm">
+<param name="Local" value="updateNorm-methods.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="updateNorm,InfoNorm-method">
+<param name="Local" value="updateNorm-methods.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="updateNorm,NormType-method">
+<param name="Local" value="updateNorm-methods.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="updateNorm,SelfNorm-method">
+<param name="Local" value="updateNorm-methods.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="updateNorm-methods">
+<param name="Local" value="updateNorm-methods.html">
+</OBJECT>
 </UL>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Package ROptEst:  Titles">
@@ -543,6 +563,10 @@
 <param name="Local" value="getBiasIC.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="Generic Function for the Computation of the asymptotic Variance of a Hampel type IC">
+<param name="Local" value="getInfV.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Generic function for the computation of the minimal risk">
 <param name="Local" value="optRisk.html">
 </OBJECT>
@@ -562,6 +586,10 @@
 <param name="Name" value="Generic Function for the Computation of the Standardizing Matrix ">
 <param name="Local" value="getInfStand.html">
 </OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="Methods for Function updateNorm in Package `ROptEst' ">
+<param name="Local" value="updateNorm-methods.html">
+</OBJECT>
 </UL>
 </UL>
 </BODY></HTML>

Modified: pkg/ROptEst/chm/getAsRisk.html
===================================================================
--- pkg/ROptEst/chm/getAsRisk.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getAsRisk.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -7,19 +7,19 @@
 <table width="100%"><tr><td>getAsRisk(ROptEst)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
 <param name="keyword" value="R:   getAsRisk">
 <param name="keyword" value="R:   getAsRisk-methods">
-<param name="keyword" value="R:   getAsRisk,asMSE,UnivariateDistribution,Neighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,asMSE,EuclRandVariable,Neighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,BiasType-method">
+<param name="keyword" value="R:   getAsRisk,asMSE,UnivariateDistribution,Neighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,asMSE,EuclRandVariable,Neighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,ANY-method">
 <param name="keyword" value="R:   getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,onesidedBias-method">
 <param name="keyword" value="R:   getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,asymmetricBias-method">
-<param name="keyword" value="R:   getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,asBias,RealRandVariable,ContNeighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,asCov,RealRandVariable,ContNeighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,BiasType-method">
-<param name="keyword" value="R:   getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,BiasType-method">
+<param name="keyword" value="R:   getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,asBias,RealRandVariable,ContNeighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,asCov,RealRandVariable,ContNeighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,ANY-method">
+<param name="keyword" value="R:   getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,ANY-method">
 <param name="keyword" value="R:   getAsRisk,asSemivar,UnivariateDistribution,Neighborhood,onesidedBias-method">
 <param name="keyword" value=" Generic Function for Computation of Asymptotic Risks">
 </object>
@@ -43,15 +43,15 @@
 getAsRisk(risk, L2deriv, neighbor, biastype, ...)
 
 ## S4 method for signature 'asMSE, UnivariateDistribution,
-##   Neighborhood, BiasType':
+##   Neighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo)
 
 ## S4 method for signature 'asMSE, EuclRandVariable,
-##   Neighborhood, BiasType':
-getAsRisk(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo)
+##   Neighborhood, ANY':
+getAsRisk(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo, norm = EuclideanNorm)
 
 ## S4 method for signature 'asBias, UnivariateDistribution,
-##   ContNeighborhood, BiasType':
+##   ContNeighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, trafo)
 
 ## S4 method for signature 'asBias, UnivariateDistribution,
@@ -63,36 +63,36 @@
 getAsRisk(risk, L2deriv, neighbor, biastype, trafo)
 
 ## S4 method for signature 'asBias, UnivariateDistribution,
-##   TotalVarNeighborhood, BiasType':
+##   TotalVarNeighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, trafo)
 
 ## S4 method for signature 'asBias, RealRandVariable,
-##   ContNeighborhood, BiasType':
+##   ContNeighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, Distr, L2derivDistrSymm, trafo, 
-             z.start, A.start, maxiter, tol)
+             z.start, A.start, maxiter, tol, norm = EuclideanNorm)
 
 ## S4 method for signature 'asCov, UnivariateDistribution,
-##   ContNeighborhood, BiasType':
+##   ContNeighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, clip, cent, stand)
 
 ## S4 method for signature 'asCov, UnivariateDistribution,
-##   TotalVarNeighborhood, BiasType':
+##   TotalVarNeighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, clip, cent, stand)
 
 ## S4 method for signature 'asCov, RealRandVariable,
-##   ContNeighborhood, BiasType':
-getAsRisk(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand)
+##   ContNeighborhood, ANY':
+getAsRisk(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand, norm = EuclideanNorm)
 
 ## S4 method for signature 'trAsCov,
-##   UnivariateDistribution, UncondNeighborhood, BiasType':
+##   UnivariateDistribution, UncondNeighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, clip, cent, stand)
 
 ## S4 method for signature 'trAsCov, RealRandVariable,
-##   ContNeighborhood, BiasType':
-getAsRisk(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand)
+##   ContNeighborhood, ANY':
+getAsRisk(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand, norm = EuclideanNorm)
 
 ## S4 method for signature 'asUnOvShoot,
-##   UnivariateDistribution, UncondNeighborhood, BiasType':
+##   UnivariateDistribution, UncondNeighborhood, ANY':
 getAsRisk(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo)
 
 ## S4 method for signature 'asSemivar,
@@ -117,7 +117,7 @@
 object of class <code>"Neighborhood"</code>. </td></tr>
 <tr valign="top"><td><code>biastype</code></td>
 <td>
-object of class <code>"BiasType"</code>. </td></tr>
+object of class <code>"ANY"</code>. </td></tr>
 <tr valign="top"><td><code>...</code></td>
 <td>
 additional parameters. </td></tr>
@@ -151,6 +151,9 @@
 <tr valign="top"><td><code>tol</code></td>
 <td>
 the desired accuracy (convergence tolerance).</td></tr>
+<tr valign="top"><td><code>norm</code></td>
+<td>
+function; norm for the parameter space</td></tr>
 </table>
 
 <h3>Value</h3>
@@ -161,15 +164,15 @@
 <h3>Methods</h3>
 
 <dl>
-<dt>risk = "asMSE", L2deriv = "UnivariateDistribution", neighbor = "Neighborhood", biastype = "BiasType":</dt><dd>computes asymptotic mean square error in methods for
+<dt>risk = "asMSE", L2deriv = "UnivariateDistribution", neighbor = "Neighborhood", biastype = "ANY":</dt><dd>computes asymptotic mean square error in methods for
 function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asMSE", L2deriv = "EuclRandVariable", neighbor = "Neighborhood", biastype = "BiasType":</dt><dd>computes asymptotic mean square error in methods for
+<dt>risk = "asMSE", L2deriv = "EuclRandVariable", neighbor = "Neighborhood", biastype = "ANY":</dt><dd>computes asymptotic mean square error in methods for
 function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "BiasType":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
+<dt>risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "ANY":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
 
 
 <dt>risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "onesidedBias":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
@@ -178,30 +181,30 @@
 <dt>risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "asymmetricBias":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "BiasType":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
+<dt>risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "ANY":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asBias", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "BiasType":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
+<dt>risk = "asBias", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "ANY":</dt><dd>computes standardized asymptotic bias in methods for function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "BiasType":</dt><dd>computes asymptotic covariance in methods for function <code>getInfRobIC</code>. </dd>
+<dt>risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "ANY":</dt><dd>computes asymptotic covariance in methods for function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "BiasType":</dt><dd>computes asymptotic covariance in methods for function <code>getInfRobIC</code>. </dd>
+<dt>risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "ANY":</dt><dd>computes asymptotic covariance in methods for function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "BiasType":</dt><dd>computes asymptotic covariance in methods for function <code>getInfRobIC</code>. </dd>
+<dt>risk = "asCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "ANY":</dt><dd>computes asymptotic covariance in methods for function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "trAsCov", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "BiasType":</dt><dd>computes trace of asymptotic covariance in methods 
+<dt>risk = "trAsCov", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "ANY":</dt><dd>computes trace of asymptotic covariance in methods 
 for function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "trAsCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "BiasType":</dt><dd>computes trace of asymptotic covariance in methods for 
+<dt>risk = "trAsCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "ANY":</dt><dd>computes trace of asymptotic covariance in methods for 
 function <code>getInfRobIC</code>. </dd>
 
 
-<dt>risk = "asUnOvShoot", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "BiasType":</dt><dd>computes asymptotic under-/overshoot risk in methods for 
+<dt>risk = "asUnOvShoot", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "ANY":</dt><dd>computes asymptotic under-/overshoot risk in methods for 
 function <code>getInfRobIC</code>. </dd>
 
 

Modified: pkg/ROptEst/chm/getBiasIC.html
===================================================================
--- pkg/ROptEst/chm/getBiasIC.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getBiasIC.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -7,7 +7,7 @@
 <table width="100%"><tr><td>getBiasIC(ROptEst)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
 <param name="keyword" value="R:   getBiasIC">
 <param name="keyword" value="R:   getBiasIC-methods">
-<param name="keyword" value="R:   getBiasIC,IC,UncondNeighborhood-method">
+<param name="keyword" value="R:   getBiasIC,HampIC,UncondNeighborhood-method">
 <param name="keyword" value=" Generic function for the computation of the asymptotic bias for an IC">
 </object>
 
@@ -27,11 +27,8 @@
 <pre>
 getBiasIC(IC, neighbor, ...)
 
-## S4 method for signature 'IC, UncondNeighborhood':
-getBiasIC(IC, neighbor, L2Fam, 
-                     biastype = symmetricBias(), 
-                     tol = .Machine$double.eps^0.25)
-
+## S4 method for signature 'HampIC, UncondNeighborhood':
+getBiasIC(IC, neighbor, L2Fam)
 </pre>
 
 
@@ -44,42 +41,28 @@
 <tr valign="top"><td><code>neighbor</code></td>
 <td>
 object of class <code>"Neighborhood"</code>. </td></tr>
-<tr valign="top"><td><code>...</code></td>
-<td>
-additional parameters </td></tr>
 <tr valign="top"><td><code>L2Fam</code></td>
 <td>
-object of class <code>"L2ParamFamily"</code> or missing. </td></tr>
-<tr valign="top"><td><code>biastype</code></td>
+object of class <code>"L2ParamFamily"</code>. </td></tr>
+<tr valign="top"><td><code>...</code></td>
 <td>
-object of class <code>"BiasType"</code>. </td></tr>
-<tr valign="top"><td><code>tol</code></td>
-<td>
-the desired accuracy (convergence tolerance).</td></tr>
+additional parameters </td></tr>
 </table>
 
 <h3>Details</h3>
 
-<p>
-To make sure that the results are valid, it is recommended
-to include an additional check of the IC properties of <code>IC</code> 
-using <code>checkIC</code>.
-</p>
 
 
+
 <h3>Value</h3>
 
 <p>
-The asymptotic bias of an IC is computed.</p>
+The bias of the IC is computed.</p>
 
 <h3>Methods</h3>
 
 <dl>
-</p>
-
-<dt>IC = "IC", neighbor = "UncondNeighborhood":</dt><dd>asymptotic bias of <code>IC</code> in case of unconditional neighborhoods. </dd>
-
-<p>
+<dt>IC = "HampIC", neighbor = "UncondNeighborhood"</dt><dd>reads off the as. bias from the risks-slot of the IC. </dd>
 </dl>
 
 <h3>Note</h3>
@@ -92,7 +75,6 @@
 <h3>Author(s)</h3>
 
 <p>
-Matthias Kohl <a href="mailto:Matthias.Kohl at stamats.de">Matthias.Kohl at stamats.de</a>,
 Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
 </p>
 
@@ -100,15 +82,22 @@
 <h3>References</h3>
 
 <p>
+Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor.
+Verw. Geb. <B>10</B>:269&ndash;278.
+</p>
+<p>
+Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. <B>8</B>: 106&ndash;115.
+</p>
+<p>
 Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
 </p>
 <p>
-Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>. 
+Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>.
 Bayreuth: Dissertation.
 </p>
 <p>
-Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves.
-Mathematical Methods in Statistics <EM>14</EM>(1), 105-131.
+Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Bias
+of M-estimators on Neighborhoods.
 </p>
 
 

Modified: pkg/ROptEst/chm/getInfCent.html
===================================================================
--- pkg/ROptEst/chm/getInfCent.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getInfCent.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -38,27 +38,27 @@
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, BiasType':
 getInfCent(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   TotalVarNeighborhood, BiasType':
 getInfCent(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 
 ## S4 method for signature 'RealRandVariable,
 ##   ContNeighborhood, BiasType':
 getInfCent(L2deriv, 
-     neighbor, biastype = symmetricBias(), z.comp, stand, cent, clip)
+     neighbor, biastype, z.comp, stand, cent, clip, w)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, onesidedBias':
 getInfCent(L2deriv, 
-     neighbor, biastype = positiveBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, asymmetricBias':
 getInfCent(L2deriv, 
-     neighbor, biastype = asymmetricBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 </pre>
 
 
@@ -100,6 +100,9 @@
 <td>
 logical vector: indication which components of the 
 centering constant have to be computed. </td></tr>
+<tr valign="top"><td><code>w</code></td>
+<td>
+object of class <code>RobWeight</code>; current weight</td></tr>
 </table>
 
 <h3>Value</h3>

Modified: pkg/ROptEst/chm/getInfClip.html
===================================================================
--- pkg/ROptEst/chm/getInfClip.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getInfClip.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -52,7 +52,7 @@
 
 ## S4 method for signature 'numeric,
 ##   UnivariateDistribution, asSemivar, ContNeighborhood':
-getInfClip(clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)
+getInfClip(clip, L2deriv, risk, neighbor, cent, symm, trafo)
 </pre>
 
 

Modified: pkg/ROptEst/chm/getInfGamma.html
===================================================================
--- pkg/ROptEst/chm/getInfGamma.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getInfGamma.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -37,32 +37,32 @@
 ## S4 method for signature 'UnivariateDistribution, asMSE,
 ##   ContNeighborhood, BiasType':
 getInfGamma(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   asGRisk, TotalVarNeighborhood, BiasType':
 getInfGamma(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 ## S4 method for signature 'RealRandVariable, asMSE,
 ##   ContNeighborhood, BiasType':
 getInfGamma(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), Distr, stand, cent, clip)
+     risk, neighbor, biastype, Distr, stand, cent, clip)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   asUnOvShoot, ContNeighborhood, BiasType':
 getInfGamma(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 ## S4 method for signature 'UnivariateDistribution, asMSE,
 ##   ContNeighborhood, onesidedBias':
 getInfGamma(L2deriv, 
-     risk, neighbor, biastype = positiveBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 ## S4 method for signature 'UnivariateDistribution, asMSE,
 ##   ContNeighborhood, asymmetricBias':
 getInfGamma(L2deriv, 
-    risk, neighbor, biastype  = asymmetricBias(), cent, clip)
+    risk, neighbor, biastype, cent, clip)
 </pre>
 
 

Modified: pkg/ROptEst/chm/getInfRobIC.html
===================================================================
--- pkg/ROptEst/chm/getInfRobIC.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getInfRobIC.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -52,13 +52,13 @@
 
 ## S4 method for signature 'UnivariateDistribution, asBias,
 ##   UncondNeighborhood':
-getInfRobIC(L2deriv, risk, neighbor, symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+getInfRobIC(L2deriv, risk, neighbor, symm, trafo, 
+             maxiter, tol)
 
 ## S4 method for signature 'RealRandVariable, asBias,
 ##   ContNeighborhood':
-getInfRobIC(L2deriv, risk, neighbor, Distr, DistrSymm, L2derivSymm, 
-             L2derivDistrSymm, Finfo, z.start, A.start, trafo, upper, maxiter, tol, warn)
+getInfRobIC(L2deriv, risk, neighbor, Distr,  
+             L2derivDistrSymm, z.start, A.start, trafo, maxiter, tol)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   asHampel, UncondNeighborhood':

Modified: pkg/ROptEst/chm/getInfStand.html
===================================================================
--- pkg/ROptEst/chm/getInfStand.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getInfStand.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -36,27 +36,27 @@
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, BiasType':
 getInfStand(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   TotalVarNeighborhood, BiasType':
 getInfStand(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 
 ## S4 method for signature 'RealRandVariable,
 ##   ContNeighborhood, BiasType':
 getInfStand(L2deriv, 
-     neighbor, biastype = symmetricBias(), Distr, A.comp, stand, clip, cent, trafo)
+     neighbor, biastype, Distr, A.comp, stand, clip, cent, trafo, w)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, BiasType':
 getInfStand(L2deriv, 
-     neighbor, biastype = positiveBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, BiasType':
 getInfStand(L2deriv, 
-     neighbor, biastype = asymmetricBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 </pre>
 
 
@@ -95,6 +95,9 @@
 <td>
 matrix: indication which components of the standardizing
 matrix have to be computed. </td></tr>
+<tr valign="top"><td><code>w</code></td>
+<td>
+object of class <code>RobWeight</code>; current weight</td></tr>
 </table>
 
 <h3>Value</h3>

Added: pkg/ROptEst/chm/getInfV.html
===================================================================
--- pkg/ROptEst/chm/getInfV.html	                        (rev 0)
+++ pkg/ROptEst/chm/getInfV.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,145 @@
+<html><head><title>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<link rel="stylesheet" type="text/css" href="Rchm.css">
+</head>
+<body>
+
+<table width="100%"><tr><td>getInfV(ROptEst)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
+<param name="keyword" value="R:   getInfV">
+<param name="keyword" value="R:   getInfV-methods">
+<param name="keyword" value="R:   getInfV,UnivariateDistribution,ContNeighborhood,BiasType-method">
+<param name="keyword" value="R:   getInfV,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
+<param name="keyword" value="R:   getInfV,RealRandVariable,ContNeighborhood,BiasType-method">
+<param name="keyword" value="R:   getInfV,UnivariateDistribution,ContNeighborhood,onesidedBias-method">
+<param name="keyword" value="R:   getInfV,UnivariateDistribution,ContNeighborhood,asymmetricBias-method">
+<param name="keyword" value=" Generic Function for the Computation of the asymptotic Variance of a Hampel type IC">
+</object>
+
+
+<h2>Generic Function for the Computation of the asymptotic Variance of a Hampel type IC</h2>
+
+
+<h3>Description</h3>
+
+<p>
+Generic function for the computation of the optimal clipping bound
+in case of infinitesimal robust models. This function is rarely called 
+directly. It is used to compute optimally robust ICs.
+</p>
+
+
+<h3>Usage</h3>
+
+<pre>
+getInfV(L2deriv, neighbor, biastype, ...)
+## S4 method for signature 'UnivariateDistribution,
+##   ContNeighborhood, BiasType':
+getInfV(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
+## S4 method for signature 'UnivariateDistribution,
+##   TotalVarNeighborhood, BiasType':
+getInfV(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
+## S4 method for signature 'RealRandVariable,
+##   ContNeighborhood, BiasType':
+getInfV(L2deriv, 
+         neighbor, biastype, Distr, V.comp, cent, stand, 
+         w)
+## S4 method for signature 'UnivariateDistribution,
+##   ContNeighborhood, onesidedBias':
+getInfV(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
+## S4 method for signature 'UnivariateDistribution,
+##   ContNeighborhood, asymmetricBias':
+getInfV(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
+</pre>
+
+
+<h3>Arguments</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>L2deriv</code></td>
+<td>
+L2-derivative of some L2-differentiable family 
+of probability measures. </td></tr>
+<tr valign="top"><td><code>neighbor</code></td>
+<td>
+object of class <code>"Neighborhood"</code>. </td></tr>
+<tr valign="top"><td><code>biastype</code></td>
+<td>
+object of class <code>"BiasType"</code> </td></tr>
+<tr valign="top"><td><code>...</code></td>
+<td>
+additional parameters. </td></tr>
+<tr valign="top"><td><code>clip</code></td>
+<td>
+positive real: clipping bound </td></tr>
+<tr valign="top"><td><code>cent</code></td>
+<td>
+optimal centering constant. </td></tr>
+<tr valign="top"><td><code>stand</code></td>
+<td>
+standardizing matrix. </td></tr>
+<tr valign="top"><td><code>Distr</code></td>
+<td>
+standardizing matrix. </td></tr>
+<tr valign="top"><td><code>V.comp</code></td>
+<td>
+matrix: indication which components of the standardizing
+matrix have to be computed. </td></tr>
+<tr valign="top"><td><code>w</code></td>
+<td>
+object of class <code>RobWeight</code>; current weight</td></tr>
+</table>
+
+<h3>Value</h3>
+
+<p>
+The asymptotic variance of an ALE to IC of Hampel type is computed.</p>
+
+<h3>Author(s)</h3>
+
+<p>
+Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
+</p>
+
+
+<h3>References</h3>
+
+<p>
+Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. <B>8</B>: 106&ndash;115.
+</p>
+<p>
+Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
+</p>
+<p>
+Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves.
+Mathematical Methods in Statistics <EM>14</EM>(1), 105-131.
+</p>
+<p>
+Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>. 
+Bayreuth: Dissertation.
+</p>
+
+
+<h3>See Also</h3>
+
+<p>
+<code><a onclick="findlink('RobAStBase', 'ContIC-class.html')" style="text-decoration: underline; color: blue; cursor: hand">ContIC-class</a></code>, <code><a onclick="findlink('RobAStBase', 'TotalVarIC-class.html')" style="text-decoration: underline; color: blue; cursor: hand">TotalVarIC-class</a></code>
+</p>
+
+<script Language="JScript">
+function findlink(pkg, fn) {
+var Y, link;
+Y = location.href.lastIndexOf("\\") + 1;
+link = location.href.substring(0, Y);
+link = link + "../../" + pkg + "/chtml/" + pkg + ".chm::/" + fn;
+location.href = link;
+}
+</script>
+
+
+<hr><div align="center">[Package <em>ROptEst</em> version 0.6.0 <a href="00Index.html">Index]</a></div>
+
+</body></html>

Modified: pkg/ROptEst/chm/getL1normL2deriv.html
===================================================================
--- pkg/ROptEst/chm/getL1normL2deriv.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getL1normL2deriv.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -32,7 +32,7 @@
 
 ## S4 method for signature 'UnivariateDistribution':
 getL1normL2deriv(L2deriv, 
-     cent, stand, Distr, ...)
+     cent, stand, Distr, normtype, ...)
 
 </pre>
 
@@ -52,6 +52,9 @@
 <tr valign="top"><td><code>Distr</code></td>
 <td>
 distribution of the L2derivative</td></tr>
+<tr valign="top"><td><code>normtype</code></td>
+<td>
+object of class <code>NormType</code>; the norm under which we work</td></tr>
 <tr valign="top"><td><code>...</code></td>
 <td>
 further arguments (not used at the moment)</td></tr>

Modified: pkg/ROptEst/chm/getRiskIC.html
===================================================================
--- pkg/ROptEst/chm/getRiskIC.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/getRiskIC.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -7,17 +7,8 @@
 <table width="100%"><tr><td>getRiskIC(ROptEst)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
 <param name="keyword" value="R:   getRiskIC">
 <param name="keyword" value="R:   getRiskIC-methods">
-<param name="keyword" value="R:   getRiskIC,IC,asCov,missing,missing-method">
-<param name="keyword" value="R:   getRiskIC,IC,asCov,missing,L2ParamFamily-method">
-<param name="keyword" value="R:   getRiskIC,IC,trAsCov,missing,missing-method">
-<param name="keyword" value="R:   getRiskIC,IC,trAsCov,missing,L2ParamFamily-method">
-<param name="keyword" value="R:   getRiskIC,IC,asBias,UncondNeighborhood,missing-method">
-<param name="keyword" value="R:   getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method">
-<param name="keyword" value="R:   getRiskIC,IC,asMSE,UncondNeighborhood,missing-method">
-<param name="keyword" value="R:   getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method">
-<param name="keyword" value="R:   getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method">
-<param name="keyword" value="R:   getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method">
-<param name="keyword" value="R:   getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method">
+<param name="keyword" value="R:   getRiskIC,HampIC,asCov,missing,missing-method">
+<param name="keyword" value="R:   getRiskIC,HampIC,asCov,missing,L2ParamFamily-method">
 <param name="keyword" value=" Generic function for the computation of a risk for an IC">
 </object>
 
@@ -37,47 +28,14 @@
 <pre>
 getRiskIC(IC, risk, neighbor, L2Fam, ...)
 
