[Returnanalytics-commits] r3610 - in pkg/FactorAnalytics: . R man tests

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Mar 11 02:13:15 CET 2015


Author: chenyian
Date: 2015-03-11 02:13:15 +0100 (Wed, 11 Mar 2015)
New Revision: 3610

Modified:
   pkg/FactorAnalytics/DESCRIPTION
   pkg/FactorAnalytics/R/fitTsfmLagBeta.r
   pkg/FactorAnalytics/R/fitTsfmMT.r
   pkg/FactorAnalytics/R/fitTsfmUpDn.r
   pkg/FactorAnalytics/R/plot.tsfmUpDn.r
   pkg/FactorAnalytics/man/fitTsfmLagBeta.Rd
   pkg/FactorAnalytics/man/fitTsfmMT.Rd
   pkg/FactorAnalytics/man/fitTsfmUpDn.Rd
   pkg/FactorAnalytics/man/plot.tsfmUpDn.Rd
   pkg/FactorAnalytics/tests/factorAnalytics.pdf
Log:
version 2.011.
1. Delete argument "factor.names" in fitTsfmLagBeta.r, fitTsfmMT.r and fitTsfmUpDn.r so that the function is simpler. 
2. Edit document fitTsfmLagBeta.Rd, fitTsfmMT.Rd and fitTsfmUpDn.Rd. 


Modified: pkg/FactorAnalytics/DESCRIPTION
===================================================================
--- pkg/FactorAnalytics/DESCRIPTION	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/DESCRIPTION	2015-03-11 01:13:15 UTC (rev 3610)
@@ -1,8 +1,8 @@
 Package: factorAnalytics
 Type: Package
 Title: Factor Analytics
-Version: 2.0.10
-Date: 2015-01-27
+Version: 2.0.11
+Date: 2015-03-10
 Author: Eric Zivot, Sangeetha Srinivasan and Yi-An Chen
 Maintainer: Sangeetha Srinivasan <sangee at uw.edu>
 Description: An R package for the estimation and risk analysis of linear factor

