[Robast-commits] r121 - branches/robast-0.6/pkg/ROptEst/inst/scripts
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Jul 24 15:11:52 CEST 2008
Author: stamats
Date: 2008-07-24 15:11:52 +0200 (Thu, 24 Jul 2008)
New Revision: 121
Modified:
branches/robast-0.6/pkg/ROptEst/inst/scripts/GammaModel.R
Log:
adapted to new implementation, numerical problems!?
Modified: branches/robast-0.6/pkg/ROptEst/inst/scripts/GammaModel.R
===================================================================
--- branches/robast-0.6/pkg/ROptEst/inst/scripts/GammaModel.R 2008-07-24 10:47:50 UTC (rev 120)
+++ branches/robast-0.6/pkg/ROptEst/inst/scripts/GammaModel.R 2008-07-24 13:11:52 UTC (rev 121)
@@ -4,16 +4,17 @@
require(ROptEst)
## generates Gamma Family with
-## scale = 1 and shape = 1
-G <- GammaFamily(scale = 1, shape = 2)
+## scale = 2 and shape = 0.5
+G <- GammaFamily(scale = 2, shape = 0.5)
G # show G
-plot(G) # plot of Gammad(scale = 1, shape = 2) and L_2 derivative
+plot(G) # plot of Gammad(scale = 2, shape = 0.5) and L_2 derivative
+distrExOptions(ErelativeTolerance = 1e-8) # increase precision for E
checkL2deriv(G)
## classical optimal IC
IC0 <- optIC(model = G, risk = asCov())
IC0 # show IC
-system.time(checkIC(IC0), gcFirst = TRUE)
+checkIC(IC0) # seems to be a numerical problem!?
Risks(IC0)
plot(IC0) # plot IC
@@ -22,25 +23,25 @@
RobG1 # show RobB1
## MSE solution
-system.time(IC1 <- optIC(model=RobG1, risk=asMSE()), gcFirst = TRUE)
+system.time(IC1 <- optIC(model=RobG1, risk=asMSE()))
IC1
checkIC(IC1)
Risks(IC1)
plot(IC1)
-x11()
+devNew()
infoPlot(IC1)
## lower case solutions
-system.time(IC2 <- optIC(model=RobG1, risk=asBias(), tol = 1e-10), gcFirst = TRUE)
+system.time(IC2 <- optIC(model=RobG1, risk=asBias(), tol = 1e-10))
IC2
checkIC(IC2)
Risks(IC2)
plot(IC2)
-x11()
+devNew()
infoPlot(IC2)
## Hampel solution
-system.time(IC3 <- optIC(model=RobG1, risk=asHampel(bound=clip(IC1))), gcFirst = TRUE)
+system.time(IC3 <- optIC(model=RobG1, risk=asHampel(bound=clip(IC1))))
IC3
checkIC(IC3)
Risks(IC3)
@@ -51,23 +52,26 @@
## radius minimax IC
## takes quite some time - about 30 min.
system.time(IC4 <- radiusMinimaxIC(L2Fam=G, neighbor=ContNeighborhood(),
- risk=asMSE(), loRad=0, upRad=Inf), gcFirst = TRUE)
+ risk=asMSE(), loRad=0, upRad=Inf))
## least favorable radius
-## takes quite some time - several hours!
+## takes really long time - several hours!
#system.time(r.rho1 <- leastFavorableRadius(L2Fam=G, neighbor=ContNeighborhood(),
# risk=asMSE(), rho=0.5))
## one-step estimation
## 1. generate a contaminated sample
ind <- rbinom(100, size=1, prob=0.05)
-x <- (1-ind)*rgamma(100, scale = 1, shape = 2) + ind*10
+x <- (1-ind)*rgamma(100, scale = 1, shape = 2) + ind*rgamma(100, scale = 3, shape = 5)
## 2. Kolmogorov(-Smirnov) minimum distance estimator
-(est0 <- ksEstimator(x=x, Gammad()))
+(est0 <- MDEstimator(x=x, GammaFamily()))
+## non-robust ML estimator
+MLEstimator(x=x, GammaFamily())
+
## 3. one-step estimation: radius known
-RobG3 <- InfRobModel(center=GammaFamily(scale = est0$scale, shape = est0$shape),
+RobG3 <- InfRobModel(center=GammaFamily(scale = est0$estimate[1], shape = est0$estimate[2]),
neighbor=ContNeighborhood(radius=0.5))
IC9 <- optIC(model=RobG3, risk=asMSE())
-(est1 <- oneStepEstimator(x, IC=IC9, start=est0))
+(est1 <- oneStepEstimator(x, IC=IC9, start=est0$estimate))
More information about the Robast-commits
mailing list