-## S4 method for signature 'IC, asCov, missing, missing':
-getRiskIC(IC, risk, tol = .Machine$double.eps^0.25)
-
-## S4 method for signature 'IC, asCov, missing,
-##   L2ParamFamily':
-getRiskIC(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
-
-## S4 method for signature 'IC, trAsCov, missing, missing':
-getRiskIC(IC, risk, tol = .Machine$double.eps^0.25)
-
-## S4 method for signature 'IC, trAsCov, missing,
-##   L2ParamFamily':
-getRiskIC(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
-
-## S4 method for signature 'IC, asBias, UncondNeighborhood,
+## S4 method for signature 'HampIC, asCov, missing,
 ##   missing':
-getRiskIC(IC, risk, neighbor, tol = .Machine$double.eps^0.25)
+getRiskIC(IC, risk)
 
-## S4 method for signature 'IC, asBias, UncondNeighborhood,
+## S4 method for signature 'HampIC, asCov, missing,
 ##   L2ParamFamily':
-getRiskIC(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
+getRiskIC(IC, risk, L2Fam)
 
-## S4 method for signature 'IC, asMSE, UncondNeighborhood,
-##   missing':
-getRiskIC(IC, risk, neighbor,  tol = .Machine$double.eps^0.25)
-
-## S4 method for signature 'IC, asMSE, UncondNeighborhood,
-##   L2ParamFamily':
-getRiskIC(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
-
-## S4 method for signature 'TotalVarIC, asUnOvShoot,
-##   UncondNeighborhood, missing':
-getRiskIC(IC, risk, neighbor)
-
-## S4 method for signature 'IC, fiUnOvShoot,
-##   ContNeighborhood, missing':
-getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
-
-## S4 method for signature 'IC, fiUnOvShoot,
-##   TotalVarNeighborhood, missing':
-getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
 </pre>
 
 
@@ -92,32 +50,20 @@
 object of class <code>"RiskType"</code>. </td></tr>
 <tr valign="top"><td><code>neighbor</code></td>
 <td>
-object of class <code>"Neighborhood"</code>. </td></tr>
-<tr valign="top"><td><code>L2Fam</code></td>
-<td>
-object of class <code>"L2ParamFamily"</code>. </td></tr>
+object of class <code>"Neighborhood"</code>; missing in the methods described here. </td></tr>
 <tr valign="top"><td><code>...</code></td>
 <td>
 additional parameters </td></tr>
-<tr valign="top"><td><code>tol</code></td>
+<tr valign="top"><td><code>L2Fam</code></td>
 <td>
-the desired accuracy (convergence tolerance).</td></tr>
-<tr valign="top"><td><code>sampleSize</code></td>
-<td>
-integer: sample size. </td></tr>
-<tr valign="top"><td><code>Algo</code></td>
-<td>
-"A" or "B". </td></tr>
-<tr valign="top"><td><code>cont</code></td>
-<td>
-"left" or "right". </td></tr>
+object of class <code>"L2ParamFamily"</code>. </td></tr>
 </table>
 
 <h3>Details</h3>
 
 <p>
 To make sure that the results are valid, it is recommended
-to include an additional check of the IC properties of <code>IC</code> 
+to include an additional check of the IC properties of <code>IC</code>
 using <code>checkIC</code>.
 </p>
 
@@ -130,44 +76,10 @@
 <h3>Methods</h3>
 
 <dl>
-<dt>IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "missing"</dt><dd>asymptotic covariance of <code>IC</code>. </dd>
+<dt>IC = "HampIC", risk = "asCov", neighbor = "missing", L2Fam = "missing"</dt><dd>asymptotic covariance of <code>IC</code> read off from corresp. <code>Risks</code> slot. </dd>
 
 
-<dt>IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"</dt><dd>asymptotic covariance of <code>IC</code> under <code>L2Fam</code>. </dd>
-
-
-<dt>IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "missing"</dt><dd>asymptotic covariance of <code>IC</code>. </dd>
-
-
-<dt>IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "L2ParamFamily"</dt><dd>asymptotic covariance of <code>IC</code> under <code>L2Fam</code>. </dd>
-
-
-<dt>IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "missing"</dt><dd>asymptotic bias of <code>IC</code> under convex contaminations. </dd>
-
-
-<dt>IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily"</dt><dd>asymptotic bias of <code>IC</code> under convex contaminations and <code>L2Fam</code>. </dd>
-
-
-<dt>IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "missing"</dt><dd>asymptotic bias of <code>IC</code> in case of total variation neighborhoods. </dd>
-
-
-<dt>IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily"</dt><dd>asymptotic bias of <code>IC</code> under <code>L2Fam</code> in case of total variation 
-neighborhoods. </dd>
-
-
-<dt>IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "missing"</dt><dd>asymptotic mean square error of <code>IC</code>. </dd>
-
-
-<dt>IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "L2ParamFamily"</dt><dd>asymptotic mean square error of <code>IC</code> under <code>L2Fam</code>. </dd>
-
-
-<dt>IC = "TotalVarIC", risk = "asUnOvShoot", neighbor = "UncondNeighborhood", L2Fam = "missing"</dt><dd>asymptotic under-/overshoot risk of <code>IC</code>. </dd>
-
-
-<dt>IC = "IC", risk = "fiUnOvShoot", neighbor = "ContNeighborhood", L2Fam = "missing"</dt><dd>finite-sample under-/overshoot risk of <code>IC</code>. </dd>
-
-
-<dt>IC = "IC", risk = "fiUnOvShoot", neighbor = "TotalVarNeighborhood", L2Fam = "missing"</dt><dd>finite-sample under-/overshoot risk of <code>IC</code>. </dd>
+<dt>IC = "HampIC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"</dt><dd>asymptotic covariance of <code>IC</code> under <code>L2Fam</code> read off from corresp. <code>Risks</code> slot. </dd>
 </dl>
 
 <h3>Note</h3>
@@ -180,7 +92,7 @@
 <h3>Author(s)</h3>
 
 <p>
-Matthias Kohl <a href="mailto:Matthias.Kohl at stamats.de">Matthias.Kohl at stamats.de</a>
+Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
 </p>
 
 
@@ -197,11 +109,11 @@
 Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
 </p>
 <p>
-Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>. 
+Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>.
 Bayreuth: Dissertation.
 </p>
 <p>
-Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk 
+Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk
 of M-estimators on Neighborhoods.
 </p>
 
@@ -209,7 +121,7 @@
 <h3>See Also</h3>
 
 <p>
-<code><a href="getRiskIC.html">getRiskIC-methods</a></code>, <code><a onclick="findlink('RobAStBase', 'InfRobModel-class.html')" style="text-decoration: underline; color: blue; cursor: hand">InfRobModel-class</a></code>
+<code><a href="getRiskIC-methods.html">getRiskIC-methods</a></code>, <code><a onclick="findlink('RobAStBase', 'InfRobModel-class.html')" style="text-decoration: underline; color: blue; cursor: hand">InfRobModel-class</a></code>
 </p>
 
 <script Language="JScript">

Modified: pkg/ROptEst/chm/lowerCaseRadius.html
===================================================================
--- pkg/ROptEst/chm/lowerCaseRadius.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/lowerCaseRadius.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -10,6 +10,7 @@
 <param name="keyword" value="R:   lowerCaseRadius,L2ParamFamily,ContNeighborhood,asMSE,ANY-method">
 <param name="keyword" value="R:   lowerCaseRadius,L2ParamFamily,TotalVarNeighborhood,asMSE,ANY-method">
 <param name="keyword" value="R:   lowerCaseRadius,L2ParamFamily,ContNeighborhood,asMSE,onesidedBias-method">
+<param name="keyword" value="R:   lowerCaseRadius,UnivariateDistribution,ContNeighborhood,asMSE,onesidedBias-method">
 <param name="keyword" value="R:   lowerCaseRadius,L2ParamFamily,ContNeighborhood,asMSE,asymmetricBias-method">
 <param name="keyword" value=" Computation of the lower case radius">
 </object>
@@ -79,6 +80,11 @@
 <dt>L2Fam = "L2ParamFamily", neighbor = "ContNeighborhood", risk = "asMSE",
 biastype = "asymmetricBias"</dt><dd>lower case radius for risk <code>"asMSE"</code> in case of <code>"ContNeighborhood"</code>
 for asymmetric bias.</dd>
+
+
+<dt>L2Fam = "UnivariateDistribution", neighbor = "ContNeighborhood", risk = "asMSE",
+biastype = "onesidedBias"</dt><dd>used only internally; 
+trick to be able to call lower case radius from within minmax bias solver</dd>
 </dl>
 
 <h3>Author(s)</h3>

Modified: pkg/ROptEst/chm/minmaxBias.html
===================================================================
--- pkg/ROptEst/chm/minmaxBias.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/chm/minmaxBias.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -8,6 +8,7 @@
 <param name="keyword" value="R:   minmaxBias">
 <param name="keyword" value="R:   minmaxBias-methods">
 <param name="keyword" value="R:   minmaxBias,UnivariateDistribution,ContNeighborhood,BiasType-method">
+<param name="keyword" value="R:   minmaxBias,UnivariateDistribution,ContNeighborhood,onesidedBias-method">
 <param name="keyword" value="R:   minmaxBias,UnivariateDistribution,ContNeighborhood,asymmetricBias-method">
 <param name="keyword" value="R:   minmaxBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method">
 <param name="keyword" value="R:   minmaxBias,RealRandVariable,ContNeighborhood,BiasType-method">
@@ -34,23 +35,28 @@
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, BiasType':
-minmaxBias(L2deriv, neighbor, biastype = symmetricBias(), symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+minmaxBias(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
 
 ## S4 method for signature 'UnivariateDistribution,
 ##   ContNeighborhood, asymmetricBias':
-minmaxBias(L2deriv, neighbor, biastype = asymmetricBias(), symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+minmaxBias(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
 
 ## S4 method for signature 'UnivariateDistribution,
+##   ContNeighborhood, onesidedBias':
+minmaxBias(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
+
+## S4 method for signature 'UnivariateDistribution,
 ##   TotalVarNeighborhood, BiasType':
-minmaxBias(L2deriv, neighbor, biastype = symmetricBias(), symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+minmaxBias(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
 
 ## S4 method for signature 'RealRandVariable,
 ##   ContNeighborhood, BiasType':
-minmaxBias(L2deriv, neighbor, biastype = symmetricBias(), Distr, DistrSymm, L2derivSymm, 
-             L2derivDistrSymm, Finfo, z.start, A.start, trafo, upper, maxiter, tol, warn)
+minmaxBias(L2deriv, neighbor, biastype, Distr, 
+             L2derivDistrSymm, z.start, A.start, trafo, maxiter, tol)
 
 </pre>
 
@@ -77,18 +83,9 @@
 <tr valign="top"><td><code>symm</code></td>
 <td>
 logical: indicating symmetry of <code>L2deriv</code>. </td></tr>
-<tr valign="top"><td><code>DistrSymm</code></td>
-<td>
-object of class <code>"DistributionSymmetry"</code>. </td></tr>
-<tr valign="top"><td><code>L2derivSymm</code></td>
-<td>
-object of class <code>"FunSymmList"</code>. </td></tr>
 <tr valign="top"><td><code>L2derivDistrSymm</code></td>
 <td>
 object of class <code>"DistrSymmList"</code>. </td></tr>
-<tr valign="top"><td><code>Finfo</code></td>
-<td>
-Fisher information matrix. </td></tr>
 <tr valign="top"><td><code>z.start</code></td>
 <td>
 initial value for the centering constant. </td></tr>
@@ -98,18 +95,12 @@
 <tr valign="top"><td><code>trafo</code></td>
 <td>
 matrix: transformation of the parameter. </td></tr>
-<tr valign="top"><td><code>upper</code></td>
-<td>
-upper bound for the optimal clipping bound. </td></tr>
 <tr valign="top"><td><code>maxiter</code></td>
 <td>
 the maximum number of iterations. </td></tr>
 <tr valign="top"><td><code>tol</code></td>
 <td>
 the desired accuracy (convergence tolerance).</td></tr>
-<tr valign="top"><td><code>warn</code></td>
-<td>
-logical: print warnings. </td></tr>
 </table>
 
 <h3>Value</h3>

Added: pkg/ROptEst/chm/updateNorm-methods.html
===================================================================
--- pkg/ROptEst/chm/updateNorm-methods.html	                        (rev 0)
+++ pkg/ROptEst/chm/updateNorm-methods.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,136 @@
+<html><head><title>Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo;</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<link rel="stylesheet" type="text/css" href="Rchm.css">
+</head>
+<body>
+
+<table width="100%"><tr><td>updateNorm-methods(ROptEst)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
+<param name="keyword" value="R:   updateNorm-methods">
+<param name="keyword" value="R:   updateNorm">
+<param name="keyword" value="R:   updateNorm,NormType-method">
+<param name="keyword" value="R:   updateNorm,InfoNorm-method">
+<param name="keyword" value="R:   updateNorm,SelfNorm-method">
+<param name="keyword" value=" Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo;">
+</object>
+
+
+<h2>Methods for Function updateNorm in Package &lsquo;ROptEst&rsquo;</h2>
+
+
+<h3>Description</h3>
+
+<p>
+updateNorm-methods to update norm in IC-Algo
+</p>
+
+
+<h3>Usage</h3>
+
+<pre>updateNorm(normtype, ...)
+## S4 method for signature 'NormType':
+updateNorm(normtype, ...)
+## S4 method for signature 'InfoNorm':
+updateNorm(normtype, FI, ...)
+## S4 method for signature 'SelfNorm':
+updateNorm(normtype, L2, neighbor, biastype, Distr, V.comp, 
+                                cent, stand,  w, ...)     
+</pre>
+
+
+<h3>Arguments</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>normtype</code></td>
+<td>
+normtype of class <code>NormType</code></td></tr>
+<tr valign="top"><td><code>...</code></td>
+<td>
+further arguments to be passed to specific methods.</td></tr>
+<tr valign="top"><td><code>FI</code></td>
+<td>
+matrix: Fisher Information</td></tr>
+<tr valign="top"><td><code>L2</code></td>
+<td>
+L2derivative</td></tr>
+<tr valign="top"><td><code>neighbor</code></td>
+<td>
+object of class <code>"Neighborhood"</code>. </td></tr>
+<tr valign="top"><td><code>biastype</code></td>
+<td>
+object of class <code>"BiasType"</code> </td></tr>
+<tr valign="top"><td><code>cent</code></td>
+<td>
+optimal centering constant. </td></tr>
+<tr valign="top"><td><code>stand</code></td>
+<td>
+standardizing matrix. </td></tr>
+<tr valign="top"><td><code>Distr</code></td>
+<td>
+standardizing matrix. </td></tr>
+<tr valign="top"><td><code>V.comp</code></td>
+<td>
+matrix: indication which components of the standardizing
+matrix have to be computed. </td></tr>
+<tr valign="top"><td><code>w</code></td>
+<td>
+object of class <code>RobWeight</code>; current weight</td></tr>
+</table>
+
+<h3>Details</h3>
+
+<p>
+<code>updateNorm</code> is used internally in the opt-IC-algorithm to be
+able to work with a norm that depends on the Fisher information at a certain
+parameter (<code>InfoType</code>) or on the current covariance (<code>SelfNorm</code>)
+</p>
+
+
+<h3>Value</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>updateNorm</code></td>
+<td>
+</td></tr>
+</table>
+<p>
+ an updated object of class <code>NormType</code></p>
+
+<h3>Methods</h3>
+
+<dl>
+<dt>updateNorm</dt><dd><code>signature(normtype = "NormType")</code>: leaves the norm unchanged;</dd>
+<dt>updateNorm</dt><dd><code>signature(normtype = "InfoNorm")</code>:
+udates the norm in the information-standardized case; just used
+internally in the opt-IC-Algorithm. </dd>
+<dt>updateNorm</dt><dd><code>signature(normtype = "SelfNorm")</code>:
+udates the norm in the self-standardized case; just used
+internally in the opt-IC-Algorithm. </dd>
+</dl>
+
+<h3>Author(s)</h3>
+
+<p>
+Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
+</p>
+
+
+<h3>See Also</h3>
+
+<p>
+<code><a onclick="findlink('distrMod', 'NormType-class.html')" style="text-decoration: underline; color: blue; cursor: hand">NormType-class</a></code>
+</p>
+
+<script Language="JScript">
+function findlink(pkg, fn) {
+var Y, link;
+Y = location.href.lastIndexOf("\\") + 1;
+link = location.href.substring(0, Y);
+link = link + "../../" + pkg + "/chtml/" + pkg + ".chm::/" + fn;
+location.href = link;
+}
+</script>
+
+
+<hr><div align="center">[Package <em>ROptEst</em> version 0.6.0 <a href="00Index.html">Index]</a></div>
+
+</body></html>

Modified: pkg/ROptEst/man/getAsRisk.Rd
===================================================================
--- pkg/ROptEst/man/getAsRisk.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getAsRisk.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,19 +1,19 @@
 \name{getAsRisk}
 \alias{getAsRisk}
 \alias{getAsRisk-methods}
-\alias{getAsRisk,asMSE,UnivariateDistribution,Neighborhood,BiasType-method}
-\alias{getAsRisk,asMSE,EuclRandVariable,Neighborhood,BiasType-method}
-\alias{getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,BiasType-method}
+\alias{getAsRisk,asMSE,UnivariateDistribution,Neighborhood,ANY-method}
+\alias{getAsRisk,asMSE,EuclRandVariable,Neighborhood,ANY-method}
+\alias{getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,ANY-method}
 \alias{getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,onesidedBias-method}
 \alias{getAsRisk,asBias,UnivariateDistribution,ContNeighborhood,asymmetricBias-method}
-\alias{getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method}
-\alias{getAsRisk,asBias,RealRandVariable,ContNeighborhood,BiasType-method}
-\alias{getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,BiasType-method}
-\alias{getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,BiasType-method}
-\alias{getAsRisk,asCov,RealRandVariable,ContNeighborhood,BiasType-method}
-\alias{getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,BiasType-method}
-\alias{getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,BiasType-method}
-\alias{getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,BiasType-method}
+\alias{getAsRisk,asBias,UnivariateDistribution,TotalVarNeighborhood,ANY-method}
+\alias{getAsRisk,asBias,RealRandVariable,ContNeighborhood,ANY-method}
+\alias{getAsRisk,asCov,UnivariateDistribution,ContNeighborhood,ANY-method}
+\alias{getAsRisk,asCov,UnivariateDistribution,TotalVarNeighborhood,ANY-method}
+\alias{getAsRisk,asCov,RealRandVariable,ContNeighborhood,ANY-method}
+\alias{getAsRisk,trAsCov,UnivariateDistribution,UncondNeighborhood,ANY-method}
+\alias{getAsRisk,trAsCov,RealRandVariable,ContNeighborhood,ANY-method}
+\alias{getAsRisk,asUnOvShoot,UnivariateDistribution,UncondNeighborhood,ANY-method}
 \alias{getAsRisk,asSemivar,UnivariateDistribution,Neighborhood,onesidedBias-method}
 
 \title{Generic Function for Computation of Asymptotic Risks}
@@ -25,32 +25,32 @@
 \usage{
 getAsRisk(risk, L2deriv, neighbor, biastype, ...)
 
-\S4method{getAsRisk}{asMSE,UnivariateDistribution,Neighborhood,BiasType}(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo)
+\S4method{getAsRisk}{asMSE,UnivariateDistribution,Neighborhood,ANY}(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo)
 
-\S4method{getAsRisk}{asMSE,EuclRandVariable,Neighborhood,BiasType}(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo, norm = EuclideanNorm)
+\S4method{getAsRisk}{asMSE,EuclRandVariable,Neighborhood,ANY}(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo, norm = EuclideanNorm)
 
-\S4method{getAsRisk}{asBias,UnivariateDistribution,ContNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, trafo)
+\S4method{getAsRisk}{asBias,UnivariateDistribution,ContNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, trafo)
 
 \S4method{getAsRisk}{asBias,UnivariateDistribution,ContNeighborhood,onesidedBias}(risk, L2deriv, neighbor, biastype, trafo)
 
 \S4method{getAsRisk}{asBias,UnivariateDistribution,ContNeighborhood,asymmetricBias}(risk, L2deriv, neighbor, biastype, trafo)
 
-\S4method{getAsRisk}{asBias,UnivariateDistribution,TotalVarNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, trafo)
+\S4method{getAsRisk}{asBias,UnivariateDistribution,TotalVarNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, trafo)
 
-\S4method{getAsRisk}{asBias,RealRandVariable,ContNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, Distr, L2derivDistrSymm, trafo, 
+\S4method{getAsRisk}{asBias,RealRandVariable,ContNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, Distr, L2derivDistrSymm, trafo, 
              z.start, A.start, maxiter, tol, norm = EuclideanNorm)
 
-\S4method{getAsRisk}{asCov,UnivariateDistribution,ContNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, clip, cent, stand)
+\S4method{getAsRisk}{asCov,UnivariateDistribution,ContNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, clip, cent, stand)
 
-\S4method{getAsRisk}{asCov,UnivariateDistribution,TotalVarNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, clip, cent, stand)
+\S4method{getAsRisk}{asCov,UnivariateDistribution,TotalVarNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, clip, cent, stand)
 
-\S4method{getAsRisk}{asCov,RealRandVariable,ContNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand, norm = EuclideanNorm)
+\S4method{getAsRisk}{asCov,RealRandVariable,ContNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand, norm = EuclideanNorm)
 
-\S4method{getAsRisk}{trAsCov,UnivariateDistribution,UncondNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, clip, cent, stand)
+\S4method{getAsRisk}{trAsCov,UnivariateDistribution,UncondNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, clip, cent, stand)
 
-\S4method{getAsRisk}{trAsCov,RealRandVariable,ContNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand, norm = EuclideanNorm)
+\S4method{getAsRisk}{trAsCov,RealRandVariable,ContNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, Distr, clip, cent, stand, norm = EuclideanNorm)
 
-\S4method{getAsRisk}{asUnOvShoot,UnivariateDistribution,UncondNeighborhood,BiasType}(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo)
+\S4method{getAsRisk}{asUnOvShoot,UnivariateDistribution,UncondNeighborhood,ANY}(risk, L2deriv, neighbor, biastype, clip, cent, stand, trafo)
 
 \S4method{getAsRisk}{asSemivar,UnivariateDistribution,Neighborhood,onesidedBias}(risk, L2deriv, neighbor, biastype, 
     clip, cent, stand, trafo)
@@ -60,7 +60,7 @@
   \item{L2deriv}{ L2-derivative of some L2-differentiable family
     of probability distributions. }
   \item{neighbor}{ object of class \code{"Neighborhood"}. }
-  \item{biastype}{ object of class \code{"BiasType"}. }
+  \item{biastype}{ object of class \code{"ANY"}. }
   \item{\dots}{ additional parameters. }
   \item{clip}{ optimal clipping bound. }
   \item{cent}{ optimal centering constant. }
@@ -78,15 +78,15 @@
 \value{The asymptotic risk is computed.}
 \section{Methods}{
 \describe{
-  \item{risk = "asMSE", L2deriv = "UnivariateDistribution", neighbor = "Neighborhood", biastype = "BiasType":}{
+  \item{risk = "asMSE", L2deriv = "UnivariateDistribution", neighbor = "Neighborhood", biastype = "ANY":}{
     computes asymptotic mean square error in methods for
     function \code{getInfRobIC}. }
 
-  \item{risk = "asMSE", L2deriv = "EuclRandVariable", neighbor = "Neighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asMSE", L2deriv = "EuclRandVariable", neighbor = "Neighborhood", biastype = "ANY":}{ 
     computes asymptotic mean square error in methods for
     function \code{getInfRobIC}. }
 
-  \item{risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "ANY":}{ 
     computes standardized asymptotic bias in methods for function \code{getInfRobIC}. }
 
   \item{risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "onesidedBias":}{ 
@@ -95,30 +95,30 @@
   \item{risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "asymmetricBias":}{ 
     computes standardized asymptotic bias in methods for function \code{getInfRobIC}. }
 
-  \item{risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asBias", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "ANY":}{ 
     computes standardized asymptotic bias in methods for function \code{getInfRobIC}. }
 
-  \item{risk = "asBias", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asBias", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "ANY":}{ 
     computes standardized asymptotic bias in methods for function \code{getInfRobIC}. }
 
-  \item{risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "ANY":}{ 
     computes asymptotic covariance in methods for function \code{getInfRobIC}. }
 
-  \item{risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asCov", L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "ANY":}{ 
     computes asymptotic covariance in methods for function \code{getInfRobIC}. }
 
-  \item{risk = "asCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "ANY":}{ 
     computes asymptotic covariance in methods for function \code{getInfRobIC}. }
 
-  \item{risk = "trAsCov", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "trAsCov", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "ANY":}{ 
     computes trace of asymptotic covariance in methods 
     for function \code{getInfRobIC}. }
 
-  \item{risk = "trAsCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "trAsCov", L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "ANY":}{ 
     computes trace of asymptotic covariance in methods for 
     function \code{getInfRobIC}. }
 
-  \item{risk = "asUnOvShoot", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "BiasType":}{ 
+  \item{risk = "asUnOvShoot", L2deriv = "UnivariateDistribution", neighbor = "UncondNeighborhood", biastype = "ANY":}{ 
     computes asymptotic under-/overshoot risk in methods for 
     function \code{getInfRobIC}. }
 

Modified: pkg/ROptEst/man/getBiasIC.Rd
===================================================================
--- pkg/ROptEst/man/getBiasIC.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getBiasIC.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,7 +1,8 @@
 \name{getBiasIC}
+\docType{methods}
 \alias{getBiasIC}
 \alias{getBiasIC-methods}
-\alias{getBiasIC,IC,UncondNeighborhood-method}
+\alias{getBiasIC,HampIC,UncondNeighborhood-method}
 
 \title{Generic function for the computation of the asymptotic bias for an IC}
 \description{
@@ -10,42 +11,36 @@
 \usage{
 getBiasIC(IC, neighbor, ...)
 