Modified: pkg/FactorAnalytics/R/fitTsfmLagBeta.r
===================================================================
--- pkg/FactorAnalytics/R/fitTsfmLagBeta.r	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/R/fitTsfmLagBeta.r	2015-03-11 01:13:15 UTC (rev 3610)
@@ -3,8 +3,7 @@
 #' @description This is a wrapper function to fits a time series lagged Betas factor model for one 
 #' or more asset returns or excess returns using time series regression. 
 #' Users can choose between ordinary least squares-OLS, discounted least 
-#' squares-DLS (or) robust regression like \code{fitTsfm}. Several variable selection options  
-#' including Stepwise, Subsets, Lars are available as well. An object of class 
+#' squares-DLS (or) robust regression like \code{fitTsfm}.An object of class 
 #' \code{"tsfm"} is returned.
 #' 
 #' @details 
@@ -17,12 +16,11 @@
 #' 
 #' @param asset.names vector containing names of assets, whose returns or 
 #' excess returns are the dependent variable.
-#' @param factor.names vector containing names of the macroeconomic factors.
-#' @param mkt.name name of the column for market excess returns (Rm-Rf). It 
+#' @param mkt.name name of the column for market returns. It 
 #' is required for a lagged Betas factor model. 
 #' @param rf.name name of the column of risk free rate variable to calculate 
-#' excess returns for all assets (in \code{asset.names}) and factors (in 
-#' \code{factor.names}). Default is NULL, and no action is taken.
+#' excess returns for all assets (in \code{asset.names}) and the market factor (in 
+#' \code{mkt.name}).Default is NULL, and no action is taken.
 #' @param LagBeta A integer number to specify numbers of lags of Betas to 
 #' include in the model. The Default is 1.
 #' @param data vector, matrix, data.frame, xts, timeSeries or zoo object  
@@ -30,9 +28,6 @@
 #' optionally, \code{mkt.name} and \code{rf.name}.
 #' @param fit.method the estimation method, one of "OLS", "DLS" or "Robust". 
 #' See details. Default is "OLS". 
-#' @param variable.selection the variable selection method, one of "none", 
-#' "stepwise","subsets","lars". See details. Default is "none".
-#' \code{mkt.name} is required if any of these options are to be implemented.
 #' @param control list of control parameters. The default is constructed by 
 #' the function \code{\link{fitTsfm.control}}. See the documentation for 
 #' \code{\link{fitTsfm.control}} for details.
@@ -41,27 +36,22 @@
 #' @return \code{fitTsfmLagBeta} also returns an object of class \code{"tsfm"} like 
 #' \code{fitTsfm}. The generic function such as \code{print}, \code{plot}, \code{predict} 
 #' and \code{summary} methods exist. Also, the generic accessor functions \code{coef}, 
-#' \code{fitted} \code{residuals} and  \code{fmCov} can be applied as well.
+#' \code{fitted}, \code{residuals} and  \code{fmCov} can be applied as well.
 #' 
 #' An object of class \code{"tsfm"} is a list containing the following 
 #' components:
 #' \item{asset.fit}{list of fitted objects for each asset. Each object is of 
 #' class \code{lm} if \code{fit.method="OLS" or "DLS"}, class \code{lmRob} if 
-#' the \code{fit.method="Robust"}, or class \code{lars} if 
-#' \code{variable.selection="lars"}.}
+#' the \code{fit.method="Robust"}.}
 #' \item{alpha}{length-N vector of estimated alphas.}
-#' \item{beta}{N x K matrix of estimated betas.}
+#' \item{beta}{N x (L+1) matrix of estimated betas.}
 #' \item{r2}{length-N vector of R-squared values.}
 #' \item{resid.sd}{length-N vector of residual standard deviations.}
-#' \item{fitted}{xts data object of fitted values; iff 
-#' \code{variable.selection="lars"}}
 #' \item{call}{the matched function call.}
 #' \item{data}{xts data object containing the assets and factors.}
 #' \item{asset.names}{asset.names as input.}
-#' \item{factor.names}{factor.names as input.}
 #' \item{fit.method}{fit.method as input.}
-#' \item{variable.selection}{variable.selection as input.}
-#' Where N is the number of assets, K is the number of factors and T is the 
+#' Where N is the number of assets, L is the number of lagged market Betas and T is the 
 #' number of time periods.
 #' 
 #' @author Yi-An Chen.
@@ -80,8 +70,7 @@
 #' 
 #' # example: A lagged Beetas model with OLS fit
 #' fit <- fitTsfmLagBeta(asset.names=colnames(managers[,(1:6)]),LagBeta=2,
-#'                       factor.names="SP500.TR",mkt.name="SP500.TR",
-#'                       rf.name="US.3m.TR",data=managers)
+#'                       mkt.name="SP500.TR",rf.name="US.3m.TR",data=managers)
 #' summary(fit)
 #' fitted(fit)
 #'  
@@ -92,9 +81,9 @@
 #' 
 #' @export
 
-fitTsfmLagBeta <- function(asset.names, factor.names=NULL, mkt.name=NULL, rf.name=NULL, 
+fitTsfmLagBeta <- function(asset.names, mkt.name, rf.name=NULL, 
                           data=data, fit.method=c("OLS","DLS","Robust"),LagBeta=1, 
-                          variable.selection=c("none","stepwise","subsets","lars"), control=fitTsfm.control(...),...) {
+                          control=fitTsfm.control(...),...) {
   
   if (is.null(mkt.name))  {
     stop("Missing argument: mkt.name has to be specified for lagged Betas model.")
@@ -106,6 +95,7 @@
   }
   
   # Create market lag terms
+  factor.names = mkt.name
   mktlag <- lag(data[,mkt.name],k=seq(1:LagBeta))
   for (i in 1:LagBeta) {
     colnames(mktlag)[i] <- paste("MktLag",i,sep="")
@@ -114,7 +104,7 @@
     data <- merge(data,mktlag)
   
   fit <-  fitTsfm(asset.names=asset.names,factor.names=factor.names,mkt.name=mkt.name,rf.name=rf.name,
-                  data=data,fit.method=fit.method,variable.selection=variable.selection,control=control)
+                  data=data,fit.method=fit.method,variable.selection="none",control=control)
   