-\S4method{getBiasIC}{IC,UncondNeighborhood}(IC, neighbor, L2Fam, 
-                     biastype = symmetricBias(), 
-                     tol = .Machine$double.eps^0.25)
-
+\S4method{getBiasIC}{HampIC,UncondNeighborhood}(IC, neighbor, L2Fam)
 }
 \arguments{
   \item{IC}{ object of class \code{"InfluenceCurve"} }
   \item{neighbor}{ object of class \code{"Neighborhood"}. }
+  \item{L2Fam}{ object of class \code{"L2ParamFamily"}. }
   \item{\dots}{ additional parameters }
-  \item{L2Fam}{ object of class \code{"L2ParamFamily"} or missing. }
-  \item{biastype}{ object of class \code{"BiasType"}. }
-  \item{tol}{ the desired accuracy (convergence tolerance).}  
 }
-\details{To make sure that the results are valid, it is recommended
-  to include an additional check of the IC properties of \code{IC} 
-  using \code{checkIC}.}
-\value{The asymptotic bias of an IC is computed.}
+\details{}
+\value{The bias of the IC is computed.}
 \section{Methods}{
 \describe{
-
-  \item{IC = "IC", neighbor = "UncondNeighborhood":}{
-   asymptotic bias of \code{IC} in case of unconditional neighborhoods. }
-
+  \item{IC = "HampIC", neighbor = "UncondNeighborhood"}{
+    reads off the as. bias from the risks-slot of the IC. }
 }}
 \references{
+  Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor.
+  Verw. Geb. \bold{10}:269--278.
+
+  Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. \bold{8}: 106--115.
+
   Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
 
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
+  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}.
   Bayreuth: Dissertation.
 
-  Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves.
-  Mathematical Methods in Statistics \emph{14}(1), 105-131.
+  Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Bias
+  of M-estimators on Neighborhoods.
 }
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de},
-        Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
-
+\author{Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
 \note{This generic function is still under construction.}
 \seealso{\code{\link{getRiskIC-methods}}, \code{\link[RobAStBase]{InfRobModel-class}}}
 %\examples{}

Modified: pkg/ROptEst/man/getInfCent.Rd
===================================================================
--- pkg/ROptEst/man/getInfCent.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getInfCent.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -19,19 +19,19 @@
 getInfCent(L2deriv, neighbor, biastype, ...)
 
 \S4method{getInfCent}{UnivariateDistribution,ContNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 
 \S4method{getInfCent}{UnivariateDistribution,TotalVarNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 
 \S4method{getInfCent}{RealRandVariable,ContNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = symmetricBias(), z.comp, stand, cent, clip)
+     neighbor, biastype, z.comp, stand, cent, clip, w)
 
 \S4method{getInfCent}{UnivariateDistribution,ContNeighborhood,onesidedBias}(L2deriv, 
-     neighbor, biastype = positiveBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 
 \S4method{getInfCent}{UnivariateDistribution,ContNeighborhood,asymmetricBias}(L2deriv, 
-     neighbor, biastype = asymmetricBias(), clip, cent, tol.z, symm, trafo)
+     neighbor, biastype, clip, cent, tol.z, symm, trafo)
 }
 \arguments{
   \item{L2deriv}{ L2-derivative of some L2-differentiable family 
@@ -47,6 +47,7 @@
   \item{trafo}{ matrix: transformation of the parameter. }
   \item{z.comp}{ logical vector: indication which components of the 
     centering constant have to be computed. }
+  \item{w}{object of class \code{RobWeight}; current weight}  
 }
 %\details{}
 \value{The optimal centering constant is computed.}

Modified: pkg/ROptEst/man/getInfClip.Rd
===================================================================
--- pkg/ROptEst/man/getInfClip.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getInfClip.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -24,7 +24,7 @@
 
 \S4method{getInfClip}{numeric,UnivariateDistribution,asUnOvShoot,UncondNeighborhood}(clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)
 
-\S4method{getInfClip}{numeric,UnivariateDistribution,asSemivar,ContNeighborhood}(clip, L2deriv, risk, neighbor, biastype, cent, symm, trafo)
+\S4method{getInfClip}{numeric,UnivariateDistribution,asSemivar,ContNeighborhood}(clip, L2deriv, risk, neighbor, cent, symm, trafo)
 }
 \arguments{
   \item{clip}{ positive real: clipping bound }

Modified: pkg/ROptEst/man/getInfGamma.Rd
===================================================================
--- pkg/ROptEst/man/getInfGamma.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getInfGamma.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -18,22 +18,22 @@
 getInfGamma(L2deriv, risk, neighbor, biastype, ...)
 
 \S4method{getInfGamma}{UnivariateDistribution,asMSE,ContNeighborhood,BiasType}(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 \S4method{getInfGamma}{UnivariateDistribution,asGRisk,TotalVarNeighborhood,BiasType}(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 \S4method{getInfGamma}{RealRandVariable,asMSE,ContNeighborhood,BiasType}(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), Distr, stand, cent, clip)
+     risk, neighbor, biastype, Distr, stand, cent, clip)
 
 \S4method{getInfGamma}{UnivariateDistribution,asUnOvShoot,ContNeighborhood,BiasType}(L2deriv, 
-     risk, neighbor, biastype = symmetricBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 \S4method{getInfGamma}{UnivariateDistribution,asMSE,ContNeighborhood,onesidedBias}(L2deriv, 
-     risk, neighbor, biastype = positiveBias(), cent, clip)
+     risk, neighbor, biastype, cent, clip)
 
 \S4method{getInfGamma}{UnivariateDistribution,asMSE,ContNeighborhood,asymmetricBias}(L2deriv, 
-    risk, neighbor, biastype  = asymmetricBias(), cent, clip)
+    risk, neighbor, biastype, cent, clip)
 }
 \arguments{
   \item{L2deriv}{ L2-derivative of some L2-differentiable family 

Modified: pkg/ROptEst/man/getInfRobIC.Rd
===================================================================
--- pkg/ROptEst/man/getInfRobIC.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getInfRobIC.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -27,11 +27,11 @@
 
 \S4method{getInfRobIC}{RealRandVariable,asCov,ContNeighborhood}(L2deriv, risk, neighbor, Distr, Finfo, trafo)
 
-\S4method{getInfRobIC}{UnivariateDistribution,asBias,UncondNeighborhood}(L2deriv, risk, neighbor, symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+\S4method{getInfRobIC}{UnivariateDistribution,asBias,UncondNeighborhood}(L2deriv, risk, neighbor, symm, trafo, 
+             maxiter, tol)
 
-\S4method{getInfRobIC}{RealRandVariable,asBias,ContNeighborhood}(L2deriv, risk, neighbor, Distr, DistrSymm, L2derivSymm, 
-             L2derivDistrSymm, Finfo, z.start, A.start, trafo, upper, maxiter, tol, warn)
+\S4method{getInfRobIC}{RealRandVariable,asBias,ContNeighborhood}(L2deriv, risk, neighbor, Distr,  
+             L2derivDistrSymm, z.start, A.start, trafo, maxiter, tol)
 
 \S4method{getInfRobIC}{UnivariateDistribution,asHampel,UncondNeighborhood}(L2deriv, risk, neighbor, symm, Finfo, trafo, 
              upper, maxiter, tol, warn)

Modified: pkg/ROptEst/man/getInfStand.Rd
===================================================================
--- pkg/ROptEst/man/getInfStand.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getInfStand.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -17,19 +17,19 @@
 getInfStand(L2deriv, neighbor, biastype, ...)
 
 \S4method{getInfStand}{UnivariateDistribution,ContNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 
 \S4method{getInfStand}{UnivariateDistribution,TotalVarNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = symmetricBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 
 \S4method{getInfStand}{RealRandVariable,ContNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = symmetricBias(), Distr, A.comp, stand, clip, cent, trafo)
+     neighbor, biastype, Distr, A.comp, stand, clip, cent, trafo, w)
 
 \S4method{getInfStand}{UnivariateDistribution,ContNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = positiveBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 
 \S4method{getInfStand}{UnivariateDistribution,ContNeighborhood,BiasType}(L2deriv, 
-     neighbor, biastype = asymmetricBias(), clip, cent, trafo)
+     neighbor, biastype, clip, cent, trafo)
 }
 \arguments{
   \item{L2deriv}{ L2-derivative of some L2-differentiable family 
@@ -44,6 +44,7 @@
   \item{trafo}{ matrix: transformation of the parameter. }  
   \item{A.comp}{ matrix: indication which components of the standardizing
     matrix have to be computed. }
+  \item{w}{object of class \code{RobWeight}; current weight}  
 }
 %\details{}
 \value{The standardizing matrix is computed.}

Modified: pkg/ROptEst/man/getInfV.Rd
===================================================================
--- pkg/ROptEst/man/getInfV.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getInfV.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -3,7 +3,7 @@
 \alias{getInfV-methods}
 \alias{getInfV,UnivariateDistribution,ContNeighborhood,BiasType-method}
 \alias{getInfV,UnivariateDistribution,TotalVarNeighborhood,BiasType-method}
-\alias{getInfV,EuclRandVariable,ContNeighborhood,BiasType-method}
+\alias{getInfV,RealRandVariable,ContNeighborhood,BiasType-method}
 \alias{getInfV,UnivariateDistribution,ContNeighborhood,onesidedBias-method}
 \alias{getInfV,UnivariateDistribution,ContNeighborhood,asymmetricBias-method}
 
@@ -14,17 +14,32 @@
   directly. It is used to compute optimally robust ICs.
 }
 \usage{
-getInfV(L2deriv, neighbor, biastype, clip, cent, stand)
+getInfV(L2deriv, neighbor, biastype, ...)
+\S4method{getInfV}{UnivariateDistribution,ContNeighborhood,BiasType}(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
+\S4method{getInfV}{UnivariateDistribution,TotalVarNeighborhood,BiasType}(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
+\S4method{getInfV}{RealRandVariable,ContNeighborhood,BiasType}(L2deriv, 
+         neighbor, biastype, Distr, V.comp, cent, stand, 
+         w)
+\S4method{getInfV}{UnivariateDistribution,ContNeighborhood,onesidedBias}(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
+\S4method{getInfV}{UnivariateDistribution,ContNeighborhood,asymmetricBias}(L2deriv, 
+         neighbor, biastype, clip, cent, stand)
 }
 \arguments{
   \item{L2deriv}{ L2-derivative of some L2-differentiable family 
     of probability measures. }
   \item{neighbor}{ object of class \code{"Neighborhood"}. }
+  \item{biastype}{ object of class \code{"BiasType"} }
   \item{\dots}{ additional parameters. }
-  \item{biastype}{ object of class \code{"BiasType"} }
   \item{clip}{ positive real: clipping bound }
   \item{cent}{ optimal centering constant. }
   \item{stand}{ standardizing matrix. }
+  \item{Distr}{ standardizing matrix. }
+  \item{V.comp}{ matrix: indication which components of the standardizing
+    matrix have to be computed. }
+  \item{w}{object of class \code{RobWeight}; current weight}  
 }
 %\details{}
 \value{The asymptotic variance of an ALE to IC of Hampel type is computed.}
@@ -39,8 +54,7 @@
   Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
   Bayreuth: Dissertation.
 }
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de},
-        Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
+\author{Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
 %\note{}
 \seealso{\code{\link[RobAStBase]{ContIC-class}}, \code{\link[RobAStBase]{TotalVarIC-class}}}
 %\examples{}

Modified: pkg/ROptEst/man/getL1normL2deriv.Rd
===================================================================
--- pkg/ROptEst/man/getL1normL2deriv.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getL1normL2deriv.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -13,7 +13,7 @@
      cent, ...)
 
 \S4method{getL1normL2deriv}{UnivariateDistribution}(L2deriv, 
-     cent, stand, Distr, ...)
+     cent, stand, Distr, normtype, ...)
 
 }
 %\details{}
@@ -22,7 +22,8 @@
   \item{cent}{centering Lagrange Multiplier}
   \item{stand}{standardizing Lagrange Multiplier}
   \item{Distr}{distribution of the L2derivative}
-  \item{...}{further arguments (not used at the moment)}
+  \item{normtype}{object of class \code{NormType}; the norm under which we work}
+  \item{\dots}{further arguments (not used at the moment)}
 }
 
 \value{L1 norm of the L2derivative}

Modified: pkg/ROptEst/man/getRiskIC.Rd
===================================================================
--- pkg/ROptEst/man/getRiskIC.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/getRiskIC.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,17 +1,9 @@
 \name{getRiskIC}
+\docType{methods}
 \alias{getRiskIC}
 \alias{getRiskIC-methods}
-\alias{getRiskIC,IC,asCov,missing,missing-method}
-\alias{getRiskIC,IC,asCov,missing,L2ParamFamily-method}
-\alias{getRiskIC,IC,trAsCov,missing,missing-method}
-\alias{getRiskIC,IC,trAsCov,missing,L2ParamFamily-method}
-\alias{getRiskIC,IC,asBias,UncondNeighborhood,missing-method}
-\alias{getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method}
-\alias{getRiskIC,IC,asMSE,UncondNeighborhood,missing-method}
-\alias{getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method}
-\alias{getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method}
-\alias{getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method}
-\alias{getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method}
+\alias{getRiskIC,HampIC,asCov,missing,missing-method}
+\alias{getRiskIC,HampIC,asCov,missing,L2ParamFamily-method}
 
 \title{Generic function for the computation of a risk for an IC}
 \description{
@@ -20,84 +12,29 @@
 \usage{
 getRiskIC(IC, risk, neighbor, L2Fam, ...)
 
-\S4method{getRiskIC}{IC,asCov,missing,missing}(IC, risk, tol = .Machine$double.eps^0.25)
+\S4method{getRiskIC}{HampIC,asCov,missing,missing}(IC, risk)
 
-\S4method{getRiskIC}{IC,asCov,missing,L2ParamFamily}(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
+\S4method{getRiskIC}{HampIC,asCov,missing,L2ParamFamily}(IC, risk, L2Fam)
 
-\S4method{getRiskIC}{IC,trAsCov,missing,missing}(IC, risk, tol = .Machine$double.eps^0.25)
-
-\S4method{getRiskIC}{IC,trAsCov,missing,L2ParamFamily}(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
-
-\S4method{getRiskIC}{IC,asBias,UncondNeighborhood,missing}(IC, risk, neighbor, tol = .Machine$double.eps^0.25)
-
-\S4method{getRiskIC}{IC,asBias,UncondNeighborhood,L2ParamFamily}(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
-
-\S4method{getRiskIC}{IC,asMSE,UncondNeighborhood,missing}(IC, risk, neighbor,  tol = .Machine$double.eps^0.25)
-
-\S4method{getRiskIC}{IC,asMSE,UncondNeighborhood,L2ParamFamily}(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
-
-\S4method{getRiskIC}{TotalVarIC,asUnOvShoot,UncondNeighborhood,missing}(IC, risk, neighbor)
-
-\S4method{getRiskIC}{IC,fiUnOvShoot,ContNeighborhood,missing}(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
-
-\S4method{getRiskIC}{IC,fiUnOvShoot,TotalVarNeighborhood,missing}(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
 }
 \arguments{
   \item{IC}{ object of class \code{"InfluenceCurve"} }
   \item{risk}{ object of class \code{"RiskType"}. }
-  \item{neighbor}{ object of class \code{"Neighborhood"}. }
-  \item{L2Fam}{ object of class \code{"L2ParamFamily"}. }
+  \item{neighbor}{ object of class \code{"Neighborhood"}; missing in the methods described here. }
   \item{\dots}{ additional parameters }
-  \item{tol}{ the desired accuracy (convergence tolerance).}  
-  \item{sampleSize}{ integer: sample size. }
-  \item{Algo}{ "A" or "B". }
-  \item{cont}{ "left" or "right". }
+  \item{L2Fam}{ object of class \code{"L2ParamFamily"}. }
 }
 \details{To make sure that the results are valid, it is recommended
-  to include an additional check of the IC properties of \code{IC} 
+  to include an additional check of the IC properties of \code{IC}
   using \code{checkIC}.}
 \value{The risk of an IC is computed.}
 \section{Methods}{
 \describe{
-  \item{IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "missing"}{ 
-    asymptotic covariance of \code{IC}. }
+  \item{IC = "HampIC", risk = "asCov", neighbor = "missing", L2Fam = "missing"}{
+    asymptotic covariance of \code{IC} read off from corresp. \code{Risks} slot. }
 
-  \item{IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"}{ 
-    asymptotic covariance of \code{IC} under \code{L2Fam}. }
-
-  \item{IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "missing"}{ 
-    asymptotic covariance of \code{IC}. }
-
-  \item{IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "L2ParamFamily"}{ 
-    asymptotic covariance of \code{IC} under \code{L2Fam}. }
-
-  \item{IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "missing"}{ 
-    asymptotic bias of \code{IC} under convex contaminations. }
-
-  \item{IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily"}{ 
-    asymptotic bias of \code{IC} under convex contaminations and \code{L2Fam}. }
-
-  \item{IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "missing"}{ 
-    asymptotic bias of \code{IC} in case of total variation neighborhoods. }
-
-  \item{IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily"}{ 
-    asymptotic bias of \code{IC} under \code{L2Fam} in case of total variation 
-    neighborhoods. }
-
-  \item{IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "missing"}{ 
-    asymptotic mean square error of \code{IC}. }
-
-  \item{IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "L2ParamFamily"}{ 
-    asymptotic mean square error of \code{IC} under \code{L2Fam}. }
-
-  \item{IC = "TotalVarIC", risk = "asUnOvShoot", neighbor = "UncondNeighborhood", L2Fam = "missing"}{ 
-    asymptotic under-/overshoot risk of \code{IC}. }
-
-  \item{IC = "IC", risk = "fiUnOvShoot", neighbor = "ContNeighborhood", L2Fam = "missing"}{ 
-    finite-sample under-/overshoot risk of \code{IC}. }
-
-  \item{IC = "IC", risk = "fiUnOvShoot", neighbor = "TotalVarNeighborhood", L2Fam = "missing"}{ 
-    finite-sample under-/overshoot risk of \code{IC}. }
+  \item{IC = "HampIC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"}{
+    asymptotic covariance of \code{IC} under \code{L2Fam} read off from corresp. \code{Risks} slot. }
 }}
 \references{
   Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor.
@@ -107,15 +44,15 @@
 
   Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
 
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
+  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}.
   Bayreuth: Dissertation.
 
-  Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk 
+  Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk
   of M-estimators on Neighborhoods.
 }
-\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
+\author{Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
 \note{This generic function is still under construction.}
-\seealso{\code{\link{getRiskIC-methods}}, \code{\link[RobAStBase]{InfRobModel-class}}}
+\seealso{\code{\link[ROptEst]{getRiskIC-methods}}, \code{\link[RobAStBase]{InfRobModel-class}}}
 %\examples{}
 \concept{influence curve}
 \keyword{}

Modified: pkg/ROptEst/man/minmaxBias.Rd
===================================================================
--- pkg/ROptEst/man/minmaxBias.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/ROptEst/man/minmaxBias.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -2,6 +2,7 @@
 \alias{minmaxBias}
 \alias{minmaxBias-methods}
 \alias{minmaxBias,UnivariateDistribution,ContNeighborhood,BiasType-method}
+\alias{minmaxBias,UnivariateDistribution,ContNeighborhood,onesidedBias-method}
 \alias{minmaxBias,UnivariateDistribution,ContNeighborhood,asymmetricBias-method}
 \alias{minmaxBias,UnivariateDistribution,TotalVarNeighborhood,BiasType-method}
 \alias{minmaxBias,RealRandVariable,ContNeighborhood,BiasType-method}
@@ -15,18 +16,21 @@
 \usage{
 minmaxBias(L2deriv, neighbor, biastype, ...)
 
-\S4method{minmaxBias}{UnivariateDistribution,ContNeighborhood,BiasType}(L2deriv, neighbor, biastype = symmetricBias(), symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+\S4method{minmaxBias}{UnivariateDistribution,ContNeighborhood,BiasType}(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
 
-\S4method{minmaxBias}{UnivariateDistribution,ContNeighborhood,asymmetricBias}(L2deriv, neighbor, biastype = asymmetricBias(), symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+\S4method{minmaxBias}{UnivariateDistribution,ContNeighborhood,asymmetricBias}(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
 
-\S4method{minmaxBias}{UnivariateDistribution,TotalVarNeighborhood,BiasType}(L2deriv, neighbor, biastype = symmetricBias(), symm, Finfo, trafo, 
-             upper, maxiter, tol, warn)
+\S4method{minmaxBias}{UnivariateDistribution,ContNeighborhood,onesidedBias}(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
 
-\S4method{minmaxBias}{RealRandVariable,ContNeighborhood,BiasType}(L2deriv, neighbor, biastype = symmetricBias(), Distr, DistrSymm, L2derivSymm, 
-             L2derivDistrSymm, Finfo, z.start, A.start, trafo, upper, maxiter, tol, warn)
+\S4method{minmaxBias}{UnivariateDistribution,TotalVarNeighborhood,BiasType}(L2deriv, neighbor, biastype, symm, trafo, 
+             maxiter, tol)
 
+\S4method{minmaxBias}{RealRandVariable,ContNeighborhood,BiasType}(L2deriv, neighbor, biastype, Distr, 
+             L2derivDistrSymm, z.start, A.start, trafo, maxiter, tol)
+
 }
 \arguments{
   \item{L2deriv}{ L2-derivative of some L2-differentiable family 
@@ -36,17 +40,12 @@
   \item{\dots}{ additional parameters. }
   \item{Distr}{ object of class \code{"Distribution"}. }
   \item{symm}{ logical: indicating symmetry of \code{L2deriv}. }
-  \item{DistrSymm}{ object of class \code{"DistributionSymmetry"}. }
-  \item{L2derivSymm}{ object of class \code{"FunSymmList"}. }
   \item{L2derivDistrSymm}{ object of class \code{"DistrSymmList"}. }
-  \item{Finfo}{ Fisher information matrix. }
   \item{z.start}{ initial value for the centering constant. }
   \item{A.start}{ initial value for the standardizing matrix. }
   \item{trafo}{ matrix: transformation of the parameter. }
-  \item{upper}{ upper bound for the optimal clipping bound. }
   \item{maxiter}{ the maximum number of iterations. }
   \item{tol}{ the desired accuracy (convergence tolerance).}
-  \item{warn}{ logical: print warnings. }
 }
 %\details{}
 \value{The bias-optimally robust IC is computed.}

Added: pkg/ROptEst/man/updateNorm-methods.Rd
===================================================================
--- pkg/ROptEst/man/updateNorm-methods.Rd	                        (rev 0)
+++ pkg/ROptEst/man/updateNorm-methods.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,55 @@
+\name{updateNorm-methods}
+\docType{methods}
+\alias{updateNorm-methods}
+\alias{updateNorm}
+\alias{updateNorm,NormType-method}
+\alias{updateNorm,InfoNorm-method}
+\alias{updateNorm,SelfNorm-method}
+\title{ Methods for Function updateNorm in Package `ROptEst' }
+
+\description{updateNorm-methods to update norm in IC-Algo}
+
+\usage{updateNorm(normtype, ...)
+\S4method{updateNorm}{NormType}(normtype, ...)
+\S4method{updateNorm}{InfoNorm}(normtype, FI, ...)
+\S4method{updateNorm}{SelfNorm}(normtype, L2, neighbor, biastype, Distr, V.comp, 
+                                cent, stand,  w, ...)     
+}
+
+\arguments{
+  \item{normtype}{normtype of class \code{NormType}}
+  \item{\dots}{ further arguments to be passed to specific methods.}
+  \item{FI}{matrix: Fisher Information}
+  \item{L2}{L2derivative}
+  \item{neighbor}{ object of class \code{"Neighborhood"}. }
+  \item{biastype}{ object of class \code{"BiasType"} }
+  \item{cent}{ optimal centering constant. }
+  \item{stand}{ standardizing matrix. }
+  \item{Distr}{ standardizing matrix. }
+  \item{V.comp}{ matrix: indication which components of the standardizing
+    matrix have to be computed. }
+  \item{w}{object of class \code{RobWeight}; current weight}  
+}
+\section{Methods}{\describe{
+\item{updateNorm}{\code{signature(normtype = "NormType")}: leaves the norm unchanged;}
+\item{updateNorm}{\code{signature(normtype = "InfoNorm")}:
+      udates the norm in the information-standardized case; just used
+      internally in the opt-IC-Algorithm. }
+\item{updateNorm}{\code{signature(normtype = "SelfNorm")}:
+      udates the norm in the self-standardized case; just used
+      internally in the opt-IC-Algorithm. }
+}}
+\value{
+\item{updateNorm} an updated object of class \code{NormType}
+}
+
+\details{\code{updateNorm} is used internally in the opt-IC-algorithm to be
+ able to work with a norm that depends on the Fisher information at a certain
+ parameter (\code{InfoType}) or on the current covariance (\code{SelfNorm})}
+\author{Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
+\seealso{\code{\link[distrMod]{NormType-class}}}
+%\examples{}
+\concept{asymptotic risk}
+\concept{risk}
+\keyword{classes}
+

Modified: pkg/RobAStBase/NAMESPACE
===================================================================
--- pkg/RobAStBase/NAMESPACE	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/NAMESPACE	2008-03-28 02:21:40 UTC (rev 80)
@@ -11,7 +11,7 @@
               "FixRobModel", 
               "InfRobModel") 
 exportClasses("InfluenceCurve", 
-              "IC", 
+              "IC", "HampIC",
               "ContIC", 
               "TotalVarIC")
 exportClasses("RobAStControl", "RobWeight", "BoundedWeight",
@@ -47,7 +47,9 @@
               "getweight", "minbiasweight", 
               "generateIC.fct",
               "makeIC")
+exportMethods("getRiskIC")
+exportMethods("getBiasIC")
 export("ContNeighborhood", "TotalVarNeighborhood") 
 export("FixRobModel", "InfRobModel") 
 export("InfluenceCurve", "IC", "ContIC", "TotalVarIC")
-export("EuclideanNorm", "QuadFormNorm")
+export(".eq", ".getDistr")

Modified: pkg/RobAStBase/R/AllClass.R
===================================================================
--- pkg/RobAStBase/R/AllClass.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/R/AllClass.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -104,16 +104,42 @@
 
                 return(TRUE)
             })
-# (partial) influence curve of contamination type
-setClass("ContIC", 
-            representation(clip = "numeric",
-                           cent = "numeric",
-                           stand = "matrix",
+# HampIC -- common mother class to ContIC and TotalVarIC 
+setClass("HampIC", 
+            representation(stand = "matrix",
                            lowerCase = "OptionalNumeric",
                            neighborRadius = "numeric",
-                           weight = "HampelWeight",
+                           weight = "RobWeight",
                            biastype = "BiasType",
                            normtype = "NormType"), 
+            prototype(name = "IC of total-var or contamination type",
+                      Curve = EuclRandVarList(RealRandVariable(Map = list(function(x){x}), 
+                                                    Domain = Reals())),
+                      Risks = list(),  weight = new("RobWeight"),
+                      Infos = matrix(c(character(0),character(0)), ncol=2,
+                                dimnames=list(character(0), c("method", "message"))),
+                      CallL2Fam = call("L2ParamFamily"),
+                      stand = as.matrix(1),
+                      lowerCase = NULL,
+                      neighborRadius = 0, 
+                      biastype = symmetricBias(), 
+                      NormType = NormType()),
+            contains = "IC",
+            validity = function(object){
+                if(any(object at neighborRadius < 0)) # radius vector?!
+                    stop("'neighborRadius' has to be in [0, Inf]")
+                if(!is.null(object at lowerCase))
+                    if(length(object at lowerCase) != nrow(object at stand))
+                        stop("length of 'lowerCase' != nrow of standardizing matrix")
+                L2Fam <- eval(object at CallL2Fam)
+                if(!identical(dim(L2Fam at param@trafo), dim(object at stand)))
+                    stop(paste("dimension of 'trafo' of 'param' != dimension of 'stand'"))
+                return(TRUE)
+            })
+# (partial) influence curve of contamination type
+setClass("ContIC", 
+            representation(clip = "numeric",
+                           cent = "numeric"), 
             prototype(name = "IC of contamination type",
                       Curve = EuclRandVarList(RealRandVariable(Map = list(function(x){x}), 
                                                     Domain = Reals())),
@@ -125,7 +151,7 @@
                       lowerCase = NULL,
                       neighborRadius = 0, weight = new("HampelWeight"),
                       biastype = symmetricBias(), NormType = NormType()),
-            contains = "IC",
+            contains = "HampIC",
             validity = function(object){
                 if(any(object at neighborRadius < 0)) # radius vector?!
                     stop("'neighborRadius' has to be in [0, Inf]")
@@ -137,6 +163,8 @@
                     if(length(object at lowerCase) != nrow(object at stand))
                         stop("length of 'lowerCase' != nrow of standardizing matrix")
                 L2Fam <- eval(object at CallL2Fam)
+                if(!is(weight,"HampelWeight")) 
+                    stop("Weight has to be of class 'HampelWeight'")
                 if(!identical(dim(L2Fam at param@trafo), dim(object at stand)))
                     stop(paste("dimension of 'trafo' of 'param' != dimension of 'stand'"))
                 return(TRUE)
@@ -144,11 +172,7 @@
 # (partial) influence curve of total variation type
 setClass("TotalVarIC",
             representation(clipLo = "numeric",
-                           clipUp = "numeric",
-                           stand = "matrix",
-                           lowerCase = "OptionalNumeric",
-                           neighborRadius = "numeric",
-                           weight = "BdStWeight"),
+                           clipUp = "numeric"),
             prototype(name = "IC of total variation type",
                       Curve = EuclRandVarList(RealRandVariable(Map = list(function(x){x}),
                                                                Domain = Reals())),
@@ -159,7 +183,7 @@
                       clipLo = -Inf, clipUp = Inf, stand = as.matrix(1),
                       lowerCase = NULL,
                       neighborRadius = 0, weight = new("BdStWeight")),
-            contains = "IC",
+            contains = "HampIC",
             validity = function(object){
                 if(any(object at neighborRadius < 0)) # radius vector?!
                     stop("'neighborRadius' has to be in [0, Inf]")
@@ -168,6 +192,8 @@
                 if((length(object at clipLo) != 1) && (length(object at clipLo) != length(object at Curve)))
                     stop("length of upper clipping bound != 1 and != length of 'Curve'")
                 L2Fam <- eval(object at CallL2Fam)
+                if(!is(weight,"BdStWeight")) 
+                    stop("Weight has to be of class 'BdStWeight'")
                 if(!identical(dim(L2Fam at param@trafo), dim(object at stand)))
                     stop(paste("dimension of 'trafo' of 'param' != dimension of 'stand'"))
                 return(TRUE)

Modified: pkg/RobAStBase/R/AllGeneric.R
===================================================================
--- pkg/RobAStBase/R/AllGeneric.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/R/AllGeneric.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -154,3 +154,15 @@
 if(!isGeneric("generateIC.fct")){
     setGeneric("generateIC.fct", function(neighbor, L2Fam, ...) standardGeneric("generateIC.fct"))
 }
+if(!isGeneric("getRiskIC")){
+    setGeneric("getRiskIC", 
+        function(IC, risk,  neighbor, L2Fam, ...) standardGeneric("getRiskIC"))
+}
+if(!isGeneric("getBiasIC")){
+    setGeneric("getBiasIC", 
+        function(IC, neighbor, ...) standardGeneric("getBiasIC"))
+}
+if(!isGeneric(".evalBiasIC")){
+    setGeneric(".evalBiasIC", 
+        function(IC, neighbor, biastype, ...) standardGeneric(".evalBiasIC"))
+}

Modified: pkg/RobAStBase/R/ContIC.R
===================================================================
--- pkg/RobAStBase/R/ContIC.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/R/ContIC.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,6 +1,7 @@
 ## Generating function
 ContIC <- function(name, CallL2Fam = call("L2ParamFamily"),
-                   Curve = EuclRandVarList(RealRandVariable(Map = c(function(x){x}), Domain = Reals())), 
+                   Curve = EuclRandVarList(RealRandVariable(Map = c(function(x){x}), 
+                                           Domain = Reals())), 
                    Risks, Infos, clip = Inf, cent = 0, stand = as.matrix(1), 
                    lowerCase = NULL, neighborRadius = 0, w = new("HampelWeight"),
                    normtype = NormType(), biastype = symmetricBias()){
@@ -89,14 +90,9 @@
     })
 
 ## Access methods
-setMethod("biastype", "ContIC", function(object) object at biastype)
-setMethod("normtype", "ContIC", function(object) object at normtype)
+
 setMethod("clip", "ContIC", function(object) object at clip)
 setMethod("cent", "ContIC", function(object) object at cent)
-setMethod("stand", "ContIC", function(object) object at stand)
-setMethod("weight", "ContIC", function(object) object at weight)
-setMethod("lowerCase", "ContIC", function(object) object at lowerCase)
-setMethod("neighborRadius", "ContIC", function(object) object at neighborRadius)
 
 ## replace methods
 setReplaceMethod("clip", "ContIC", 
@@ -147,15 +143,6 @@
         addInfo(object) <- c("lowerCase<-", "The entries in 'Risks' and 'Infos' may be wrong")
         object
     })
-setReplaceMethod("neighborRadius", "ContIC", 
-    function(object, value){ 
-        object at neighborRadius <- value
-        if(any(value < 0)) # radius vector?!
-            stop("'value' has to be in [0, Inf]")
-        addInfo(object) <- c("neighborRadius<-", "The slot 'neighborRadius' has been changed")
-        addInfo(object) <- c("neighborRadius<-", "The entries in 'Risks' and 'Infos' may be wrong")
-        object
-    })
 setReplaceMethod("CallL2Fam", "ContIC",
     function(object, value){ 
         L2Fam <- eval(value)

Added: pkg/RobAStBase/R/HampIC.R
===================================================================
--- pkg/RobAStBase/R/HampIC.R	                        (rev 0)
+++ pkg/RobAStBase/R/HampIC.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,20 @@
+### HampIC is only used internally; so no generating function exists;
+
+## Access methods
+setMethod("biastype", "HampIC", function(object) object at biastype)
+setMethod("normtype", "HampIC", function(object) object at normtype)
+setMethod("stand", "HampIC", function(object) object at stand)
+setMethod("weight", "HampIC", function(object) object at weight)
+setMethod("lowerCase", "HampIC", function(object) object at lowerCase)
+setMethod("neighborRadius", "HampIC", function(object) object at neighborRadius)
+
+setReplaceMethod("neighborRadius", "HampIC",
+    function(object, value){
+        object at neighborRadius <- value
+        if(any(value < 0)) # radius vector?!
+            stop("'value' has to be in [0, Inf]")
+        addInfo(object) <- c("neighborRadius<-", "The slot 'neighborRadius' has been changed")
+        addInfo(object) <- c("neighborRadius<-", "The entries in 'Risks' and 'Infos' may be wrong")
+        object
+    })
+

Modified: pkg/RobAStBase/R/IC.R
===================================================================
--- pkg/RobAStBase/R/IC.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/R/IC.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -50,24 +50,7 @@
 setMethod("checkIC", signature(IC = "IC", L2Fam = "missing"), 
     function(IC, out = TRUE){ 
         L2Fam <- eval(IC at CallL2Fam)
-        trafo <- trafo(L2Fam at param)
-        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
-
-        cent <- E(L2Fam, IC1)
-        if(out)
-            cat("precision of centering:\t", cent, "\n")
-
-        dims <- length(L2Fam at param)
-        L2deriv <- as(diag(dims) %*% L2Fam at L2deriv, "EuclRandVariable")
-        consist <- E(L2Fam, IC1 %*% t(L2deriv)) - trafo
-        if(out){
-            cat("precision of Fisher consistency:\n")
-            print(consist)
-        }
-        prec <- max(abs(cent), abs(consist))
-        names(prec) <- "maximum deviation"
-
-        return(prec)
+        checkIC(IC, L2Fam)        
     })
 ## check centering and Fisher consistency
 setMethod("checkIC", signature(IC = "IC", L2Fam = "L2ParamFamily"), 
@@ -130,19 +113,7 @@
 setMethod("makeIC", signature(IC = "IC", L2Fam = "missing"), 
     function(IC){ 
         L2Fam <- eval(IC at CallL2Fam)
-        trafo <- trafo(L2Fam at param)
-        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
-
-        cent <- E(L2Fam, IC1)
-
-        dims <- length(L2Fam at param)
-        L2deriv <- as(diag(dims) %*% L2Fam at L2deriv, "EuclRandVariable")
-        E1 <- matrix(E(L2Fam, as(IC1 %*% t(L2deriv),"EuclRandVariable")),
-                     nrow(trafo),dims)
-        stand <- trafo %*% solve(E1) 
-        return(IC(name = name(IC),                            
-               Curve = as(stand %*% (L2Fam at L2deriv - cent), "EuclRandVariable"), 
-               Risks="", Infos="", CallL2Fam = call(L2Fam)))
+        makeIC(IC, L2Fam)
     })
 
 ## make some L2function a pIC at a model
@@ -157,12 +128,23 @@
         cent <- E(D1, IC1)
 
         dims <- length(L2Fam at param)
+        if(dimension(Domain(IC at Curve[[1]])) != dims)
+           stop("Dimension of IC and parameter must be the equal")
+        
         L2deriv <- as(diag(dims) %*% L2Fam at L2deriv, "EuclRandVariable")
 
-        E1 <- matrix(E(L2Fam, as(IC1 %*% t(L2deriv),"EuclRandVariable")),
-                     nrow(trafo),dims)
+        E1 <- matrix(E(L2Fam, IC1 %*% t(L2deriv)), dims, dims)
+        
         stand <- trafo %*% solve(E1) 
+        Y <- as(stand %*% L2Fam at L2deriv - cent, "EuclRandVariable")
+        ICfct <- vector(mode = "list", length = dims)
+        ICfct[[1]] <- function(x){Y(x)}
         return(IC(name = name(IC),                            
-               Curve = as(stand %*% (L2Fam at L2deriv - cent), "EuclRandVariable"), 
-               Risks="", Infos="", CallL2Fam = call(L2Fam)))
+               Curve = EuclRandVarList(EuclRandVariable(Map = ICfct, 
+                               Domain = Y at Domain,Range = Y at Range)),
+               Risks=list(), Infos=matrix(c("IC<-", 
+                           "generated by affine linear trafo to enforce consistency"), ncol=2,
+                            dimnames=list(character(0), c("method", "message"))), 
+               CallL2Fam = IC at CallL2Fam))               
     })
+                                       

Modified: pkg/RobAStBase/R/TotalVarIC.R
===================================================================
--- pkg/RobAStBase/R/TotalVarIC.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/R/TotalVarIC.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -81,10 +81,6 @@
 ## Access methods
 setMethod("clipLo", "TotalVarIC", function(object) object at clipLo)
 setMethod("clipUp", "TotalVarIC", function(object) object at clipUp)
-setMethod("stand", "TotalVarIC", function(object) object at stand)
-setMethod("weight", "TotalVarIC", function(object) object at weight)
-setMethod("lowerCase", "TotalVarIC", function(object) object at lowerCase)
-setMethod("neighborRadius", "TotalVarIC", function(object) object at neighborRadius)
 
 ## Replace methods
 setReplaceMethod("clipLo", "TotalVarIC", 
@@ -135,15 +131,6 @@
         addInfo(object) <- c("lowerCase<-", "The entries in 'Risks' and 'Infos' may be wrong")
         object
     })
-setReplaceMethod("neighborRadius", "TotalVarIC", 
-    function(object, value){ 
-        object at neighborRadius <- value
-        if(any(value < 0)) # radius vector?!
-            stop("'value' has to be in [0, Inf]")
-        addInfo(object) <- c("neighborRadius<-", "The slot 'neighborRadius' has been changed")
-        addInfo(object) <- c("neighborRadius<-", "The entries in 'Risks' and 'Infos' may be wrong")
-        object
-    })
 setReplaceMethod("CallL2Fam", "TotalVarIC",
     function(object, value){ 
         L2Fam <- eval(value)

Modified: pkg/RobAStBase/R/Weights.R
===================================================================
--- pkg/RobAStBase/R/Weights.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/R/Weights.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -21,8 +21,8 @@
 
 setMethod("weight", "RobWeight", function(object) object at weight)
 
-setReplaceMethod("weight", "RobWeight", function(object,value) 
-                 {object at weight <- value; object})
+setReplaceMethod("weight", "RobWeight", function(object,value)
+        {object at weight <- value; object})
 
 setMethod("getweight",
           signature(Weight = "HampelWeight", neighbor = "ContNeighborhood",
@@ -46,7 +46,7 @@
 setMethod("getweight",
           signature(Weight = "HampelWeight", neighbor = "ContNeighborhood",
                     biastype = "onesidedBias"),#  norm = "missing"),
-          function(Weight, neighbor, biastype)
+          function(Weight, neighbor, biastype, ...)
                {A <- stand(Weight)
                 b <- clip(Weight)
                 z <- cent(Weight)
@@ -61,7 +61,7 @@
 setMethod(getweight,
           signature(Weight = "HampelWeight", neighbor = "ContNeighborhood",
                     biastype = "asymmetricBias"),# norm = "missing"),
-          function(Weight, neighbor, biastype)
+          function(Weight, neighbor, biastype, ...)
                {A <- stand(Weight)
                 b <- clip(Weight)
                 b1 <- b/nu(biastype)[1]
@@ -80,7 +80,7 @@
 setMethod(getweight,
           signature(Weight = "BdStWeight", neighbor = "TotalVarNeighborhood",
                     biastype = "BiasType"),#  norm = "missing"),
-          function(Weight, neighbor, biastype)
+          function(Weight, neighbor, biastype, ...)
                {A <- stand(Weight)
                 b <- clip(Weight)
                 a <- A * cent(Weight)
@@ -115,7 +115,7 @@
 setMethod(minbiasweight,
           signature(Weight = "HampelWeight", neighbor = "ContNeighborhood",
                     biastype = "asymmetricBias"),#  norm = "missing"),
-          function(Weight, neighbor, biastype)
+          function(Weight, neighbor, biastype, ...)
                {A <- stand(Weight)
                 b <- clip(Weight)
                 b1 <- b/nu(biastype)[1]
@@ -135,7 +135,7 @@
 setMethod(minbiasweight,
           signature(Weight = "HampelWeight", neighbor = "ContNeighborhood",
                     biastype = "onesidedBias"),#  norm = "missing"),
-          function(Weight, neighbor, biastype)
+          function(Weight, neighbor, biastype, ...)
                {A <- stand(Weight)
                 b <- clip(Weight)
                 z <- cent(Weight)
@@ -152,7 +152,7 @@
 setMethod(minbiasweight,
           signature(Weight = "BdStWeight", neighbor = "TotalVarNeighborhood",
                     biastype = "BiasType"),#  norm = "missing"),
-          function(Weight, neighbor, biastype)
+          function(Weight, neighbor, biastype, ...)
                {A <- stand(Weight)
                 b <- clip(Weight)
                 a <- A * cent(Weight)

Modified: pkg/RobAStBase/R/generateICfct.R
===================================================================
--- pkg/RobAStBase/R/generateICfct.R	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/R/generateICfct.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -8,9 +8,10 @@
         d <- res$d
         w <- weight(res$w)
         nrvalues <- nrow(A)
+        dim <- ncol(A)
         ICfct <- vector(mode = "list", length = nrvalues)
         Y <- as(A %*% L2Fam at L2deriv - a, "EuclRandVariable")
-        L <- as(L2Fam at L2deriv, "EuclRandVariable")
+        L <- as(diag(dim)%*%L2Fam at L2deriv, "EuclRandVariable")
         if(nrvalues == 1){
             if(!is.null(d)){
                 ICfct[[1]] <- function(x){}

Added: pkg/RobAStBase/R/getBiasIC.R
===================================================================
--- pkg/RobAStBase/R/getBiasIC.R	                        (rev 0)
+++ pkg/RobAStBase/R/getBiasIC.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,79 @@
+###############################################################################
+## asymptotic Bias for various types
+###############################################################################
+setMethod("getBiasIC", signature(IC = "IC",
+                                 neighbor = "UncondNeighborhood"),
+    function(IC, neighbor, L2Fam, biastype = symmetricBias(),
+             normtype = NormType(), tol = .Machine$double.eps^0.25){
+        if(missing(L2Fam))
+           {misF <- TRUE; L2Fam <- eval(IC at CallL2Fam)}
+        D1 <- L2Fam at distribution
+        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(D1)))
+            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
+
+        x <- as.matrix(r(D1)(1e5))
+        x <- as.matrix(x[!duplicated(x),])
+
+        Bias <- .evalBiasIC(IC = IC, neighbor = neighbor, biastype = biastype,
+                            normtype = normtype, x = x, trafo = L2Fam at param@trafo)
+
+        prec <- if(misF) checkIC(IC, out = FALSE) else
+                         checkIC(IC, L2Fam, out = FALSE)
+        if(prec > tol)
+            warning("The maximum deviation from the exact IC properties is", prec,
+                    "\nThis is larger than the specified 'tol' ",
+                    "=> the result may be wrong")
+
+        return(list(asBias = list(distribution = .getDistr(L2Fam),
+                    neighborhood = neighbor at type, value = Bias)))
+    })
+
+
+### help functions ( not exported to namespace) for getRiskIC
+
+setMethod(".evalBiasIC", signature(IC = "IC",
+                                 neighbor = "ContNeighborhood",
+                                 biastype = "BiasType"),
+    function(IC, neighbor, biastype, normtype, x, trafo){
+        ICx <- evalRandVar(as(diag(dimension(IC at Curve)) %*% IC at Curve,
+                            "EuclRandVariable"),x)
+
+        return(max(fct(normtype)(ICx)))}
+    )
+
+setMethod(".evalBiasIC", signature(IC = "IC",
+                                 neighbor = "TotalVarNeighborhood",
+                                 biastype = "BiasType"),
+    function(IC, neighbor, biastype, normtype, x, trafo){
+        if(nrow(trafo) > 1)
+            stop("not yet implemented for dimension > 1")
+        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
+        res <- evalRandVar(IC1, x)
+        return(max(res) - min(res))}
+    )
+
+setMethod(".evalBiasIC", signature(IC = "IC",
+                                 neighbor = "ContNeighborhood",
+                                 biastype = "onesidedBias"),
+    function(IC, neighbor, biastype, x, trafo){
+        if(nrow(trafo) > 1)
+            stop("not yet implemented for dimension > 1")
+        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
+        res <- evalRandVar(IC1, x)
+        if (sign(biastype)>0)
+             return(max(res))
+        else return(-min(res))
+    })
+
+setMethod(".evalBiasIC", signature(IC = "IC",
+                                 neighbor = "ContNeighborhood",
+                                 biastype = "asymmetricBias"),
+    function(IC, neighbor, biastype, x, trafo){
+        if(nrow(trafo) > 1)
+            stop("not yet implemented for dimension > 1")
+        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
+        res <- evalRandVar(IC1, x)
+        return(max(res)/nu(biastype)[2] -
+               min(res)/nu(biastype)[1])}
+    )
+