   return(fit)  
 }
\ No newline at end of file

Modified: pkg/FactorAnalytics/R/fitTsfmMT.r
===================================================================
--- pkg/FactorAnalytics/R/fitTsfmMT.r	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/R/fitTsfmMT.r	2015-03-11 01:13:15 UTC (rev 3610)
@@ -3,8 +3,7 @@
 #' @description This is a wrapper function to fits a time series market timing factor model for one 
 #' or more asset returns or excess returns using time series regression. 
 #' Users can choose between ordinary least squares-OLS, discounted least 
-#' squares-DLS (or) robust regression. Several variable selection options  
-#' including Stepwise, Subsets, Lars are available as well. An object of class 
+#' squares-DLS (or) robust regression. An object of class 
 #' \code{"tsfm"} is returned.
 #' 
 #' @details 
@@ -17,20 +16,16 @@
 #' 
 #' @param asset.names vector containing names of assets, whose returns or 
 #' excess returns are the dependent variable.
-#' @param factor.names vector containing names of the macroeconomic factors.
-#' @param mkt.name name of the column for market excess returns (Rm-Rf); It 
+#' @param mkt.name name of the column for market returns; It 
 #' is required for a market timing model.
 #' @param rf.name name of the column of risk free rate variable to calculate 
-#' excess returns for all assets (in \code{asset.names}) and factors (in 
-#' \code{factor.names}). Default is NULL, and no action is taken.
+#' excess returns for all assets (in \code{asset.names}) and the market factor (in 
+#' \code{mkt.name}).Default is NULL, and no action is taken.
 #' @param data vector, matrix, data.frame, xts, timeSeries or zoo object  
 #' containing column(s) named in \code{asset.names}, \code{factor.names} and 
 #' optionally, \code{mkt.name} and \code{rf.name}.
 #' @param fit.method the estimation method, one of "OLS", "DLS" or "Robust". 
 #' See details. Default is "OLS". 
-#' @param variable.selection the variable selection method, one of "none", 
-#' "stepwise","subsets","lars". See details. Default is "none".
-#' \code{mkt.name} is required if any of these options are to be implemented.
 #' @param control list of control parameters. The default is constructed by 
 #' the function \code{\link{fitTsfm.control}}. See the documentation for 
 #' \code{\link{fitTsfm.control}} for details.
@@ -39,27 +34,22 @@
 #' @return \code{fitTsfmMT} also returns an object of class \code{"tsfm"} like 
 #' \code{fitTsfm}. The generic function such as \code{print}, \code{plot}, \code{predict} 
 #' and \code{summary} methods exist. Also, the generic accessor functions \code{coef}, 
-#' \code{fitted} \code{residuals} and  \code{fmCov} can be applied as well.
+#' \code{fitted}, \code{residuals} and  \code{fmCov} can be applied as well.
 #' 
 #' An object of class \code{"tsfm"} is a list containing the following 
 #' components:
 #' \item{asset.fit}{list of fitted objects for each asset. Each object is of 
 #' class \code{lm} if \code{fit.method="OLS" or "DLS"}, class \code{lmRob} if 
-#' the \code{fit.method="Robust"}, or class \code{lars} if 
-#' \code{variable.selection="lars"}.}
+#' the \code{fit.method="Robust"}.}
 #' \item{alpha}{length-N vector of estimated alphas.}
-#' \item{beta}{N x K matrix of estimated betas.}
+#' \item{beta}{N x 2 matrix of estimated betas.}
 #' \item{r2}{length-N vector of R-squared values.}
 #' \item{resid.sd}{length-N vector of residual standard deviations.}
-#' \item{fitted}{xts data object of fitted values; iff 
-#' \code{variable.selection="lars"}}
 #' \item{call}{the matched function call.}
 #' \item{data}{xts data object containing the assets and factors.}
 #' \item{asset.names}{asset.names as input.}
-#' \item{factor.names}{factor.names as input.}
 #' \item{fit.method}{fit.method as input.}
-#' \item{variable.selection}{variable.selection as input.}
-#' Where N is the number of assets, K is the number of factors and T is the 
+#' Where N is the number of assets and T is the 
 #' number of time periods.
 #' 
 #' @author Yi-An Chen.
@@ -93,17 +83,15 @@
 #' 
 #' @export
 
-fitTsfmMT <- function(asset.names, factor.names=NULL, mkt.name=NULL, rf.name=NULL, 
+fitTsfmMT <- function(asset.names,mkt.name, rf.name=NULL, 
                     data=data, fit.method=c("OLS","DLS","Robust"), 
-                    variable.selection=c("none","stepwise","subsets","lars"), control=fitTsfm.control(...),...) {
+                    control=fitTsfm.control(...),...) {
   if (is.null(mkt.name)){
     stop("Missing argument: mkt.name has to be specified for market timing model.")
   }
   