Added: pkg/RobAStBase/R/getRiskIC.R
===================================================================
--- pkg/RobAStBase/R/getRiskIC.R	                        (rev 0)
+++ pkg/RobAStBase/R/getRiskIC.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,147 @@
+###############################################################################
+## asymptotic covariance
+###############################################################################
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "asCov",
+                                 neighbor = "missing",
+                                 L2Fam = "missing"),
+    function(IC, risk, tol = .Machine$double.eps^0.25){
+        L2Fam <- eval(IC at CallL2Fam)
+
+        trafo <- L2Fam at param@trafo
+        IC1 <- as(diag(nrow(trafo)) %*% IC at Curve, "EuclRandVariable")
+
+        bias <- E(L2Fam, IC1)
+        Cov <- E(L2Fam, IC1 %*% t(IC1))
+
+        prec <- checkIC(IC, out = FALSE)
+        if(prec > tol)
+            warning("The maximum deviation from the exact IC properties is", prec,
+                    "\nThis is larger than the specified 'tol' ",
+                    "=> the result may be wrong")
+
+        return(list(asCov = list(distribution = .getDistr(L2Fam), value = Cov - bias %*% t(bias))))
+    })
+
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "asCov",
+                                 neighbor = "missing",
+                                 L2Fam = "L2ParamFamily"),
+    function(IC, risk, L2Fam, tol = .Machine$double.eps^0.25){
+        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(L2Fam at distribution)))
+            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
+
+        trafo <- L2Fam at param@trafo
+        IC1 <- as(diag(dimension(IC at Curve)) %*% IC at Curve, "EuclRandVariable")
+
+        bias <- E(L2Fam, IC1)
+        Cov <- E(L2Fam, IC1 %*% t(IC1))
+
+        prec <- checkIC(IC, L2Fam, out = FALSE)
+        if(prec > tol)
+            warning("The maximum deviation from the exact IC properties is", prec,
+                    "\nThis is larger than the specified 'tol' ",
+                    "=> the result may be wrong")
+
+        return(list(asCov = list(distribution = .getDistr(L2Fam), value = Cov - bias %*% t(bias))))
+    })
+
+###############################################################################
+## trace of asymptotic covariance
+###############################################################################
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "trAsCov",
+                                 neighbor = "missing",
+                                 L2Fam = "missing"),
+    function(IC, risk, tol = .Machine$double.eps^0.25){
+        trCov <- getRiskIC(IC, risk = asCov())$asCov
+        trCov$value <- sum(diag(trCov$value))
+
+        prec <- checkIC(IC, out = FALSE)
+        if(prec > tol)
+            warning("The maximum deviation from the exact IC properties is", prec,
+                    "\nThis is larger than the specified 'tol' ",
+                    "=> the result may be wrong")
+
+        return(list(trAsCov = trCov))
+    })
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "trAsCov",
+                                 neighbor = "missing",
+                                 L2Fam = "L2ParamFamily"),
+    function(IC, risk, L2Fam, tol = .Machine$double.eps^0.25){
+        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(L2Fam at distribution)))
+            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
+
+        trCov <- getRiskIC(IC, risk = asCov(), L2Fam = L2Fam)$asCov
+        trCov$value <- sum(diag(trCov$value))
+
+        prec <- checkIC(IC, L2Fam, out = FALSE)
+        if(prec > tol)
+            warning("The maximum deviation from the exact IC properties is", prec,
+                    "\nThis is larger than the specified 'tol' ",
+                    "=> the result may be wrong")
+
+        return(list(trAsCov = trCov))
+    })
+
+###############################################################################
+## asymptotic Bias
+###############################################################################
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "asBias",
+                                 neighbor = "UncondNeighborhood",
+                                 L2Fam = "missing"),
+    function(IC, risk, neighbor, tol = .Machine$double.eps^0.25){
+             getBiasIC(IC, neighbor, biastype(risk), normtype(risk), tol)
+    })
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "asBias",
+                                 neighbor = "UncondNeighborhood",
+                                 L2Fam = "L2ParamFamily"),
+    function(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25){
+             getBiasIC(IC, neighbor, L2Fam, biastype(risk), normtype(risk), tol)
+    })
+###############################################################################
+## asymptotic MSE
+###############################################################################
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "asMSE",
+                                 neighbor = "UncondNeighborhood",
+                                 L2Fam = "missing"),
+    function(IC, risk, neighbor, tol = .Machine$double.eps^0.25){
+        L2fam <- eval(IC at CallL2Fam)
+        getRiskIC(IC = IC, risk = risk, neighbor = neighbor,
+                  L2Fam = L2Fam, tol = tol)
+    })
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "asMSE",
+                                 neighbor = "UncondNeighborhood",
+                                 L2Fam = "L2ParamFamily"),
+    function(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25){
+        if(dimension(Domain(IC at Curve[[1]])) != dimension(img(L2Fam at distribution)))
+            stop("dimension of 'Domain' of 'Curve' != dimension of 'img' of 'distribution' of 'L2Fam'")
+
+        rad <- neighbor at radius
+        if(rad == Inf) return(Inf)
+
+        trCov <- getRiskIC(IC = IC, risk = trAsCov(), L2Fam = L2Fam)
+        Bias <- getRiskIC(IC = IC, risk = asBias(), neighbor = neighbor, L2Fam = L2Fam,
+                          biastype = biastype(risk))
+
+        prec <- checkIC(IC, L2Fam, out = FALSE)
+        if(prec > tol)
+            warning("The maximum deviation from the exact IC properties is", prec,
+                    "\nThis is larger than the specified 'tol' ",
+                    "=> the result may be wrong")
+
+        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
+
+        return(list(asMSE = list(distribution = .getDistr(L2Fam),
+                                 neighborhood = nghb,
+                                 radius = neighbor at radius,
+                                 value = trCov$trAsCov$value + rad^2*Bias$asBias$value^2)))
+    })
+
+
+

Added: pkg/RobAStBase/R/getRiskIC_UnOvShoot.R
===================================================================
--- pkg/RobAStBase/R/getRiskIC_UnOvShoot.R	                        (rev 0)
+++ pkg/RobAStBase/R/getRiskIC_UnOvShoot.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,275 @@
+###############################################################################
+## asymptotic under-/overshoot risk
+###############################################################################
+setMethod("getRiskIC", signature(IC = "TotalVarIC",
+                                 risk = "asUnOvShoot",
+                                 neighbor = "UncondNeighborhood",
+                                 L2Fam = "missing"),
+    function(IC, risk, neighbor){
+        radius <- neighbor at radius
+        L2Fam <- eval(IC at CallL2Fam)
+        L2deriv <- L2Fam at L2derivDistr[[1]]
+        if((length(L2Fam at L2derivDistr) > 1) | !is(L2deriv, "UnivariateDistribution"))
+            stop("restricted to 1-dimensional parameteric models")
+
+        bound <- risk at width*(-m1df(L2deriv, 0))
+        if(is(neighbor, "ContNeighborhood")){
+            if(radius > 2*bound)
+                stop("boundedness condition is violated!")
+            if(radius == 2*bound){
+                zi <- sign(as.vector(trafo))
+                A <- as.matrix(zi)
+                b <- zi*as.vector(trafo)*2*risk at width/radius
+                p0 <- p(L2deriv)(0)
+                if(is(L2deriv, "AbscontDistribution"))
+                    ws0 <- 0
+                else
+                    ws0 <- d(L2deriv)(0)
+
+                if(zi == 1)
+                    a <- -b*(1-p0)/(1-ws0)
+                else
+                    a <- b*(p0-ws0)/(1-ws0)
+
+                asCov <- a^2*(p0-ws0) + (zi*a+b)^2*(1-p0)
+                erg <- pnorm(-risk at width*sqrt(asCov))
+            }
+        }
+
+        if(is(neighbor, "TotalVarNeighborhood")){
+            if(radius > bound)
+                stop("boundedness condition is violated!")
+            if(radius == bound){
+                zi <- sign(as.vector(trafo))
+                A <- as.matrix(zi)
+                b <- zi*as.vector(trafo)*risk at width/radius
+                p0 <- p(L2deriv)(0)
+                if(is(L2deriv, "AbscontDistribution"))
+                    ws0 <- 0
+                else
+                    ws0 <- d(L2deriv)(0)
+
+                if(zi == 1)
+                    a <- -b*(1-p0)/(1-ws0)
+                else
+                    a <- b*(p0-ws0)/(1-ws0)
+
+                asCov <- a^2*(p0-ws0) + (zi*a+b)^2*(1-p0)
+                erg <- pnorm(-risk at width*sqrt(asCov))
+            }
+        }
+
+        stand <- as.vector(stand(IC))
+        g0 <- clipLo(IC)/abs(stand)
+        c0 <- clipUp(IC)/abs(stand) - g0
+        s <- sqrt(g0^2*p(L2deriv)(g0)
+                  + (g0+c0)^2*(1 - p(L2deriv)(g0+c0))
+                  + m2df(L2deriv, g0+c0) - m2df(L2deriv, g0))
+        erg <- pnorm(-risk at width*s)
+
+        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
+
+        return(list(asUnOvShoot = list(distribution = .getDistr(L2Fam),
+                    neighborhood = nghb, value = erg)))
+    })
+###############################################################################
+## finite-sample under-/overshoot risk
+###############################################################################
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "fiUnOvShoot",
+                                 neighbor = "ContNeighborhood",
+                                 L2Fam = "missing"),
+    function(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left"){
+        L2Fam <- eval(IC at CallL2Fam)
+        Distr <- L2Fam at distribution
+        if(!is(Distr, "Norm"))
+            stop("restricted to 1-dimensional normal location")
+
+        eps <- neighbor at radius
+        tau <- risk at width
+
+        if(!(is(IC, "ContIC") | is(IC, "TotalVarIC")))
+            stop("'IC' has to be of class 'ContIC' or 'TotalVarIC'")
+        if(is(IC, "ContIC"))
+            clip <- clip(IC)/as.vector(stand(IC))
+        if(is(IC, "TotalVarIC"))
+            clip <- clipUp(IC)/as.vector(stand(IC))
+
+        n <- sampleSize
+        m <- getdistrOption("DefaultNrFFTGridPointsExponent")
+
+        if(eps >= 1 - 1/(2*pnorm(risk at width))){
+            warning("disjointness condition is violated!")
+            erg <- 0.5
+        }else{
+            if(Algo == "B"){
+                if(cont == "left"){
+                    delta1 <- (1-eps)*(pnorm(-clip+tau) + pnorm(-clip-tau)) + eps
+                    K1 <- dbinom(0:n, size = n, prob = delta1)
+                    P1 <- (1-eps)*pnorm(-clip-tau) + eps
+                    p1 <- P1/delta1
+
+                    summe1 <- numeric(n+1)
+                    summe1[1] <- 1 - conv.tnorm(z = 0, A = -clip, B = clip, mu = -tau, n = n, m = m)
+                    summe1[n+1] <- (1 - 0.5*(pbinom(q = n/2, size = n, prob = p1)
+                                    + pbinom(q = n/2-0.1, size = n, prob = p1)))
+                    for(k in 1:(n-1)){
+                        j <- 0:k
+                        z <- clip*(k-2*j)
+                        P1.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = -tau, n = n-k, m = m)
+                        summe1[k+1] <- sum((1-P1.ste)*dbinom(j, size = k, prob = p1))
+                    }
+                    erg <- sum(summe1*K1)
+                }else{
+                    delta2 <- (1-eps)*(pnorm(-clip+tau) + pnorm(-clip-tau)) + eps
+                    K2 <- dbinom(0:n, size = n, prob = delta2)
+                    P2 <- (1-eps)*pnorm(-clip+tau)
+                    p2 <- P2/delta2
+
+                    summe2 <- numeric(n+1)
+                    summe2[1] <- conv.tnorm(z = 0, A = -clip, B = clip, mu = tau, n = n, m = m)
+                    summe2[n+1] <- 0.5*(pbinom(q = n/2, size = n, prob = p2)
+                                        + pbinom(q = n/2-0.1, size = n, prob = p2))
+                    for(k in 1:(n-1)){
+                        j <- 0:k
+                        z <- clip*(k-2*j)
+                        P2.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = tau, n = n-k, m = m)
+                        summe2[k+1] <- sum(P2.ste*dbinom(j, size=k, prob=p2))
+                   }
+                    erg <- sum(summe2*K2)
+                }
+            }else{
+                M <- 2^m
+                h <- 2*clip/M
+                x <- seq(from = -clip, to = clip, by = h)
+
+                if(cont == "right"){
+                    p1 <- pnorm(x+tau)
+                    p1 <- (1-eps)*(p1[2:(M + 1)] - p1[1:M])
+                    p1[1] <- p1[1] + (1-eps)*pnorm(-clip+tau)
+                    p1[M] <- p1[M] + (1-eps)*pnorm(-clip-tau) + eps
+                }else{
+                    p1 <- pnorm(x-tau)
+                    p1 <- (1-eps)*(p1[2:(M + 1)] - p1[1:M])
+                    p1[1] <- p1[1] + (1-eps)*pnorm(-clip-tau) + eps
+                    p1[M] <- p1[M] + (1-eps)*pnorm(-clip+tau)
+                }
+
+                ## FFT
+                pn <- c(p1, numeric((n-1)*M))
+
+                ## convolution theorem for DFTs
+                pn <- Re(fft(fft(pn)^n, inverse = TRUE)) / (n*M)
+                pn <- (abs(pn) >= .Machine$double.eps)*pn
+                pn <- cumsum(pn)
+
+                k <- n*(M-1)/2
+                erg <- ifelse(n%%2 == 0, (pn[k]+pn[k+1])/2, pn[k+1])
+                if(cont == "right") erg <- 1 - erg
+            }
+        }
+
+        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
+
+        return(list(fiUnOvShoot = list(distribution = .getDistr(eval(IC at CallL2Fam)),
+                    neighborhood = nghb, value = erg)))
+    })
+setMethod("getRiskIC", signature(IC = "IC",
+                                 risk = "fiUnOvShoot",
+                                 neighbor = "TotalVarNeighborhood",
+                                 L2Fam = "missing"),
+    function(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left"){
+        L2Fam <- eval(IC at CallL2Fam)
+        Distr <- L2Fam at distribution
+        if(!is(Distr, "Norm"))
+            stop("restricted to 1-dimensional normal location")
+
+        delta <- neighbor at radius
+        tau <- risk at width
+
+        if(!(is(IC, "ContIC") | is(IC, "TotalVarIC")))
+            stop("'IC' has to be of class 'ContIC' or 'TotalVarIC'")
+        if(is(IC, "ContIC"))
+            clip <- clip(IC)/as.vector(stand(IC))
+        if(is(IC, "TotalVarIC"))
+            clip <- clipUp(IC)/as.vector(stand(IC))
+
+        n <- sampleSize
+        m <- getdistrOption("DefaultNrFFTGridPointsExponent")
+
+        if(delta >= pnorm(risk at width) - 0.5){
+            warning("disjointness condition is violated!")
+            erg <- 0.5
+        }else{
+            if(Algo == "B"){
+                if(cont == "left"){
+                    delta1 <- min(pnorm(-clip-tau)+delta, 1) + 1 - min(pnorm(clip-tau)+delta, 1)
+                    K1 <- dbinom(0:n, size = n, prob = delta1)
+                    P1 <- min(pnorm(-clip-tau) + delta, 1)
+                    p1 <- min(P1/delta1, 1)
+
+                    summe1 <- numeric(n+1)
+                    summe1[1] <- 1 - conv.tnorm(z = 0, A = -clip, B = clip, mu = -tau, n = n, m = m)
+                    for(k in 1:(n-1)){
+                        j <- 0:k
+                        z <- clip*(k-2*j)
+                        P1.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = -tau, n = n-k, m = m)
+                        summe1[k+1] <- sum((1-P1.ste)*dbinom(j, size = k, prob = p1))
+                    }
+                    summe1[n+1] <- 1 - 0.5*(pbinom(q = n/2, size = n, prob = p1)
+                                            + pbinom(q = n/2-0.1, size = n, prob = p1))
+                    erg <- sum(summe1*K1)
+                }else{
+                    delta2 <- max(0, pnorm(-clip+tau)-delta) + 1 - max(0, pnorm(clip+tau)-delta)
+                    K2 <- dbinom(0:n, size = n, prob = delta2)
+                    P2 <- max(0, pnorm(-clip+tau) - delta)
+                    p2 <- P2/delta2
+
+                    summe2 <- numeric(n+1)
+                    summe2[1] <- conv.tnorm(z = 0, A = -clip, B = clip, mu = tau, n = n, m = m)
+                    for(k in 1:(n-1)){
+                        j <- 0:k
+                        z <- clip*(k-2*j)
+                        P2.ste <- sapply(z, conv.tnorm, A = -clip, B = clip, mu = tau, n = n-k, m = m)
+                        summe2[k+1] <- sum(P2.ste*dbinom(j, size = k, prob = p2))
+                    }
+                    summe2[n+1] <- 0.5*(pbinom(q = n/2, size = n, prob = p2)
+                                        + pbinom(q = n/2-0.1, size = n, prob = p2))
+                    erg <- sum(summe2*K2)
+                }
+            }else{
+                M <- 2^m
+                h <- 2*clip/M
+                x <- seq(from = -clip, to = clip, by = h)
+
+                if(cont == "right"){
+                    p1 <- pnorm(x+tau)
+                    p1 <- p1[2:(M + 1)] - p1[1:M]
+                    p1[1] <- p1[1] + pnorm(-clip+tau) - delta
+                    p1[M] <- p1[M] + pnorm(-clip-tau) + delta
+                }else{
+                    p1 <- pnorm(x-tau)
+                    p1 <- p1[2:(M + 1)] - p1[1:M]
+                    p1[1] <- p1[1] + pnorm(-clip-tau) + delta
+                    p1[M] <- p1[M] + pnorm(-clip+tau) - delta
+                }
+
+                ## FFT
+                pn <- c(p1, numeric((n-1)*M))
+
+                ## convolution theorem for DFTs
+                pn <- Re(fft(fft(pn)^n, inverse = TRUE)) / (n*M)
+                pn <- (abs(pn) >= .Machine$double.eps)*pn
+                pn <- cumsum(pn)
+
+                k <- n*(M-1)/2
+                erg <- ifelse(n%%2 == 0, (pn[k]+pn[k+1])/2, pn[k+1])
+                if(cont == "right") erg <- 1-erg
+            }
+        }
+
+        nghb <- paste(neighbor at type, "with radius", neighbor at radius)
+
+        return(list(fiUnOvShoot = list(distribution = .getDistr(eval(IC at CallL2Fam)),
+                    neighborhood = nghb, value = erg)))
+    })

Added: pkg/RobAStBase/R/utils.R
===================================================================
--- pkg/RobAStBase/R/utils.R	                        (rev 0)
+++ pkg/RobAStBase/R/utils.R	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,16 @@
+.eq <-function(x,y = 0*x, tol = 1e-7) abs(x-y)<tol
+
+.getDistr <- function(L2Fam){
+        slots <- slotNames(L2Fam at distribution@param)
+        slots <- slots[slots != "name"]
+        nrvalues <- length(slots)
+        if (nrvalues > 0) {
+            values = numeric(nrvalues)
+            for (i in 1:nrvalues) 
+                values[i] <- attributes(attributes(L2Fam at distribution)$param)[[slots[i]]]
+
+            paramstring <- paste("(", paste(values, collapse = ", "), ")", sep = "")
+        }
+        distr <- paste(class(L2Fam at distribution)[1], paramstring, sep = "")
+}
+

Modified: pkg/RobAStBase/chm/00Index.html
===================================================================
--- pkg/RobAStBase/chm/00Index.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/00Index.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -50,8 +50,8 @@
 <table width="100%">
 <tr><td width="25%"><a href="BdStWeight-class.html">BdStWeight-class</a></td>
 <td>Robust Weight classes for bounded, standardized weights</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">biastype,ContIC-method</a></td>
-<td>Influence curve of contamination type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">biastype,HampIC-method</a></td>
+<td>Influence curve of Hampel type</td></tr>
 <tr><td width="25%"><a href="BoundedWeight-class.html">BoundedWeight-class</a></td>
 <td>Robust Weight classes for bounded weights</td></tr>
 </table>
@@ -169,6 +169,38 @@
 <td>Generic Function for making ICs consistent at a possibly different model</td></tr>
 <tr><td width="25%"><a href="generateICfct.html">generateIC.fct-methods</a></td>
 <td>Generic Function for making ICs consistent at a possibly different model</td></tr>
+<tr><td width="25%"><a href="getBiasIC.html">getBiasIC</a></td>
+<td>Generic function for the computation of the asymptotic bias for an IC</td></tr>
+<tr><td width="25%"><a href="getBiasIC.html">getBiasIC,IC,UncondNeighborhood-method</a></td>
+<td>Generic function for the computation of the asymptotic bias for an IC</td></tr>
+<tr><td width="25%"><a href="getBiasIC.html">getBiasIC-methods</a></td>
+<td>Generic function for the computation of the asymptotic bias for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asBias,UncondNeighborhood,missing-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asCov,missing,L2ParamFamily-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asCov,missing,missing-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,asMSE,UncondNeighborhood,missing-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,trAsCov,missing,L2ParamFamily-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,IC,trAsCov,missing,missing-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
+<tr><td width="25%"><a href="getRiskIC.html">getRiskIC-methods</a></td>
+<td>Generic function for the computation of a risk for an IC</td></tr>
 <tr><td width="25%"><a href="getweight.html">getweight</a></td>
 <td>Generating weights</td></tr>
 <tr><td width="25%"><a href="getweight.html">getweight,BdStWeight,TotalVarNeighborhood,BiasType-method</a></td>
@@ -188,6 +220,8 @@
 <table width="100%">
 <tr><td width="25%"><a href="HampelWeight-class.html">HampelWeight-class</a></td>
 <td>Robust Weight classes for weights of Hampel type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">HampIC-class</a></td>
+<td>Influence curve of Hampel type</td></tr>
 </table>
 
 <h2><a name="I">-- I --</a></h2>
@@ -226,12 +260,10 @@
 <td>Generic function for the computation of location M estimators</td></tr>
 <tr><td width="25%"><a href="locMEstimator.html">locMEstimator-methods</a></td>
 <td>Generic function for the computation of location M estimators</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">lowerCase</a></td>
-<td>Influence curve of contamination type</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">lowerCase,ContIC-method</a></td>
-<td>Influence curve of contamination type</td></tr>
-<tr><td width="25%"><a href="TotalVarIC-class.html">lowerCase,TotalVarIC-method</a></td>
-<td>Influence curve of total variation type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">lowerCase</a></td>
+<td>Influence curve of Hampel type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">lowerCase,HampIC-method</a></td>
+<td>Influence curve of Hampel type</td></tr>
 <tr><td width="25%"><a href="ContIC-class.html">lowerCase&lt;-,ContIC-method</a></td>
 <td>Influence curve of contamination type</td></tr>
 <tr><td width="25%"><a href="TotalVarIC-class.html">lowerCase&lt;-,TotalVarIC-method</a></td>
@@ -241,13 +273,13 @@
 <h2><a name="M">-- M --</a></h2>
 
 <table width="100%">
-<tr><td width="25%"><a href="makeIC.html">makeIC</a></td>
+<tr><td width="25%"><a href="makeIC-methods.html">makeIC</a></td>
 <td>Generic Function for making ICs consistent at a possibly different model</td></tr>
-<tr><td width="25%"><a href="makeIC.html">makeIC,IC,L2ParamFamily-method</a></td>
+<tr><td width="25%"><a href="makeIC-methods.html">makeIC,IC,L2ParamFamily-method</a></td>
 <td>Generic Function for making ICs consistent at a possibly different model</td></tr>
-<tr><td width="25%"><a href="makeIC.html">makeIC,IC,missing-method</a></td>
+<tr><td width="25%"><a href="makeIC-methods.html">makeIC,IC,missing-method</a></td>
 <td>Generic Function for making ICs consistent at a possibly different model</td></tr>
-<tr><td width="25%"><a href="makeIC.html">makeIC-methods</a></td>
+<tr><td width="25%"><a href="makeIC-methods.html">makeIC-methods</a></td>
 <td>Generic Function for making ICs consistent at a possibly different model</td></tr>
 <tr><td width="25%"><a href="InfluenceCurve-class.html">Map,InfluenceCurve-method</a></td>
 <td>Influence curve</td></tr>
@@ -294,18 +326,14 @@
 <td>Robust model</td></tr>
 <tr><td width="25%"><a href="Neighborhood-class.html">Neighborhood-class</a></td>
 <td>Neighborhood</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">neighborRadius</a></td>
-<td>Influence curve of contamination type</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">neighborRadius,ContIC-method</a></td>
-<td>Influence curve of contamination type</td></tr>
-<tr><td width="25%"><a href="TotalVarIC-class.html">neighborRadius,TotalVarIC-method</a></td>
-<td>Influence curve of total variation type</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">neighborRadius&lt;-,ContIC-method</a></td>
-<td>Influence curve of contamination type</td></tr>
-<tr><td width="25%"><a href="TotalVarIC-class.html">neighborRadius&lt;-,TotalVarIC-method</a></td>
-<td>Influence curve of total variation type</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">normtype,ContIC-method</a></td>
-<td>Influence curve of contamination type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">neighborRadius</a></td>
+<td>Influence curve of Hampel type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">neighborRadius,HampIC-method</a></td>
+<td>Influence curve of Hampel type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">neighborRadius&lt;-,HampIC-method</a></td>
+<td>Influence curve of Hampel type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">normtype,HampIC-method</a></td>
+<td>Influence curve of Hampel type</td></tr>
 </table>
 
 <h2><a name="O">-- O --</a></h2>
@@ -378,14 +406,12 @@
 <td>Neighborhood</td></tr>
 <tr><td width="25%"><a href="TotalVarIC-class.html">show,TotalVarIC-method</a></td>
 <td>Influence curve of total variation type</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">stand</a></td>
-<td>Influence curve of contamination type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">stand</a></td>
+<td>Influence curve of Hampel type</td></tr>
 <tr><td width="25%"><a href="BdStWeight-class.html">stand,BdStWeight-method</a></td>
 <td>Robust Weight classes for bounded, standardized weights</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">stand,ContIC-method</a></td>
-<td>Influence curve of contamination type</td></tr>
-<tr><td width="25%"><a href="TotalVarIC-class.html">stand,TotalVarIC-method</a></td>
-<td>Influence curve of total variation type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">stand,HampIC-method</a></td>
+<td>Influence curve of Hampel type</td></tr>
 <tr><td width="25%"><a href="BdStWeight-class.html">stand&lt;-,BdStWeight-method</a></td>
 <td>Robust Weight classes for bounded, standardized weights</td></tr>
 <tr><td width="25%"><a href="ContIC-class.html">stand&lt;-,ContIC-method</a></td>
@@ -421,13 +447,13 @@
 <table width="100%">
 <tr><td width="25%"><a href="RobWeight-class.html">weight</a></td>
 <td>Robust Weight classes</td></tr>
-<tr><td width="25%"><a href="ContIC-class.html">weight,ContIC-method</a></td>
-<td>Influence curve of contamination type</td></tr>
+<tr><td width="25%"><a href="HampIC-class.html">weight,HampIC-method</a></td>
+<td>Influence curve of Hampel type</td></tr>
 <tr><td width="25%"><a href="RobWeight-class.html">weight,RobWeight-method</a></td>
 <td>Robust Weight classes</td></tr>
-<tr><td width="25%"><a href="TotalVarIC-class.html">weight,TotalVarIC-method</a></td>
-<td>Influence curve of total variation type</td></tr>
 <tr><td width="25%"><a href="RobWeight-class.html">weight&lt;-,RobWeight-method</a></td>
 <td>Robust Weight classes</td></tr>
+<tr><td width="25%"><a href="RobWeight-class.html">weight&lt;--methods</a></td>
+<td>Robust Weight classes</td></tr>
 </table>
 </body></html>

Modified: pkg/RobAStBase/chm/ContIC-class.html
===================================================================
--- pkg/RobAStBase/chm/ContIC-class.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/ContIC-class.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -15,21 +15,10 @@
 <param name="keyword" value="R:   clip,ContIC-method">
 <param name="keyword" value="R:   clip<-">
 <param name="keyword" value="R:   clip<-,ContIC-method">
-<param name="keyword" value="R:   lowerCase">
-<param name="keyword" value="R:   lowerCase,ContIC-method">
 <param name="keyword" value="R:   lowerCase<-">
 <param name="keyword" value="R:   lowerCase<-,ContIC-method">
-<param name="keyword" value="R:   neighborRadius">
-<param name="keyword" value="R:   neighborRadius,ContIC-method">
-<param name="keyword" value="R:   neighborRadius<-">
-<param name="keyword" value="R:   neighborRadius<-,ContIC-method">
-<param name="keyword" value="R:   stand">
-<param name="keyword" value="R:   stand,ContIC-method">
 <param name="keyword" value="R:   stand<-">
 <param name="keyword" value="R:   stand<-,ContIC-method">
-<param name="keyword" value="R:   weight,ContIC-method">
-<param name="keyword" value="R:   biastype,ContIC-method">
-<param name="keyword" value="R:   normtype,ContIC-method">
 <param name="keyword" value="R:   generateIC,ContNeighborhood,L2ParamFamily-method">
 <param name="keyword" value="R:   show,ContIC-method">
 <param name="keyword" value=" Influence curve of contamination type">
@@ -116,7 +105,8 @@
 <h3>Extends</h3>
 
 <p>
-Class <code>"IC"</code>, directly.<br>
+Class <code>"HampIC"</code>, directly.<br>
+Class <code>"IC"</code>, by class <code>"HampIC"</code>.<br>
 Class <code>"InfluenceCurve"</code>, by class <code>"IC"</code>.
 </p>
 
@@ -144,36 +134,14 @@
 replacement function for slot <code>clip</code>. </dd>
 
 
-<dt>stand</dt><dd><code>signature(object = "ContIC")</code>: 
-accessor function for slot <code>stand</code>. </dd>
-
-
 <dt>stand&lt;-</dt><dd><code>signature(object = "ContIC")</code>:
 replacement function for slot <code>stand</code>. </dd>
 
 
-<dt>weight</dt><dd><code>signature(object = "ContIC")</code>: 
-accessor function for slot <code>weight</code>. </dd>
-<dt>biastype</dt><dd><code>signature(object = "ContIC")</code>: 
-accessor function for slot <code>biastype</code>. </dd>
-<dt>normtype</dt><dd><code>signature(object = "ContIC")</code>: 
-accessor function for slot <code>normtype</code>. </dd>
-<dt>lowerCase</dt><dd><code>signature(object = "ContIC")</code>: 
-accessor function for slot <code>lowerCase</code>. </dd>
-
-
 <dt>lowerCase&lt;-</dt><dd><code>signature(object = "ContIC")</code>: 
 replacement function for slot <code>lowerCase</code>. </dd>
 
 
-<dt>neighborRadius</dt><dd><code>signature(object = "ContIC")</code>: 
-accessor function for slot <code>neighborRadius</code>. </dd>
-
-
-<dt>neighborRadius&lt;-</dt><dd><code>signature(object = "ContIC")</code>: 
-replacement function for slot <code>neighborRadius</code>. </dd>
-
-
 <dt>generateIC</dt><dd><code>signature(neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily")</code>:
 generate an object of class <code>"ContIC"</code>. Rarely called directly. </dd>
 
@@ -202,7 +170,7 @@
 <h3>See Also</h3>
 
 <p>
-<code><a href="IC-class.html">IC-class</a></code>, <code><a href="ContIC.html">ContIC</a></code>
+<code><a href="IC-class.html">IC-class</a></code>, <code><a href="ContIC.html">ContIC</a></code> <code><a href="HampIC-class.html">HampIC-class</a></code>
 </p>
 
 

Modified: pkg/RobAStBase/chm/ContIC.html
===================================================================
--- pkg/RobAStBase/chm/ContIC.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/ContIC.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -113,7 +113,7 @@
 <h3>See Also</h3>
 
 <p>
-<code><a href="IC-class.html">IC-class</a></code>, <code><a href="ContIC.html">ContIC</a></code>
+<code><a href="IC-class.html">IC-class</a></code>, <code><a href="ContIC.html">ContIC</a></code> , <code><a href="HampIC-class.html">HampIC-class</a></code>
 </p>
 
 

Added: pkg/RobAStBase/chm/HampIC-class.html
===================================================================
--- pkg/RobAStBase/chm/HampIC-class.html	                        (rev 0)
+++ pkg/RobAStBase/chm/HampIC-class.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,172 @@
+<html><head><title>Influence curve of Hampel type</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<link rel="stylesheet" type="text/css" href="Rchm.css">
+</head>
+<body>
+
+<table width="100%"><tr><td>HampIC-class(RobAStBase)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
+<param name="keyword" value="R:   HampIC-class">
+<param name="keyword" value="R:   lowerCase">
+<param name="keyword" value="R:   lowerCase,HampIC-method">
+<param name="keyword" value="R:   neighborRadius">
+<param name="keyword" value="R:   neighborRadius,HampIC-method">
+<param name="keyword" value="R:   neighborRadius<-">
+<param name="keyword" value="R:   neighborRadius<-,HampIC-method">
+<param name="keyword" value="R:   stand">
+<param name="keyword" value="R:   stand,HampIC-method">
+<param name="keyword" value="R:   weight,HampIC-method">
+<param name="keyword" value="R:   biastype,HampIC-method">
+<param name="keyword" value="R:   normtype,HampIC-method">
+<param name="keyword" value=" Influence curve of Hampel type">
+</object>
+
+
+<h2>Influence curve of Hampel type</h2>
+
+
+<h3>Description</h3>
+
+<p>
+Class of (partial) influence curves of Hampel (= total variation or contamination) type;
+used as common mother class for classes <code>ContIC</code> and <code>TotalVarIC</code>.
+</p>
+
+
+<h3>Objects from the Class</h3>
+
+<p>
+Objects can be created by calls of the form <code>new("HampIC", ...)</code>.
+</p>
+
+
+<h3>Slots</h3>
+
+<dl>
+<dt><code>CallL2Fam</code>:</dt><dd>object of class <code>"call"</code>:
+creates an object of the underlying L2-differentiable
+parametric family. </dd>
+
+
+<dt><code>name</code>:</dt><dd>object of class <code>"character"</code> </dd>
+
+
+<dt><code>Curve</code>:</dt><dd>object of class <code>"EuclRandVarList"</code></dd>
+
+
+<dt><code>Risks</code>:</dt><dd>object of class <code>"list"</code>:
+list of risks; cf. <code><a onclick="findlink('distrMod', 'RiskType-class.html')" style="text-decoration: underline; color: blue; cursor: hand">RiskType-class</a></code>. </dd>
+
+
+<dt><code>Infos</code>:</dt><dd>object of class <code>"matrix"</code>
+with two columns named <code>method</code> and <code>message</code>:
+additional informations. </dd>
+
+
+<dt><code>stand</code>:</dt><dd>object of class <code>"matrix"</code>:
+standardizing matrix. </dd>
+
+
+<dt><code>weight</code>:</dt><dd>object of class <code>"RobWeight"</code>:
+weight function </dd>
+
+
+<dt><code>biastype</code>:</dt><dd>object of class <code>"BiasType"</code>:
+bias type (symmetric/onsided/asymmetric) </dd>
+<dt><code>normtype</code>:</dt><dd>object of class <code>"NormType"</code>:
+norm type (Euclidean, information/self-standardized)</dd>
+
+
+<dt><code>lowerCase</code>:</dt><dd>object of class <code>"OptionalNumeric"</code>:
+optional constant for lower case solution. </dd>
+
+
+<dt><code>neighborRadius</code>:</dt><dd>object of class <code>"numeric"</code>:
+radius of the corresponding (unconditional) contamination
+neighborhood. </dd>
+</dl>
+
+<h3>Extends</h3>
+
+<p>
+Class <code>"IC"</code>, directly.<br>
+Class <code>"InfluenceCurve"</code>, by class <code>"IC"</code>.
+</p>
+
+
+<h3>Methods</h3>
+
+<dl>
+</p>
+
+<dt>stand</dt><dd><code>signature(object = "HampIC")</code>:
+accessor function for slot <code>stand</code>. </dd>
+
+
+<dt>weight</dt><dd><code>signature(object = "HampIC")</code>:
+accessor function for slot <code>weight</code>. </dd>
+
+
+<dt>biastype</dt><dd><code>signature(object = "HampIC")</code>:
+accessor function for slot <code>biastype</code>. </dd>
+<dt>normtype</dt><dd><code>signature(object = "HampIC")</code>:
+accessor function for slot <code>normtype</code>. </dd>
+<dt>lowerCase</dt><dd><code>signature(object = "HampIC")</code>:
+accessor function for slot <code>lowerCase</code>. </dd>
+
+
+<dt>neighborRadius</dt><dd><code>signature(object = "HampIC")</code>:
+accessor function for slot <code>neighborRadius</code>. </dd>
+
+
+<dt>neighborRadius&lt;-</dt><dd><code>signature(object = "HampIC")</code>:
+replacement function for slot <code>neighborRadius</code>. </dd>
+
+<p>
+</dl>
+
+<h3>Author(s)</h3>
+
+<p>
+Peter Ruckdeschel <a href="mailto:Peter Ruckdeschel at uni-bayreuth.de">Peter Ruckdeschel at uni-bayreuth.de</a>
+</p>
+
+
+<h3>References</h3>
+
+<p>
+Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
+</p>
+<p>
+Kohl, M. (2005) <EM>Numerical Hampributions to the Asymptotic Theory of Robustness</EM>.
+Bayreuth: Dissertation.
+</p>
+
+
+<h3>See Also</h3>
+
+<p>
+<code><a href="IC-class.html">IC-class</a></code>
+</p>
+
+
+<h3>Examples</h3>
+
+<pre>
+IC1 &lt;- new("HampIC")
+plot(IC1)
+</pre>
+
+<script Language="JScript">
+function findlink(pkg, fn) {
+var Y, link;
+Y = location.href.lastIndexOf("\\") + 1;
+link = location.href.substring(0, Y);
+link = link + "../../" + pkg + "/chtml/" + pkg + ".chm::/" + fn;
+location.href = link;
+}
+</script>
+
+
+<hr><div align="center">[Package <em>RobAStBase</em> version 0.1.0 <a href="00Index.html">Index]</a></div>
+
+</body></html>

Modified: pkg/RobAStBase/chm/RobAStBase.chm
===================================================================
(Binary files differ)

Modified: pkg/RobAStBase/chm/RobAStBase.hhp
===================================================================
--- pkg/RobAStBase/chm/RobAStBase.hhp	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/RobAStBase.hhp	2008-03-28 02:21:40 UTC (rev 80)
@@ -20,6 +20,7 @@
 ContNeighborhood.html
 FixRobModel-class.html
 FixRobModel.html
+HampIC-class.html
 HampelWeight-class.html
 IC-class.html
 IC.html
@@ -40,9 +41,12 @@
 evalIC.html
 generateIC.html
 generateICfct.html
+getBiasIC.html
+getRiskIC.html
 getweight.html
 infoPlot.html
+internals.html
 locMEstimator.html
-makeIC.html
+makeIC-methods.html
 oneStepEstimator.html
 optIC.html

Modified: pkg/RobAStBase/chm/RobAStBase.toc
===================================================================
--- pkg/RobAStBase/chm/RobAStBase.toc	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/RobAStBase.toc	2008-03-28 02:21:40 UTC (rev 80)
@@ -10,6 +10,14 @@
 </OBJECT>
 <UL>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value=".eq">
+<param name="Local" value="internals.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value=".getDistr">
+<param name="Local" value="internals.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="addInfo<-">
 <param name="Local" value="InfluenceCurve-class.html">
 </OBJECT>
@@ -30,8 +38,8 @@
 <param name="Local" value="BdStWeight-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="biastype,ContIC-method">
-<param name="Local" value="ContIC-class.html">
+<param name="Name" value="biastype,HampIC-method">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="BoundedWeight-class">
@@ -242,6 +250,70 @@
 <param name="Local" value="generateICfct.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getBiasIC">
+<param name="Local" value="getBiasIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getBiasIC,IC,UncondNeighborhood-method">
+<param name="Local" value="getBiasIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getBiasIC-methods">
+<param name="Local" value="getBiasIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,asBias,UncondNeighborhood,missing-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,asCov,missing,L2ParamFamily-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,asCov,missing,missing-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,asMSE,UncondNeighborhood,missing-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,trAsCov,missing,L2ParamFamily-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,IC,trAsCov,missing,missing-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="getRiskIC-methods">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="getweight">
 <param name="Local" value="getweight.html">
 </OBJECT>
@@ -270,6 +342,10 @@
 <param name="Local" value="HampelWeight-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="HampIC-class">
+<param name="Local" value="HampIC-class.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="IC">
 <param name="Local" value="IC.html">
 </OBJECT>
@@ -318,6 +394,10 @@
 <param name="Local" value="InfRobModel-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="internals_for_RobAStBase">
+<param name="Local" value="internals.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="locMEstimator">
 <param name="Local" value="locMEstimator.html">
 </OBJECT>
@@ -331,17 +411,13 @@
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="lowerCase">
-<param name="Local" value="ContIC-class.html">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="lowerCase,ContIC-method">
-<param name="Local" value="ContIC-class.html">
+<param name="Name" value="lowerCase,HampIC-method">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="lowerCase,TotalVarIC-method">
-<param name="Local" value="TotalVarIC-class.html">
-</OBJECT>
-<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="lowerCase<-">
 <param name="Local" value="ContIC-class.html">
 </OBJECT>
@@ -355,19 +431,19 @@
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="makeIC">
-<param name="Local" value="makeIC.html">
+<param name="Local" value="makeIC-methods.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="makeIC,IC,L2ParamFamily-method">
-<param name="Local" value="makeIC.html">
+<param name="Local" value="makeIC-methods.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="makeIC,IC,missing-method">
-<param name="Local" value="makeIC.html">
+<param name="Local" value="makeIC-methods.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="makeIC-methods">
-<param name="Local" value="makeIC.html">
+<param name="Local" value="makeIC-methods.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Map,InfluenceCurve-method">
@@ -455,33 +531,25 @@
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="neighborRadius">
-<param name="Local" value="ContIC-class.html">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="neighborRadius,ContIC-method">
-<param name="Local" value="ContIC-class.html">
+<param name="Name" value="neighborRadius,HampIC-method">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="neighborRadius,TotalVarIC-method">
-<param name="Local" value="TotalVarIC-class.html">
-</OBJECT>
-<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="neighborRadius<-">
-<param name="Local" value="ContIC-class.html">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="neighborRadius<-,ContIC-method">
-<param name="Local" value="ContIC-class.html">
+<param name="Name" value="neighborRadius<-,HampIC-method">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="neighborRadius<-,TotalVarIC-method">
-<param name="Local" value="TotalVarIC-class.html">
+<param name="Name" value="normtype,HampIC-method">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="normtype,ContIC-method">
-<param name="Local" value="ContIC-class.html">
-</OBJECT>
-<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="oneStepEstimator">
 <param name="Local" value="oneStepEstimator.html">
 </OBJECT>
@@ -591,21 +659,17 @@
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="stand">
-<param name="Local" value="ContIC-class.html">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="stand,BdStWeight-method">
 <param name="Local" value="BdStWeight-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="stand,ContIC-method">
-<param name="Local" value="ContIC-class.html">
+<param name="Name" value="stand,HampIC-method">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="stand,TotalVarIC-method">
-<param name="Local" value="TotalVarIC-class.html">
-</OBJECT>
-<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="stand<-">
 <param name="Local" value="ContIC-class.html">
 </OBJECT>
@@ -650,18 +714,14 @@
 <param name="Local" value="RobWeight-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="weight,ContIC-method">
-<param name="Local" value="ContIC-class.html">
+<param name="Name" value="weight,HampIC-method">
+<param name="Local" value="HampIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="weight,RobWeight-method">
 <param name="Local" value="RobWeight-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
-<param name="Name" value="weight,TotalVarIC-method">
-<param name="Local" value="TotalVarIC-class.html">
-</OBJECT>
-<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="weight<-">
 <param name="Local" value="RobWeight-class.html">
 </OBJECT>
@@ -669,6 +729,10 @@
 <param name="Name" value="weight<-,RobWeight-method">
 <param name="Local" value="RobWeight-class.html">
 </OBJECT>
+<LI> <OBJECT type="text/sitemap">
+<param name="Name" value="weight<--methods">
+<param name="Local" value="RobWeight-class.html">
+</OBJECT>
 </UL>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Package RobAStBase:  Titles">
@@ -728,9 +792,13 @@
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Generic Function for making ICs consistent at a possibly different model">
-<param name="Local" value="makeIC.html">
+<param name="Local" value="makeIC-methods.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="Generic function for the computation of a risk for an IC">
+<param name="Local" value="getRiskIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Generic function for the computation of location M estimators">
 <param name="Local" value="locMEstimator.html">
 </OBJECT>
@@ -743,6 +811,10 @@
 <param name="Local" value="optIC.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="Generic function for the computation of the asymptotic bias for an IC">
+<param name="Local" value="getBiasIC.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Generic function for the generation of influence curves">
 <param name="Local" value="generateIC.html">
 </OBJECT>
@@ -755,10 +827,18 @@
 <param name="Local" value="ContIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="Influence curve of Hampel type">
+<param name="Local" value="HampIC-class.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Influence curve of total variation type">
 <param name="Local" value="TotalVarIC-class.html">
 </OBJECT>
 <LI> <OBJECT type="text/sitemap">
+<param name="Name" value="Internal / Helper functions of package RobAStBase">
+<param name="Local" value="internals.html">
+</OBJECT>
+<LI> <OBJECT type="text/sitemap">
 <param name="Name" value="Neighborhood">
 <param name="Local" value="Neighborhood-class.html">
 </OBJECT>

Modified: pkg/RobAStBase/chm/RobWeight-class.html
===================================================================
--- pkg/RobAStBase/chm/RobWeight-class.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/RobWeight-class.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -7,11 +7,12 @@
 <table width="100%"><tr><td>RobWeight-class(RobAStBase)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
 <param name="keyword" value="R:   RobWeight-class">
 <param name="keyword" value="R:   name,RobWeight-method">
-<param name="keyword" value="R:   weight,RobWeight-method">
 <param name="keyword" value="R:   name<-,RobWeight-method">
+<param name="keyword" value="R:   weight,RobWeight-method">
+<param name="keyword" value="R:   weight">
+<param name="keyword" value="R:   weight<--methods">
 <param name="keyword" value="R:   weight<-,RobWeight-method">
 <param name="keyword" value="R:   weight<-">
-<param name="keyword" value="R:   weight">
 <param name="keyword" value=" Robust Weight classes">
 </object>
 
@@ -52,13 +53,11 @@
 
 
 <dt>weight</dt><dd><code>signature(object = "RobWeight")</code>: 
-accessor function for slot <code>name</code>. </dd>
+accessor function for slot <code>weight</code>. </dd>
 
 
-<dt>weight&lt;-</dt><dd><code>signature(object = "RobWeight", value = "function")</code>: 
+<dt>weight&lt;-</dt><dd><code>signature(object = "RobWeight", value = "ANY")</code>: 
 replacement function for slot <code>weight</code>. </dd>
-
-<p>
 </dl>
 
 <h3>Author(s)</h3>

Modified: pkg/RobAStBase/chm/TotalVarIC-class.html
===================================================================
--- pkg/RobAStBase/chm/TotalVarIC-class.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/TotalVarIC-class.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -15,14 +15,9 @@
 <param name="keyword" value="R:   clipUp,TotalVarIC-method">
 <param name="keyword" value="R:   clipUp<-">
 <param name="keyword" value="R:   clipUp<-,TotalVarIC-method">
-<param name="keyword" value="R:   lowerCase,TotalVarIC-method">
 <param name="keyword" value="R:   lowerCase<-,TotalVarIC-method">
-<param name="keyword" value="R:   neighborRadius,TotalVarIC-method">
-<param name="keyword" value="R:   neighborRadius<-,TotalVarIC-method">
 <param name="keyword" value="R:   show,TotalVarIC-method">
-<param name="keyword" value="R:   stand,TotalVarIC-method">
 <param name="keyword" value="R:   stand<-,TotalVarIC-method">
-<param name="keyword" value="R:   weight,TotalVarIC-method">
 <param name="keyword" value="R:   generateIC,TotalVarNeighborhood,L2ParamFamily-method">
 <param name="keyword" value=" Influence curve of total variation type">
 </object>
@@ -100,7 +95,8 @@
 <h3>Extends</h3>
 
 <p>
-Class <code>"IC"</code>, directly.<br>
+Class <code>"HampIC"</code>, directly.<br>
+Class <code>"IC"</code>, by class <code>"HampIC"</code>.<br>
 Class <code>"InfluenceCurve"</code>, by class <code>"IC"</code>.
 </p>
 
@@ -128,26 +124,10 @@
 replacement function for slot <code>clipUp</code>. </dd>
 
 
-<dt>stand</dt><dd><code>signature(object = "TotalVarIC")</code>: 
-accessor function for slot <code>stand</code>. </dd>
-
-
 <dt>stand&lt;-</dt><dd><code>signature(object = "TotalVarIC")</code>:
 replacement function for slot <code>stand</code>. </dd>
 
 
-<dt>weight</dt><dd><code>signature(object = "TotalVarIC")</code>: 
-accessor function for slot <code>weight</code>. </dd>
-
-
-<dt>neighborRadius</dt><dd><code>signature(object = "TotalVarIC")</code>: 
-accessor function for slot <code>neighborRadius</code>. </dd>
-
-
-<dt>neighborRadius&lt;-</dt><dd><code>signature(object = "TotalVarIC")</code>: 
-replacement function for slot <code>neighborRadius</code>. </dd>
-
-
 <dt>generateIC</dt><dd><code>signature(neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily")</code>:
 generate an object of class <code>"TotalVarIC"</code>. Rarely called directly. </dd>
 
@@ -176,7 +156,7 @@
 <h3>See Also</h3>
 
 <p>
-<code><a href="IC-class.html">IC-class</a></code>, <code><a href="ContIC.html">ContIC</a></code>
+<code><a href="IC-class.html">IC-class</a></code>, <code><a href="ContIC.html">ContIC</a></code>, <code><a href="HampIC-class.html">HampIC-class</a></code>
 </p>
 