-  factor.names <- union(factor.names,mkt.name)
-  
-  fit.Timing <-  fitTsfm(asset.names=asset.names,factor.names=factor.names,mkt.name=mkt.name,rf.name=rf.name,
-          data=data,fit.method=fit.method,variable.selection=variable.selection,control=control,mkt.timing="HM")
+  fit.Timing <-  fitTsfm(asset.names=asset.names,factor.names=mkt.name,mkt.name=mkt.name,rf.name=rf.name,
+          data=data,fit.method=fit.method,variable.selection="none",control=control,mkt.timing="HM")
 
 return(fit.Timing)  
 }

Modified: pkg/FactorAnalytics/R/fitTsfmUpDn.r
===================================================================
--- pkg/FactorAnalytics/R/fitTsfmUpDn.r	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/R/fitTsfmUpDn.r	2015-03-11 01:13:15 UTC (rev 3610)
@@ -3,32 +3,27 @@
 #' @description This is a wrapper function to fits a up and down market model for one 
 #' or more asset returns or excess returns using time series regression. 
 #' Users can choose between ordinary least squares-OLS, discounted least 
-#' squares-DLS (or) robust regression. Several variable selection options  
-#' including Stepwise, Subsets, Lars are available as well. An object of class 
-#' \code{"tsfm"} is returned.
+#' squares-DLS (or) robust regression. An object of class 
+#' \code{"tsfmUpDn"} is returned.
 #' 
 #' @details 
 #' \code{fitTsfmUpDn} will use \code{fitTsfm} to fit a time series model for up and down market respectively. If 
 #' risk free rate is provided, the up market is the excess market returns which is no less than 0.
-#' The goal of up and down marke is to capture different market Betas in the up and down markets. 
+#' The goal of up and down market model is to capture two different market Betas in the up and down markets. 
 #' 
 #' 
 #' @param asset.names vector containing names of assets, whose returns or 
 #' excess returns are the dependent variable.
-#' @param factor.names vector containing names of the macroeconomic factors.
-#' @param mkt.name name of the column for market excess returns (Rm-Rf). It 
+#' @param mkt.name name of the column for market returns. It 
 #' is required for a up/down market model. 
 #' @param rf.name name of the column of risk free rate variable to calculate 
-#' excess returns for all assets (in \code{asset.names}) and factors (in 
-#' \code{factor.names}). Default is NULL, and no action is taken.
+#' excess returns for all assets (in \code{asset.names}) and the market factor (in 
+#' \code{mkt.name}). Default is \code{NULL}, and no action is taken.
 #' @param data vector, matrix, data.frame, xts, timeSeries or zoo object  
 #' containing column(s) named in \code{asset.names}, \code{factor.names} and 
 #' optionally, \code{mkt.name} and \code{rf.name}.
 #' @param fit.method the estimation method, one of "OLS", "DLS" or "Robust". 
 #' See details. Default is "OLS". 
-#' @param variable.selection the variable selection method, one of "none", 
-#' "stepwise","subsets","lars". See details. Default is "none".
-#' \code{mkt.name} is required if any of these options are to be implemented.
 #' @param control list of control parameters. The default is constructed by 
 #' the function \code{\link{fitTsfm.control}}. See the documentation for 
 #' \code{\link{fitTsfm.control}} for details.
@@ -41,7 +36,7 @@
 #' It is also a list object containing \code{Up} and \code{Dn}. Both \code{Up} and \code{Dn} are class of \code{"tsfm"}. As a result, for each list 
 #' object, The generic function such as \code{print}, \code{plot}, \code{predict} 
 #' and \code{summary} methods exist for both \code{Up} and \code{Dn}. Also, the generic accessor functions \code{coef}, 
-#' \code{fitted} \code{residuals} and  \code{fmCov} can be applied as well.
+#' \code{fitted}, \code{residuals} and  \code{fmCov} can be applied as well.
 #' 
 #' An object of class \code{"tsfmUpDn"} is a list containing \code{Up} and \code{Dn}:
 #' \item{Up}{An object of \code{tsfm} fitted by \code{fitTsfm} for the up market.}
@@ -50,21 +45,17 @@
 #' Each object of \code{tsfm} contains : 
 #' \item{asset.fit}{list of fitted objects for each asset. Each object is of 
 #' class \code{lm} if \code{fit.method="OLS" or "DLS"}, class \code{lmRob} if 
-#' the \code{fit.method="Robust"}, or class \code{lars} if 
-#' \code{variable.selection="lars"}.}
+#' the \code{fit.method="Robust"}}
 #' \item{alpha}{length-N vector of estimated alphas.}
-#' \item{beta}{N x K matrix of estimated betas.}
+#' \item{beta}{N x 1 matrix of estimated betas.}
 #' \item{r2}{length-N vector of R-squared values.}
 #' \item{resid.sd}{length-N vector of residual standard deviations.}
-#' \item{fitted}{xts data object of fitted values; iff 
-#' \code{variable.selection="lars"}}
 #' \item{call}{the matched function call.}
 #' \item{data}{xts data object containing the assets and factors.}
 #' \item{asset.names}{asset.names as input.}
 #' \item{factor.names}{factor.names as input.}
 #' \item{fit.method}{fit.method as input.}
-#' \item{variable.selection}{variable.selection as input.}
-#' Where N is the number of assets, K is the number of factors and T is the 
+#' Where N is the number of assets and T is the 
 #' number of time periods.
 #' 
 #' @author Yi-An Chen.
@@ -105,50 +96,46 @@
 #' @export
 
 
-fitTsfmUpDn <- function(asset.names, factor.names=NULL, mkt.name=NULL, rf.name=NULL, 
-                                 data=data, fit.method=c("OLS","DLS","Robust"), 
-                                 variable.selection=c("none","stepwise","subsets","lars"),
-                                 control=fitTsfm.control(...),...) {
+fitTsfmUpDn <- function(asset.names, mkt.name, rf.name=NULL, 
+                        data=data, fit.method=c("OLS","DLS","Robust"), 
+                        control=fitTsfm.control(...),...) {
 
   if (is.null(mkt.name)){
     stop("Missing argument: mkt.name has to be specified for up and down market model.")
   }  
   
- 
-  
-  factor.names <- union(factor.names,mkt.name)
-  
+   
   # convert data into an xts object and hereafter work with xts objects
   data.xts <- checkData(data)
   # convert index to 'Date' format for uniformity 
   time(data.xts) <- as.Date(time(data.xts))
   
   # extract columns to be used in the time series regression
-  dat.xts <- merge(data.xts[,asset.names], data.xts[,factor.names])
+  dat.xts <- merge(data.xts[,asset.names], data.xts[,mkt.name])
   ### After merging xts objects, the spaces in names get converted to periods
   
   # convert all asset and factor returns to excess return form if specified
   if (!is.null(rf.name)) {
     dat.xts <- "[<-"(dat.xts,,vapply(dat.xts, function(x) x-data.xts[,rf.name], 
                                      FUN.VALUE = numeric(nrow(dat.xts))))
-    warning("Up market is defined as the excess Market returns is no less than 0.")
+    warning("The up market is defined as the excess Market returns is no less than 0.")
   } else {
-    warning("Up market is defined as the Market returns is no less than 0.")
+    warning("The up market is defined as the Market returns is no less than 0.")
   }
   
   mkt <- dat.xts[,mkt.name]
   # up market
   dataUp.xts <- dat.xts[mkt >= 0]
   
-  fitUp <-  fitTsfm(asset.names=asset.names,factor.names=factor.names,mkt.name=mkt.name,rf.name=rf.name,
-                     data=dataUp.xts,fit.method=fit.method,variable.selection=variable.selection,
+  fitUp <-  fitTsfm(asset.names=asset.names,factor.names=mkt.name,mkt.name=mkt.name,rf.name=rf.name,
+                     data=dataUp.xts,fit.method=fit.method,variable.selection="none",
                      control=control)
 
   
   # down market
   dataDn.xts <- dat.xts[mkt < 0]
-  fitDn <-  fitTsfm(asset.names=asset.names,factor.names=factor.names,mkt.name=mkt.name,rf.name=rf.name,
-                     data=dataDn.xts,fit.method=fit.method,variable.selection=variable.selection,
+  fitDn <-  fitTsfm(asset.names=asset.names,factor.names=mkt.name,mkt.name=mkt.name,rf.name=rf.name,
+                     data=dataDn.xts,fit.method=fit.method,variable.selection="none",
                      control=control)
   
   result <- list(Up = fitUp, Dn = fitDn)