 

Added: pkg/RobAStBase/chm/getBiasIC.html
===================================================================
--- pkg/RobAStBase/chm/getBiasIC.html	                        (rev 0)
+++ pkg/RobAStBase/chm/getBiasIC.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,138 @@
+<html><head><title>Generic function for the computation of the asymptotic bias for an IC</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<link rel="stylesheet" type="text/css" href="Rchm.css">
+</head>
+<body>
+
+<table width="100%"><tr><td>getBiasIC(RobAStBase)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
+<param name="keyword" value="R:   getBiasIC">
+<param name="keyword" value="R:   getBiasIC-methods">
+<param name="keyword" value="R:   getBiasIC,IC,UncondNeighborhood-method">
+<param name="keyword" value=" Generic function for the computation of the asymptotic bias for an IC">
+</object>
+
+
+<h2>Generic function for the computation of the asymptotic bias for an IC</h2>
+
+
+<h3>Description</h3>
+
+<p>
+Generic function for the computation of the asymptotic bias for an IC.
+</p>
+
+
+<h3>Usage</h3>
+
+<pre>
+getBiasIC(IC, neighbor, ...)
+
+## S4 method for signature 'IC, UncondNeighborhood':
+getBiasIC(IC, neighbor, L2Fam, biastype = symmetricBias(),
+             normtype = NormType(), tol = .Machine$double.eps^0.25)
+</pre>
+
+
+<h3>Arguments</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>IC</code></td>
+<td>
+object of class <code>"InfluenceCurve"</code> </td></tr>
+<tr valign="top"><td><code>neighbor</code></td>
+<td>
+object of class <code>"Neighborhood"</code>. </td></tr>
+<tr valign="top"><td><code>...</code></td>
+<td>
+additional parameters </td></tr>
+<tr valign="top"><td><code>L2Fam</code></td>
+<td>
+object of class <code>"L2ParamFamily"</code>. </td></tr>
+<tr valign="top"><td><code>biastype</code></td>
+<td>
+object of class <code>"BiasType"</code></td></tr>
+<tr valign="top"><td><code>normtype</code></td>
+<td>
+object of class <code>"NormType"</code></td></tr>
+<tr valign="top"><td><code>tol</code></td>
+<td>
+the desired accuracy (convergence tolerance).</td></tr>
+</table>
+
+<h3>Details</h3>
+
+
+
+
+<h3>Value</h3>
+
+<p>
+The bias of the IC is computed.</p>
+
+<h3>Methods</h3>
+
+<dl>
+<dt>IC = "IC", neighbor = "UncondNeighborhood"</dt><dd>determines the as. bias by random evaluation of the IC;
+this random evaluation is done by the internal S4-method
+<code>.evalBiasIC</code>; this latter dispatches according to
+the signature <code>IC, neighbor, biastype</code>.<br>
+For signature <code>IC="IC", neighbor = "ContNeighborhood",
+        biastype = "BiasType"</code>, also an argument <code>normtype</code>
+is used to be able to use self- or information standardizing
+norms; besides this the signatures
+<code>IC="IC", neighbor = "TotalVarNeighborhood",
+        biastype = "BiasType"</code>,
+<code>IC="IC", neighbor = "ContNeighborhood",
+        biastype = "onesidedBias"</code>, and
+<code>IC="IC", neighbor = "ContNeighborhood",
+        biastype = "asymmetricBias"</code> are implemented.
+</dd>
+</dl>
+
+<h3>Note</h3>
+
+<p>
+This generic function is still under construction.
+</p>
+
+
+<h3>Author(s)</h3>
+
+<p>
+Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
+</p>
+
+
+<h3>References</h3>
+
+<p>
+Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor.
+Verw. Geb. <B>10</B>:269&ndash;278.
+</p>
+<p>
+Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. <B>8</B>: 106&ndash;115.
+</p>
+<p>
+Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
+</p>
+<p>
+Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>.
+Bayreuth: Dissertation.
+</p>
+<p>
+Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Bias
+of M-estimators on Neighborhoods.
+</p>
+
+
+<h3>See Also</h3>
+
+<p>
+<code><a href="getRiskIC.html">getRiskIC-methods</a></code>, <code><a href="InfRobModel-class.html">InfRobModel-class</a></code>
+</p>
+
+
+
+<hr><div align="center">[Package <em>RobAStBase</em> version 0.1.0 <a href="00Index.html">Index]</a></div>
+
+</body></html>

Added: pkg/RobAStBase/chm/getRiskIC.html
===================================================================
--- pkg/RobAStBase/chm/getRiskIC.html	                        (rev 0)
+++ pkg/RobAStBase/chm/getRiskIC.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,229 @@
+<html><head><title>Generic function for the computation of a risk for an IC</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<link rel="stylesheet" type="text/css" href="Rchm.css">
+</head>
+<body>
+
+<table width="100%"><tr><td>getRiskIC(RobAStBase)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
+<param name="keyword" value="R:   getRiskIC">
+<param name="keyword" value="R:   getRiskIC-methods">
+<param name="keyword" value="R:   getRiskIC,IC,asCov,missing,missing-method">
+<param name="keyword" value="R:   getRiskIC,IC,asCov,missing,L2ParamFamily-method">
+<param name="keyword" value="R:   getRiskIC,IC,trAsCov,missing,missing-method">
+<param name="keyword" value="R:   getRiskIC,IC,trAsCov,missing,L2ParamFamily-method">
+<param name="keyword" value="R:   getRiskIC,IC,asBias,UncondNeighborhood,missing-method">
+<param name="keyword" value="R:   getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method">
+<param name="keyword" value="R:   getRiskIC,IC,asMSE,UncondNeighborhood,missing-method">
+<param name="keyword" value="R:   getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method">
+<param name="keyword" value="R:   getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method">
+<param name="keyword" value="R:   getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method">
+<param name="keyword" value="R:   getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method">
+<param name="keyword" value=" Generic function for the computation of a risk for an IC">
+</object>
+
+
+<h2>Generic function for the computation of a risk for an IC</h2>
+
+
+<h3>Description</h3>
+
+<p>
+Generic function for the computation of a risk for an IC.
+</p>
+
+
+<h3>Usage</h3>
+
+<pre>
+getRiskIC(IC, risk, neighbor, L2Fam, ...)
+
+## S4 method for signature 'IC, asCov, missing, missing':
+getRiskIC(IC, risk, tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'IC, asCov, missing,
+##   L2ParamFamily':
+getRiskIC(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'IC, trAsCov, missing, missing':
+getRiskIC(IC, risk, tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'IC, trAsCov, missing,
+##   L2ParamFamily':
+getRiskIC(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'IC, asBias, UncondNeighborhood,
+##   missing':
+getRiskIC(IC, risk, neighbor, tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'IC, asBias, UncondNeighborhood,
+##   L2ParamFamily':
+getRiskIC(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'IC, asMSE, UncondNeighborhood,
+##   missing':
+getRiskIC(IC, risk, neighbor,  tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'IC, asMSE, UncondNeighborhood,
+##   L2ParamFamily':
+getRiskIC(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
+
+## S4 method for signature 'TotalVarIC, asUnOvShoot,
+##   UncondNeighborhood, missing':
+getRiskIC(IC, risk, neighbor)
+
+## S4 method for signature 'IC, fiUnOvShoot,
+##   ContNeighborhood, missing':
+getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
+
+## S4 method for signature 'IC, fiUnOvShoot,
+##   TotalVarNeighborhood, missing':
+getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
+</pre>
+
+
+<h3>Arguments</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>IC</code></td>
+<td>
+object of class <code>"InfluenceCurve"</code> </td></tr>
+<tr valign="top"><td><code>risk</code></td>
+<td>
+object of class <code>"RiskType"</code>. </td></tr>
+<tr valign="top"><td><code>neighbor</code></td>
+<td>
+object of class <code>"Neighborhood"</code>. </td></tr>
+<tr valign="top"><td><code>L2Fam</code></td>
+<td>
+object of class <code>"L2ParamFamily"</code>. </td></tr>
+<tr valign="top"><td><code>...</code></td>
+<td>
+additional parameters </td></tr>
+<tr valign="top"><td><code>tol</code></td>
+<td>
+the desired accuracy (convergence tolerance).</td></tr>
+<tr valign="top"><td><code>sampleSize</code></td>
+<td>
+integer: sample size. </td></tr>
+<tr valign="top"><td><code>Algo</code></td>
+<td>
+"A" or "B". </td></tr>
+<tr valign="top"><td><code>cont</code></td>
+<td>
+"left" or "right". </td></tr>
+</table>
+
+<h3>Details</h3>
+
+<p>
+To make sure that the results are valid, it is recommended
+to include an additional check of the IC properties of <code>IC</code> 
+using <code>checkIC</code>.
+</p>
+
+
+<h3>Value</h3>
+
+<p>
+The risk of an IC is computed.</p>
+
+<h3>Methods</h3>
+
+<dl>
+<dt>IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "missing"</dt><dd>asymptotic covariance of <code>IC</code>. </dd>
+
+
+<dt>IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"</dt><dd>asymptotic covariance of <code>IC</code> under <code>L2Fam</code>. </dd>
+
+
+<dt>IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "missing"</dt><dd>asymptotic covariance of <code>IC</code>. </dd>
+
+
+<dt>IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "L2ParamFamily"</dt><dd>asymptotic covariance of <code>IC</code> under <code>L2Fam</code>. </dd>
+
+
+<dt>IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "missing"</dt><dd>asymptotic bias of <code>IC</code> under convex contaminations; uses method <code><a href="getBiasIC.html">getBiasIC</a></code>. </dd>
+
+
+<dt>IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily"</dt><dd>asymptotic bias of <code>IC</code> under convex contaminations and <code>L2Fam</code>; uses method <code><a href="getBiasIC.html">getBiasIC</a></code>. </dd>
+
+
+<dt>IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "missing"</dt><dd>asymptotic bias of <code>IC</code> in case of total variation neighborhoods; uses method <code><a href="getBiasIC.html">getBiasIC</a></code>. </dd>
+
+
+<dt>IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily"</dt><dd>asymptotic bias of <code>IC</code> under <code>L2Fam</code> in case of total variation 
+neighborhoods; uses method <code><a href="getBiasIC.html">getBiasIC</a></code>. </dd>
+
+
+<dt>IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "missing"</dt><dd>asymptotic mean square error of <code>IC</code>. </dd>
+
+
+<dt>IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "L2ParamFamily"</dt><dd>asymptotic mean square error of <code>IC</code> under <code>L2Fam</code>. </dd>
+
+
+<dt>IC = "TotalVarIC", risk = "asUnOvShoot", neighbor = "UncondNeighborhood", L2Fam = "missing"</dt><dd>asymptotic under-/overshoot risk of <code>IC</code>. </dd>
+
+
+<dt>IC = "IC", risk = "fiUnOvShoot", neighbor = "ContNeighborhood", L2Fam = "missing"</dt><dd>finite-sample under-/overshoot risk of <code>IC</code>. </dd>
+
+
+<dt>IC = "IC", risk = "fiUnOvShoot", neighbor = "TotalVarNeighborhood", L2Fam = "missing"</dt><dd>finite-sample under-/overshoot risk of <code>IC</code>. </dd>
+</dl>
+
+<h3>Note</h3>
+
+<p>
+This generic function is still under construction.
+</p>
+
+
+<h3>Author(s)</h3>
+
+<p>
+Matthias Kohl <a href="mailto:Matthias.Kohl at stamats.de">Matthias.Kohl at stamats.de</a><br>
+Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
+</p>
+
+
+<h3>References</h3>
+
+<p>
+Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor.
+Verw. Geb. <B>10</B>:269&ndash;278.
+</p>
+<p>
+Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. <B>8</B>: 106&ndash;115.
+</p>
+<p>
+Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
+</p>
+<p>
+Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>. 
+Bayreuth: Dissertation.
+</p>
+<p>
+Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk 
+of M-estimators on Neighborhoods.
+</p>
+
+
+<h3>See Also</h3>
+
+<p>
+<code><a onclick="findlink('ROptEst', 'getRiskIC-methods.html')" style="text-decoration: underline; color: blue; cursor: hand">getRiskIC-methods</a></code>, <code><a href="InfRobModel-class.html">InfRobModel-class</a></code>
+</p>
+
+<script Language="JScript">
+function findlink(pkg, fn) {
+var Y, link;
+Y = location.href.lastIndexOf("\\") + 1;
+link = location.href.substring(0, Y);
+link = link + "../../" + pkg + "/chtml/" + pkg + ".chm::/" + fn;
+location.href = link;
+}
+</script>
+
+
+<hr><div align="center">[Package <em>RobAStBase</em> version 0.1.0 <a href="00Index.html">Index]</a></div>
+
+</body></html>

Modified: pkg/RobAStBase/chm/getweight.html
===================================================================
--- pkg/RobAStBase/chm/getweight.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/getweight.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -42,6 +42,18 @@
 ## S4 method for signature 'HampelWeight, ContNeighborhood,
 ##   BiasType':
 minbiasweight(Weight, neighbor, biastype, normtype)
+## S4 method for signature 'HampelWeight, ContNeighborhood,
+##   onesidedBias':
+getweight(Weight, neighbor, biastype, ...)
+## S4 method for signature 'HampelWeight, ContNeighborhood,
+##   onesidedBias':
+minbiasweight(Weight, neighbor, biastype,...)
+## S4 method for signature 'HampelWeight, ContNeighborhood,
+##   asymmetricBias':
+getweight(Weight, neighbor, biastype, ...)
+## S4 method for signature 'HampelWeight, ContNeighborhood,
+##   asymmetricBias':
+minbiasweight(Weight, neighbor, biastype,...)
 </pre>
 
 
@@ -63,6 +75,9 @@
 <tr valign="top"><td><code>normtype</code></td>
 <td>
 Object of class <code>"NormType"</code> &mdash; only for signature <code>HampelWeight,ContNeighborhood,BiasType</code>. </td></tr>
+<tr valign="top"><td><code>...</code></td>
+<td>
+possibly additional (unused) arguments &mdash; like in a call to the less specific methods.</td></tr>
 </table>
 
 <h3>Details</h3>

Added: pkg/RobAStBase/chm/internals.html
===================================================================
--- pkg/RobAStBase/chm/internals.html	                        (rev 0)
+++ pkg/RobAStBase/chm/internals.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,81 @@
+<html><head><title>Internal / Helper functions of package RobAStBase</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<link rel="stylesheet" type="text/css" href="Rchm.css">
+</head>
+<body>
+
+<table width="100%"><tr><td>internals_for_RobAStBase(RobAStBase)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
+<param name="keyword" value="R:   internals_for_RobAStBase">
+<param name="keyword" value="R:   .eq">
+<param name="keyword" value="R:   .getDistr">
+<param name="keyword" value=" Internal / Helper functions of package RobAStBase">
+</object>
+
+
+<h2>Internal / Helper functions of package RobAStBase</h2>
+
+
+<h3>Description</h3>
+
+<p>
+These functions are used internally by package RobAStBase.
+</p>
+
+
+<h3>Usage</h3>
+
+<pre>
+.eq(x,y = 0*x, tol = 1e-7)
+.getDistr(L2Fam)
+</pre>
+
+
+<h3>Arguments</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>x</code></td>
+<td>
+a (numeric) vector</td></tr>
+<tr valign="top"><td><code>y</code></td>
+<td>
+a (numeric) vector</td></tr>
+<tr valign="top"><td><code>tol</code></td>
+<td>
+numeric &mdash; tolerance</td></tr>
+<tr valign="top"><td><code>L2fam</code></td>
+<td>
+object of class <code>L2ParamFamily</code></td></tr>
+</table>
+
+<h3>Details</h3>
+
+<p>
+<code>.eq</code>checks equality of two vectors up to a given precision;
+<code>.getDistr</code> produces a string with the class of the family and its parameter value;
+</p>
+
+
+<h3>Value</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>.eq</code></td>
+<td>
+</td></tr>
+<tr valign="top"><td><code>.getDistr</code></td>
+<td>
+</td></tr>
+</table>
+<p>
+ <code>character</code></p>
+
+<h3>Author(s)</h3>
+
+<p>
+Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
+</p>
+
+
+
+<hr><div align="center">[Package <em>RobAStBase</em> version 0.1.0 <a href="00Index.html">Index]</a></div>
+
+</body></html>

Added: pkg/RobAStBase/chm/makeIC-methods.html
===================================================================
--- pkg/RobAStBase/chm/makeIC-methods.html	                        (rev 0)
+++ pkg/RobAStBase/chm/makeIC-methods.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,105 @@
+<html><head><title>Generic Function for making ICs consistent at a possibly different model</title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<link rel="stylesheet" type="text/css" href="Rchm.css">
+</head>
+<body>
+
+<table width="100%"><tr><td>makeIC-methods(RobAStBase)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
+<param name="keyword" value="R:   makeIC">
+<param name="keyword" value="R:   makeIC-methods">
+<param name="keyword" value="R:   makeIC,IC,missing-method">
+<param name="keyword" value="R:   makeIC,IC,L2ParamFamily-method">
+<param name="keyword" value=" Generic Function for making ICs consistent at a possibly different model">
+</object>
+
+
+<h2>Generic Function for making ICs consistent at a possibly different model</h2>
+
+
+<h3>Description</h3>
+
+<p>
+Generic function for providing centering and Fisher consistency of ICs.
+</p>
+
+
+<h3>Usage</h3>
+
+<pre>
+makeIC(IC, L2Fam, ...)
+</pre>
+
+
+<h3>Arguments</h3>
+
+<table summary="R argblock">
+<tr valign="top"><td><code>IC</code></td>
+<td>
+object of class <code>"IC"</code> </td></tr>
+<tr valign="top"><td><code>L2Fam</code></td>
+<td>
+L2-differentiable family of probability measures; may be missing. </td></tr>
+<tr valign="top"><td><code>...</code></td>
+<td>
+additional parameters </td></tr>
+</table>
+
+<h3>Value</h3>
+
+<p>
+An IC at the model.</p>
+
+<h3>Methods</h3>
+
+<dl>
+<dt>makeIC</dt><dd><code>signature(IC = "IC", L2Fam = "missing"</code>: ...</dd>
+<dt>makeIC</dt><dd><code>signature(IC = "IC", L2Fam = "L2ParamFamily"</code>: ...</dd>
+</dl>
+
+<h3>Author(s)</h3>
+
+<p>
+Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
+</p>
+
+
+<h3>References</h3>
+
+<p>
+Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
+</p>
+<p>
+Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>. 
+Bayreuth: Dissertation.
+</p>
+
+
+<h3>See Also</h3>
+
+<p>
+<code><a onclick="findlink('distrMod', 'L2ParamFamily-class.html')" style="text-decoration: underline; color: blue; cursor: hand">L2ParamFamily-class</a></code>, <code><a href="IC-class.html">IC-class</a></code>
+</p>
+
+
+<h3>Examples</h3>
+
+<pre>
+IC1 &lt;- new("IC")
+B &lt;- BinomFamily(13, 0.3)
+makeIC(IC1,B)
+</pre>
+
+<script Language="JScript">
+function findlink(pkg, fn) {
+var Y, link;
+Y = location.href.lastIndexOf("\\") + 1;
+link = location.href.substring(0, Y);
+link = link + "../../" + pkg + "/chtml/" + pkg + ".chm::/" + fn;
+location.href = link;
+}
+</script>
+
+
+<hr><div align="center">[Package <em>RobAStBase</em> version 0.1.0 <a href="00Index.html">Index]</a></div>
+
+</body></html>

Deleted: pkg/RobAStBase/chm/makeIC.html
===================================================================
--- pkg/RobAStBase/chm/makeIC.html	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/chm/makeIC.html	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,105 +0,0 @@
-<html><head><title>Generic Function for making ICs consistent at a possibly different model</title>
-<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
-<link rel="stylesheet" type="text/css" href="Rchm.css">
-</head>
-<body>
-
-<table width="100%"><tr><td>makeIC-methods(RobAStBase)</td><td align="right">R Documentation</td></tr></table><object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
-<param name="keyword" value="R:   makeIC">
-<param name="keyword" value="R:   makeIC-methods">
-<param name="keyword" value="R:   makeIC,IC,missing-method">
-<param name="keyword" value="R:   makeIC,IC,L2ParamFamily-method">
-<param name="keyword" value=" Generic Function for making ICs consistent at a possibly different model">
-</object>
-
-
-<h2>Generic Function for making ICs consistent at a possibly different model</h2>
-
-
-<h3>Description</h3>
-
-<p>
-Generic function for providing centering and Fisher consistency of ICs.
-</p>
-
-
-<h3>Usage</h3>
-
-<pre>
-makeIC(IC, L2Fam, ...)
-</pre>
-
-
-<h3>Arguments</h3>
-
-<table summary="R argblock">
-<tr valign="top"><td><code>IC</code></td>
-<td>
-object of class <code>"IC"</code> </td></tr>
-<tr valign="top"><td><code>L2Fam</code></td>
-<td>
-L2-differentiable family of probability measures; may be missing. </td></tr>
-<tr valign="top"><td><code>...</code></td>
-<td>
-additional parameters </td></tr>
-</table>
-
-<h3>Value</h3>
-
-<p>
-An IC at the model.</p>
-
-<h3>Methods</h3>
-
-<dl>
-<dt>makeIC</dt><dd><code>signature(IC = "IC", L2Fam = "missing"</code>: ...</dd>
-<dt>makeIC</dt><dd><code>signature(IC = "IC", L2Fam = "L2ParamFamily"</code>: ...</dd>
-</dl>
-
-<h3>Author(s)</h3>
-
-<p>
-Peter Ruckdeschel <a href="mailto:Peter.Ruckdeschel at uni-bayreuth.de">Peter.Ruckdeschel at uni-bayreuth.de</a>
-</p>
-
-
-<h3>References</h3>
-
-<p>
-Rieder, H. (1994) <EM>Robust Asymptotic Statistics</EM>. New York: Springer.
-</p>
-<p>
-Kohl, M. (2005) <EM>Numerical Contributions to the Asymptotic Theory of Robustness</EM>. 
-Bayreuth: Dissertation.
-</p>
-
-
-<h3>See Also</h3>
-
-<p>
-<code><a onclick="findlink('distrMod', 'L2ParamFamily-class.html')" style="text-decoration: underline; color: blue; cursor: hand">L2ParamFamily-class</a></code>, <code><a href="IC-class.html">IC-class</a></code>
-</p>
-
-
-<h3>Examples</h3>
-
-<pre>
-IC1 &lt;- new("IC")
-B &lt;- BinomFamily(13, 0.3)
-makeIC(IC1,B)
-</pre>
-
-<script Language="JScript">
-function findlink(pkg, fn) {
-var Y, link;
-Y = location.href.lastIndexOf("\\") + 1;
-link = location.href.substring(0, Y);
-link = link + "../../" + pkg + "/chtml/" + pkg + ".chm::/" + fn;
-location.href = link;
-}
-</script>
-
-
-<hr><div align="center">[Package <em>RobAStBase</em> version 0.1.0 <a href="00Index.html">Index]</a></div>
-
-</body></html>

Modified: pkg/RobAStBase/man/ContIC-class.Rd
===================================================================
--- pkg/RobAStBase/man/ContIC-class.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/man/ContIC-class.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -10,21 +10,10 @@
 \alias{clip,ContIC-method}
 \alias{clip<-}
 \alias{clip<-,ContIC-method}
-\alias{lowerCase}
-\alias{lowerCase,ContIC-method}
 \alias{lowerCase<-}
 \alias{lowerCase<-,ContIC-method}
-\alias{neighborRadius}
-\alias{neighborRadius,ContIC-method}
-\alias{neighborRadius<-}
-\alias{neighborRadius<-,ContIC-method}
-\alias{stand}
-\alias{stand,ContIC-method}
 \alias{stand<-}
 \alias{stand<-,ContIC-method}
-\alias{weight,ContIC-method}
-\alias{biastype,ContIC-method}
-\alias{normtype,ContIC-method}
 \alias{generateIC,ContNeighborhood,L2ParamFamily-method}
 \alias{show,ContIC-method}
 
@@ -84,7 +73,8 @@
   }
 }
 \section{Extends}{
-Class \code{"IC"}, directly.\cr
+Class \code{"HampIC"}, directly.\cr
+Class \code{"IC"}, by class \code{"HampIC"}.\cr
 Class \code{"InfluenceCurve"}, by class \code{"IC"}.
 }
 \section{Methods}{
@@ -104,30 +94,12 @@
     \item{clip<-}{\code{signature(object = "ContIC")}: 
       replacement function for slot \code{clip}. }
 
-    \item{stand}{\code{signature(object = "ContIC")}: 
-      accessor function for slot \code{stand}. }
-
     \item{stand<-}{\code{signature(object = "ContIC")}:
       replacement function for slot \code{stand}. }
 