Modified: pkg/FactorAnalytics/R/plot.tsfmUpDn.r
===================================================================
--- pkg/FactorAnalytics/R/plot.tsfmUpDn.r	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/R/plot.tsfmUpDn.r	2015-03-11 01:13:15 UTC (rev 3610)
@@ -12,8 +12,8 @@
 #' @param object an object of class \code{tsfmUpDn} produced by \code{fitTsfmUpDn}.
 #' @param mkt.name The name of market returns used in \code{fitTsfmUpDn}. It is necessary
 #' to provide the name of market returns. 
-#' @param assets.name The name of the assets used in \code{fitTsfmUpDn}. It only supports 
-#' single asset so far.
+#' @param assets.name The name of the asset used in \code{fitTsfmUpDn}. It supports one
+#' asset name at once.   
 #' @param ... Other arguments can be used in \code{plot}. 
 #' @author Yi-An Chen
 #' 

Modified: pkg/FactorAnalytics/man/fitTsfmLagBeta.Rd
===================================================================
--- pkg/FactorAnalytics/man/fitTsfmLagBeta.Rd	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/man/fitTsfmLagBeta.Rd	2015-03-11 01:13:15 UTC (rev 3610)
@@ -4,23 +4,20 @@
 \alias{fitTsfmLagBeta}
 \title{Fit a lagged Betas factor model using time series regression}
 \usage{
-fitTsfmLagBeta(asset.names, factor.names = NULL, mkt.name = NULL,
-  rf.name = NULL, data = data, fit.method = c("OLS", "DLS", "Robust"),
-  LagBeta = 1, variable.selection = c("none", "stepwise", "subsets",
-  "lars"), control = fitTsfm.control(...), ...)
+fitTsfmLagBeta(asset.names, mkt.name, rf.name = NULL, data = data,
+  fit.method = c("OLS", "DLS", "Robust"), LagBeta = 1,
+  control = fitTsfm.control(...), ...)
 }
 \arguments{
 \item{asset.names}{vector containing names of assets, whose returns or
 excess returns are the dependent variable.}
 
-\item{factor.names}{vector containing names of the macroeconomic factors.}
-
-\item{mkt.name}{name of the column for market excess returns (Rm-Rf). It
+\item{mkt.name}{name of the column for market returns. It
 is required for a lagged Betas factor model.}
 
 \item{rf.name}{name of the column of risk free rate variable to calculate
-excess returns for all assets (in \code{asset.names}) and factors (in
-\code{factor.names}). Default is NULL, and no action is taken.}
+excess returns for all assets (in \code{asset.names}) and the market factor (in
+\code{mkt.name}).Default is NULL, and no action is taken.}
 
 \item{data}{vector, matrix, data.frame, xts, timeSeries or zoo object
 containing column(s) named in \code{asset.names}, \code{factor.names} and
@@ -32,10 +29,6 @@
 \item{LagBeta}{A integer number to specify numbers of lags of Betas to
 include in the model. The Default is 1.}
 
-\item{variable.selection}{the variable selection method, one of "none",
-"stepwise","subsets","lars". See details. Default is "none".
-\code{mkt.name} is required if any of these options are to be implemented.}
-
 \item{control}{list of control parameters. The default is constructed by
 the function \code{\link{fitTsfm.control}}. See the documentation for
 \code{\link{fitTsfm.control}} for details.}
@@ -46,35 +39,29 @@
 \code{fitTsfmLagBeta} also returns an object of class \code{"tsfm"} like
 \code{fitTsfm}. The generic function such as \code{print}, \code{plot}, \code{predict}
 and \code{summary} methods exist. Also, the generic accessor functions \code{coef},
-\code{fitted} \code{residuals} and  \code{fmCov} can be applied as well.
+\code{fitted}, \code{residuals} and  \code{fmCov} can be applied as well.
 