-    \item{weight}{\code{signature(object = "ContIC")}: 
-      accessor function for slot \code{weight}. }
-    \item{biastype}{\code{signature(object = "ContIC")}: 
-      accessor function for slot \code{biastype}. }
-    \item{normtype}{\code{signature(object = "ContIC")}: 
-      accessor function for slot \code{normtype}. }
-    \item{lowerCase}{\code{signature(object = "ContIC")}: 
-      accessor function for slot \code{lowerCase}. }
-
     \item{lowerCase<-}{\code{signature(object = "ContIC")}: 
       replacement function for slot \code{lowerCase}. }
 
-    \item{neighborRadius}{\code{signature(object = "ContIC")}: 
-      accessor function for slot \code{neighborRadius}. }
-
-    \item{neighborRadius<-}{\code{signature(object = "ContIC")}: 
-      replacement function for slot \code{neighborRadius}. }
-
     \item{generateIC}{\code{signature(neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily")}:
       generate an object of class \code{"ContIC"}. Rarely called directly. }
 
@@ -142,7 +114,7 @@
 }
 \author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
 %\note{}
-\seealso{\code{\link{IC-class}}, \code{\link{ContIC}}}
+\seealso{\code{\link{IC-class}}, \code{\link{ContIC}} \code{\link{HampIC-class}}}
 \examples{
 IC1 <- new("ContIC")
 plot(IC1)

Modified: pkg/RobAStBase/man/ContIC.Rd
===================================================================
--- pkg/RobAStBase/man/ContIC.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/man/ContIC.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -49,7 +49,7 @@
 }
 \author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
 %\note{}
-\seealso{\code{\link{IC-class}}, \code{\link{ContIC}}}
+\seealso{\code{\link{IC-class}}, \code{\link{ContIC}} , \code{\link{HampIC-class}}}
 \examples{
 IC1 <- ContIC()
 plot(IC1)

Added: pkg/RobAStBase/man/HampIC-class.Rd
===================================================================
--- pkg/RobAStBase/man/HampIC-class.Rd	                        (rev 0)
+++ pkg/RobAStBase/man/HampIC-class.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,101 @@
+\name{HampIC-class}
+\docType{class}
+\alias{HampIC-class}
+\alias{lowerCase}
+\alias{lowerCase,HampIC-method}
+\alias{neighborRadius}
+\alias{neighborRadius,HampIC-method}
+\alias{neighborRadius<-}
+\alias{neighborRadius<-,HampIC-method}
+\alias{stand}
+\alias{stand,HampIC-method}
+\alias{weight,HampIC-method}
+\alias{biastype,HampIC-method}
+\alias{normtype,HampIC-method}
+
+\title{Influence curve of Hampel type}
+\description{Class of (partial) influence curves of Hampel (= total variation or contamination) type;
+used as common mother class for classes \code{ContIC} and \code{TotalVarIC}.
+}
+\section{Objects from the Class}{
+  Objects can be created by calls of the form \code{new("HampIC", ...)}.
+}
+\section{Slots}{
+  \describe{
+    \item{\code{CallL2Fam}:}{ object of class \code{"call"}:
+      creates an object of the underlying L2-differentiable
+      parametric family. }
+
+    \item{\code{name}:}{ object of class \code{"character"} }
+
+    \item{\code{Curve}:}{ object of class \code{"EuclRandVarList"}}
+
+    \item{\code{Risks}:}{ object of class \code{"list"}:
+      list of risks; cf. \code{\link[distrMod]{RiskType-class}}. }
+
+    \item{\code{Infos}:}{ object of class \code{"matrix"}
+      with two columns named \code{method} and \code{message}:
+      additional informations. }
+
+    \item{\code{stand}:}{ object of class \code{"matrix"}:
+      standardizing matrix. }
+
+    \item{\code{weight}:}{ object of class \code{"RobWeight"}:
+      weight function }
+
+    \item{\code{biastype}:}{ object of class \code{"BiasType"}:
+      bias type (symmetric/onsided/asymmetric) }
+    \item{\code{normtype}:}{ object of class \code{"NormType"}:
+      norm type (Euclidean, information/self-standardized)}
+
+    \item{\code{lowerCase}:}{ object of class \code{"OptionalNumeric"}:
+      optional constant for lower case solution. }
+
+    \item{\code{neighborRadius}:}{ object of class \code{"numeric"}:
+      radius of the corresponding (unconditional) contamination
+      neighborhood. }
+  }
+}
+\section{Extends}{
+Class \code{"IC"}, directly.\cr
+Class \code{"InfluenceCurve"}, by class \code{"IC"}.
+}
+\section{Methods}{
+  \describe{
+
+    \item{stand}{\code{signature(object = "HampIC")}:
+      accessor function for slot \code{stand}. }
+
+    \item{weight}{\code{signature(object = "HampIC")}:
+      accessor function for slot \code{weight}. }
+
+    \item{biastype}{\code{signature(object = "HampIC")}:
+      accessor function for slot \code{biastype}. }
+    \item{normtype}{\code{signature(object = "HampIC")}:
+      accessor function for slot \code{normtype}. }
+    \item{lowerCase}{\code{signature(object = "HampIC")}:
+      accessor function for slot \code{lowerCase}. }
+
+    \item{neighborRadius}{\code{signature(object = "HampIC")}:
+      accessor function for slot \code{neighborRadius}. }
+
+    \item{neighborRadius<-}{\code{signature(object = "HampIC")}:
+      replacement function for slot \code{neighborRadius}. }
+
+  }
+}
+\references{
+  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
+
+  Kohl, M. (2005) \emph{Numerical Hampributions to the Asymptotic Theory of Robustness}.
+  Bayreuth: Dissertation.
+}
+\author{Peter Ruckdeschel \email{Peter Ruckdeschel at uni-bayreuth.de}}
+%\note{}
+\seealso{\code{\link{IC-class}}}
+\examples{
+IC1 <- new("HampIC")
+plot(IC1)
+}
+\concept{influence curve}
+\keyword{classes}

Modified: pkg/RobAStBase/man/RobWeight-class.Rd
===================================================================
--- pkg/RobAStBase/man/RobWeight-class.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/man/RobWeight-class.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -2,11 +2,12 @@
 \docType{class}
 \alias{RobWeight-class}
 \alias{name,RobWeight-method}
+\alias{name<-,RobWeight-method}
 \alias{weight,RobWeight-method}
-\alias{name<-,RobWeight-method}
+\alias{weight}
+\alias{weight<--methods}
 \alias{weight<-,RobWeight-method}
 \alias{weight<-}
-\alias{weight}
 
 \title{Robust Weight classes}
 \description{Classes for robust weights.}
@@ -28,11 +29,10 @@
       replacement function for slot \code{name}. }
 
     \item{weight}{\code{signature(object = "RobWeight")}: 
-      accessor function for slot \code{name}. }
+      accessor function for slot \code{weight}. }
 
-    \item{weight<-}{\code{signature(object = "RobWeight", value = "function")}: 
+    \item{weight<-}{\code{signature(object = "RobWeight", value = "ANY")}: 
       replacement function for slot \code{weight}. }
-
   }
 }
 \references{

Modified: pkg/RobAStBase/man/TotalVarIC-class.Rd
===================================================================
--- pkg/RobAStBase/man/TotalVarIC-class.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/man/TotalVarIC-class.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -10,14 +10,9 @@
 \alias{clipUp,TotalVarIC-method}
 \alias{clipUp<-}
 \alias{clipUp<-,TotalVarIC-method}
-\alias{lowerCase,TotalVarIC-method}
 \alias{lowerCase<-,TotalVarIC-method}
-\alias{neighborRadius,TotalVarIC-method}
-\alias{neighborRadius<-,TotalVarIC-method}
 \alias{show,TotalVarIC-method}
-\alias{stand,TotalVarIC-method}
 \alias{stand<-,TotalVarIC-method}
-\alias{weight,TotalVarIC-method}
 \alias{generateIC,TotalVarNeighborhood,L2ParamFamily-method}
 
 \title{Influence curve of total variation type}
@@ -69,7 +64,8 @@
   }
 }
 \section{Extends}{
-Class \code{"IC"}, directly.\cr
+Class \code{"HampIC"}, directly.\cr
+Class \code{"IC"}, by class \code{"HampIC"}.\cr
 Class \code{"InfluenceCurve"}, by class \code{"IC"}.
 }
 \section{Methods}{
@@ -89,21 +85,9 @@
     \item{clipUp<-}{\code{signature(object = "TotalVarIC")}: 
       replacement function for slot \code{clipUp}. }
 
-    \item{stand}{\code{signature(object = "TotalVarIC")}: 
-      accessor function for slot \code{stand}. }
-
     \item{stand<-}{\code{signature(object = "TotalVarIC")}:
       replacement function for slot \code{stand}. }
 
-    \item{weight}{\code{signature(object = "TotalVarIC")}: 
-      accessor function for slot \code{weight}. }
-
-    \item{neighborRadius}{\code{signature(object = "TotalVarIC")}: 
-      accessor function for slot \code{neighborRadius}. }
-
-    \item{neighborRadius<-}{\code{signature(object = "TotalVarIC")}: 
-      replacement function for slot \code{neighborRadius}. }
-
     \item{generateIC}{\code{signature(neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily")}:
       generate an object of class \code{"TotalVarIC"}. Rarely called directly. }
 
@@ -118,7 +102,7 @@
 }
 \author{Matthias Kohl \email{Matthias.Kohl at stamats.de}}
 %\note{}
-\seealso{\code{\link{IC-class}}, \code{\link{ContIC}}}
+\seealso{\code{\link{IC-class}}, \code{\link{ContIC}}, \code{\link{HampIC-class}}}
 \examples{
 IC1 <- new("TotalVarIC")
 plot(IC1)

Added: pkg/RobAStBase/man/getBiasIC.Rd
===================================================================
--- pkg/RobAStBase/man/getBiasIC.Rd	                        (rev 0)
+++ pkg/RobAStBase/man/getBiasIC.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,65 @@
+\name{getBiasIC}
+\alias{getBiasIC}
+\alias{getBiasIC-methods}
+\alias{getBiasIC,IC,UncondNeighborhood-method}
+
+\title{Generic function for the computation of the asymptotic bias for an IC}
+\description{
+  Generic function for the computation of the asymptotic bias for an IC.
+}
+\usage{
+getBiasIC(IC, neighbor, ...)
+
+\S4method{getBiasIC}{IC,UncondNeighborhood}(IC, neighbor, L2Fam, biastype = symmetricBias(),
+             normtype = NormType(), tol = .Machine$double.eps^0.25)
+}
+\arguments{
+  \item{IC}{ object of class \code{"InfluenceCurve"} }
+  \item{neighbor}{ object of class \code{"Neighborhood"}. }
+  \item{\dots}{ additional parameters }
+  \item{L2Fam}{ object of class \code{"L2ParamFamily"}. }
+  \item{biastype}{object of class \code{"BiasType"}}
+  \item{normtype}{object of class \code{"NormType"}}
+  \item{tol}{ the desired accuracy (convergence tolerance).}
+}
+\details{}
+\value{The bias of the IC is computed.}
+\section{Methods}{
+\describe{
+  \item{IC = "IC", neighbor = "UncondNeighborhood"}{
+    determines the as. bias by random evaluation of the IC;
+    this random evaluation is done by the internal S4-method
+    \code{.evalBiasIC}; this latter dispatches according to
+    the signature \code{IC, neighbor, biastype}.\cr
+    For signature \code{IC="IC", neighbor = "ContNeighborhood",
+        biastype = "BiasType"}, also an argument \code{normtype}
+    is used to be able to use self- or information standardizing
+    norms; besides this the signatures
+    \code{IC="IC", neighbor = "TotalVarNeighborhood",
+        biastype = "BiasType"},
+        \code{IC="IC", neighbor = "ContNeighborhood",
+        biastype = "onesidedBias"}, and
+    \code{IC="IC", neighbor = "ContNeighborhood",
+        biastype = "asymmetricBias"} are implemented.
+    }
+}}
+\references{
+  Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor.
+  Verw. Geb. \bold{10}:269--278.
+
+  Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. \bold{8}: 106--115.
+
+  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
+
+  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}.
+  Bayreuth: Dissertation.
+
+  Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Bias
+  of M-estimators on Neighborhoods.
+}
+\author{Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
+\note{This generic function is still under construction.}
+\seealso{\code{\link{getRiskIC-methods}}, \code{\link{InfRobModel-class}}}
+%\examples{}
+\concept{influence curve}
+\keyword{}

Added: pkg/RobAStBase/man/getRiskIC.Rd
===================================================================
--- pkg/RobAStBase/man/getRiskIC.Rd	                        (rev 0)
+++ pkg/RobAStBase/man/getRiskIC.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,122 @@
+\name{getRiskIC}
+\alias{getRiskIC}
+\alias{getRiskIC-methods}
+\alias{getRiskIC,IC,asCov,missing,missing-method}
+\alias{getRiskIC,IC,asCov,missing,L2ParamFamily-method}
+\alias{getRiskIC,IC,trAsCov,missing,missing-method}
+\alias{getRiskIC,IC,trAsCov,missing,L2ParamFamily-method}
+\alias{getRiskIC,IC,asBias,UncondNeighborhood,missing-method}
+\alias{getRiskIC,IC,asBias,UncondNeighborhood,L2ParamFamily-method}
+\alias{getRiskIC,IC,asMSE,UncondNeighborhood,missing-method}
+\alias{getRiskIC,IC,asMSE,UncondNeighborhood,L2ParamFamily-method}
+\alias{getRiskIC,TotalVarIC,asUnOvShoot,UncondNeighborhood,missing-method}
+\alias{getRiskIC,IC,fiUnOvShoot,ContNeighborhood,missing-method}
+\alias{getRiskIC,IC,fiUnOvShoot,TotalVarNeighborhood,missing-method}
+
+\title{Generic function for the computation of a risk for an IC}
+\description{
+  Generic function for the computation of a risk for an IC.
+}
+\usage{
+getRiskIC(IC, risk, neighbor, L2Fam, ...)
+
+\S4method{getRiskIC}{IC,asCov,missing,missing}(IC, risk, tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{IC,asCov,missing,L2ParamFamily}(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{IC,trAsCov,missing,missing}(IC, risk, tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{IC,trAsCov,missing,L2ParamFamily}(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{IC,asBias,UncondNeighborhood,missing}(IC, risk, neighbor, tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{IC,asBias,UncondNeighborhood,L2ParamFamily}(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{IC,asMSE,UncondNeighborhood,missing}(IC, risk, neighbor,  tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{IC,asMSE,UncondNeighborhood,L2ParamFamily}(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)
+
+\S4method{getRiskIC}{TotalVarIC,asUnOvShoot,UncondNeighborhood,missing}(IC, risk, neighbor)
+
+\S4method{getRiskIC}{IC,fiUnOvShoot,ContNeighborhood,missing}(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
+
+\S4method{getRiskIC}{IC,fiUnOvShoot,TotalVarNeighborhood,missing}(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")
+}
+\arguments{
+  \item{IC}{ object of class \code{"InfluenceCurve"} }
+  \item{risk}{ object of class \code{"RiskType"}. }
+  \item{neighbor}{ object of class \code{"Neighborhood"}. }
+  \item{L2Fam}{ object of class \code{"L2ParamFamily"}. }
+  \item{\dots}{ additional parameters }
+  \item{tol}{ the desired accuracy (convergence tolerance).}  
+  \item{sampleSize}{ integer: sample size. }
+  \item{Algo}{ "A" or "B". }
+  \item{cont}{ "left" or "right". }
+}
+\details{To make sure that the results are valid, it is recommended
+  to include an additional check of the IC properties of \code{IC} 
+  using \code{checkIC}.}
+\value{The risk of an IC is computed.}
+\section{Methods}{
+\describe{
+  \item{IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "missing"}{ 
+    asymptotic covariance of \code{IC}. }
+
+  \item{IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"}{ 
+    asymptotic covariance of \code{IC} under \code{L2Fam}. }
+
+  \item{IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "missing"}{ 
+    asymptotic covariance of \code{IC}. }
+
+  \item{IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "L2ParamFamily"}{ 
+    asymptotic covariance of \code{IC} under \code{L2Fam}. }
+
+  \item{IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "missing"}{ 
+    asymptotic bias of \code{IC} under convex contaminations; uses method \code{\link{getBiasIC}}. }
+
+  \item{IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily"}{ 
+    asymptotic bias of \code{IC} under convex contaminations and \code{L2Fam}; uses method \code{\link{getBiasIC}}. }
+
+  \item{IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "missing"}{ 
+    asymptotic bias of \code{IC} in case of total variation neighborhoods; uses method \code{\link{getBiasIC}}. }
+
+  \item{IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily"}{ 
+    asymptotic bias of \code{IC} under \code{L2Fam} in case of total variation 
+    neighborhoods; uses method \code{\link{getBiasIC}}. }
+
+  \item{IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "missing"}{ 
+    asymptotic mean square error of \code{IC}. }
+
+  \item{IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "L2ParamFamily"}{ 
+    asymptotic mean square error of \code{IC} under \code{L2Fam}. }
+
+  \item{IC = "TotalVarIC", risk = "asUnOvShoot", neighbor = "UncondNeighborhood", L2Fam = "missing"}{ 
+    asymptotic under-/overshoot risk of \code{IC}. }
+
+  \item{IC = "IC", risk = "fiUnOvShoot", neighbor = "ContNeighborhood", L2Fam = "missing"}{ 
+    finite-sample under-/overshoot risk of \code{IC}. }
+
+  \item{IC = "IC", risk = "fiUnOvShoot", neighbor = "TotalVarNeighborhood", L2Fam = "missing"}{ 
+    finite-sample under-/overshoot risk of \code{IC}. }
+}}
+\references{
+  Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor.
+  Verw. Geb. \bold{10}:269--278.
+
+  Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. \bold{8}: 106--115.
+
+  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
+
+  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
+  Bayreuth: Dissertation.
+
+  Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk 
+  of M-estimators on Neighborhoods.
+}
+\author{Matthias Kohl \email{Matthias.Kohl at stamats.de}\cr
+        Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
+\note{This generic function is still under construction.}
+\seealso{\code{\link[ROptEst]{getRiskIC-methods}}, \code{\link{InfRobModel-class}}}
+%\examples{}
+\concept{influence curve}
+\keyword{}

Modified: pkg/RobAStBase/man/getweight.Rd
===================================================================
--- pkg/RobAStBase/man/getweight.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/man/getweight.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -22,6 +22,10 @@
 minbiasweight(Weight, neighbor, biastype, ...)
 \S4method{getweight}{HampelWeight,ContNeighborhood,BiasType}(Weight, neighbor, biastype, normtype)
 \S4method{minbiasweight}{HampelWeight,ContNeighborhood,BiasType}(Weight, neighbor, biastype, normtype)
+\S4method{getweight}{HampelWeight,ContNeighborhood,onesidedBias}(Weight, neighbor, biastype, ...)
+\S4method{minbiasweight}{HampelWeight,ContNeighborhood,onesidedBias}(Weight, neighbor, biastype,...)
+\S4method{getweight}{HampelWeight,ContNeighborhood,asymmetricBias}(Weight, neighbor, biastype, ...)
+\S4method{minbiasweight}{HampelWeight,ContNeighborhood,asymmetricBias}(Weight, neighbor, biastype,...)
 }
 \arguments{
   \item{\dots}{ additional arguments }
@@ -29,6 +33,7 @@
   \item{neighbor}{ Object of class \code{"Neighborhood"}. }
   \item{biastype}{ Object of class \code{"BiasType"}. }
   \item{normtype}{ Object of class \code{"NormType"} --- only for signature \code{HampelWeight,ContNeighborhood,BiasType}. }
+  \item{\dots}{possibly additional (unused) arguments --- like in a call to the less specific methods.} 
 }
 %\details{}
 \value{Object of class \code{"HampelWeight"} resp. \code{"BdStWeight"}}

Added: pkg/RobAStBase/man/internals.Rd
===================================================================
--- pkg/RobAStBase/man/internals.Rd	                        (rev 0)
+++ pkg/RobAStBase/man/internals.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,40 @@
+\name{internals_for_RobAStBase}
+\alias{internals_for_RobAStBase}
+\alias{.eq}
+\alias{.getDistr}
+
+\title{Internal / Helper functions of package RobAStBase}
+
+\description{
+These functions are used internally by package RobAStBase.}
+
+\usage{
+.eq(x,y = 0*x, tol = 1e-7)
+.getDistr(L2Fam)
+}
+
+\arguments{
+  \item{x}{a (numeric) vector}
+  \item{y}{a (numeric) vector}
+  \item{tol}{numeric --- tolerance}
+  \item{L2fam}{object of class \code{L2ParamFamily}}
+}
+
+\details{
+\code{.eq}checks equality of two vectors up to a given precision;
+\code{.getDistr} produces a string with the class of the family and its parameter value;
+}
+
+
+\value{
+\item{.eq}(a vector of) \code{logical}.
+\item{.getDistr} \code{character}
+}
+
+
+\author{
+  Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}
+  }
+
+\keyword{internal}
+\concept{utilities}
\ No newline at end of file

Added: pkg/RobAStBase/man/makeIC-methods.Rd
===================================================================
--- pkg/RobAStBase/man/makeIC-methods.Rd	                        (rev 0)
+++ pkg/RobAStBase/man/makeIC-methods.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -0,0 +1,41 @@
+\name{makeIC-methods}
+\docType{methods}
+\alias{makeIC}
+\alias{makeIC-methods}
+\alias{makeIC,IC,missing-method}
+\alias{makeIC,IC,L2ParamFamily-method}
+
+\title{Generic Function for making ICs consistent at a possibly different model}
+\description{
+  Generic function for providing centering and Fisher consistency of ICs.
+}
+\usage{
+makeIC(IC, L2Fam, ...)
+}
+\arguments{
+  \item{IC}{ object of class \code{"IC"} }
+  \item{L2Fam}{ L2-differentiable family of probability measures; may be missing. }
+  \item{\dots}{ additional parameters }
+}
+\value{An IC at the model.}
+\section{Methods}{\describe{
+\item{makeIC}{\code{signature(IC = "IC", L2Fam = "missing"}: ...}
+\item{makeIC}{\code{signature(IC = "IC", L2Fam = "L2ParamFamily"}: ...}
+}}
+
+\references{
+  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
+
+  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
+  Bayreuth: Dissertation.
+}
+\author{Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
+%\note{}
+\seealso{\code{\link[distrMod]{L2ParamFamily-class}}, \code{\link{IC-class}}}
+\examples{
+IC1 <- new("IC")
+B <- BinomFamily(13, 0.3)
+makeIC(IC1,B)
+}
+\concept{influence curve}
+\keyword{}

Deleted: pkg/RobAStBase/man/makeIC.Rd
===================================================================
--- pkg/RobAStBase/man/makeIC.Rd	2008-03-26 01:14:35 UTC (rev 79)
+++ pkg/RobAStBase/man/makeIC.Rd	2008-03-28 02:21:40 UTC (rev 80)
@@ -1,41 +0,0 @@
-\name{makeIC-methods}
-\docType{methods}
-\alias{makeIC}
-\alias{makeIC-methods}
-\alias{makeIC,IC,missing-method}
-\alias{makeIC,IC,L2ParamFamily-method}
-
-\title{Generic Function for making ICs consistent at a possibly different model}
-\description{
-  Generic function for providing centering and Fisher consistency of ICs.
-}
-\usage{
-makeIC(IC, L2Fam, ...)
-}
-\arguments{
-  \item{IC}{ object of class \code{"IC"} }
-  \item{L2Fam}{ L2-differentiable family of probability measures; may be missing. }
-  \item{\dots}{ additional parameters }
-}
-\value{An IC at the model.}
-\section{Methods}{\describe{
-\item{makeIC}{\code{signature(IC = "IC", L2Fam = "missing"}: ...}
-\item{makeIC}{\code{signature(IC = "IC", L2Fam = "L2ParamFamily"}: ...}
-}}
-
-\references{
-  Rieder, H. (1994) \emph{Robust Asymptotic Statistics}. New York: Springer.
-
-  Kohl, M. (2005) \emph{Numerical Contributions to the Asymptotic Theory of Robustness}. 
-  Bayreuth: Dissertation.
-}
-\author{Peter Ruckdeschel \email{Peter.Ruckdeschel at uni-bayreuth.de}}
-%\note{}
-\seealso{\code{\link[distrMod]{L2ParamFamily-class}}, \code{\link{IC-class}}}
-\examples{
-IC1 <- new("IC")
-B <- BinomFamily(13, 0.3)
-makeIC(IC1,B)
-}
-\concept{influence curve}
-\keyword{}



More information about the Robast-commits mailing list