 An object of class \code{"tsfm"} is a list containing the following
 components:
 \item{asset.fit}{list of fitted objects for each asset. Each object is of
 class \code{lm} if \code{fit.method="OLS" or "DLS"}, class \code{lmRob} if
-the \code{fit.method="Robust"}, or class \code{lars} if
-\code{variable.selection="lars"}.}
+the \code{fit.method="Robust"}.}
 \item{alpha}{length-N vector of estimated alphas.}
-\item{beta}{N x K matrix of estimated betas.}
+\item{beta}{N x (L+1) matrix of estimated betas.}
 \item{r2}{length-N vector of R-squared values.}
 \item{resid.sd}{length-N vector of residual standard deviations.}
-\item{fitted}{xts data object of fitted values; iff
-\code{variable.selection="lars"}}
 \item{call}{the matched function call.}
 \item{data}{xts data object containing the assets and factors.}
 \item{asset.names}{asset.names as input.}
-\item{factor.names}{factor.names as input.}
 \item{fit.method}{fit.method as input.}
-\item{variable.selection}{variable.selection as input.}
-Where N is the number of assets, K is the number of factors and T is the
+Where N is the number of assets, L is the number of lagged market Betas and T is the
 number of time periods.
 }
 \description{
 This is a wrapper function to fits a time series lagged Betas factor model for one
 or more asset returns or excess returns using time series regression.
 Users can choose between ordinary least squares-OLS, discounted least
-squares-DLS (or) robust regression like \code{fitTsfm}. Several variable selection options
-including Stepwise, Subsets, Lars are available as well. An object of class
+squares-DLS (or) robust regression like \code{fitTsfm}.An object of class
 \code{"tsfm"} is returned.
 }
 \details{
@@ -91,8 +78,7 @@
 
 # example: A lagged Beetas model with OLS fit
 fit <- fitTsfmLagBeta(asset.names=colnames(managers[,(1:6)]),LagBeta=2,
-                      factor.names="SP500.TR",mkt.name="SP500.TR",
-                      rf.name="US.3m.TR",data=managers)
+                      mkt.name="SP500.TR",rf.name="US.3m.TR",data=managers)
 summary(fit)
 fitted(fit)
 }

Modified: pkg/FactorAnalytics/man/fitTsfmMT.Rd
===================================================================
--- pkg/FactorAnalytics/man/fitTsfmMT.Rd	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/man/fitTsfmMT.Rd	2015-03-11 01:13:15 UTC (rev 3610)
@@ -4,23 +4,20 @@
 \alias{fitTsfmMT}
 \title{Fit a time serie market timing factor model using time series regression}
 \usage{
-fitTsfmMT(asset.names, factor.names = NULL, mkt.name = NULL,
-  rf.name = NULL, data = data, fit.method = c("OLS", "DLS", "Robust"),
-  variable.selection = c("none", "stepwise", "subsets", "lars"),
-  control = fitTsfm.control(...), ...)
+fitTsfmMT(asset.names, mkt.name, rf.name = NULL, data = data,
+  fit.method = c("OLS", "DLS", "Robust"), control = fitTsfm.control(...),
+  ...)
 }
 \arguments{
 \item{asset.names}{vector containing names of assets, whose returns or
 excess returns are the dependent variable.}
 
-\item{factor.names}{vector containing names of the macroeconomic factors.}
-
-\item{mkt.name}{name of the column for market excess returns (Rm-Rf); It
+\item{mkt.name}{name of the column for market returns; It
 is required for a market timing model.}
 
 \item{rf.name}{name of the column of risk free rate variable to calculate
-excess returns for all assets (in \code{asset.names}) and factors (in
-\code{factor.names}). Default is NULL, and no action is taken.}
+excess returns for all assets (in \code{asset.names}) and the market factor (in
+\code{mkt.name}).Default is NULL, and no action is taken.}
 
 \item{data}{vector, matrix, data.frame, xts, timeSeries or zoo object
 containing column(s) named in \code{asset.names}, \code{factor.names} and
@@ -29,10 +26,6 @@
 \item{fit.method}{the estimation method, one of "OLS", "DLS" or "Robust".
 See details. Default is "OLS".}
 
-\item{variable.selection}{the variable selection method, one of "none",
-"stepwise","subsets","lars". See details. Default is "none".
-\code{mkt.name} is required if any of these options are to be implemented.}
-
 \item{control}{list of control parameters. The default is constructed by
 the function \code{\link{fitTsfm.control}}. See the documentation for
 \code{\link{fitTsfm.control}} for details.}
@@ -43,35 +36,29 @@
 \code{fitTsfmMT} also returns an object of class \code{"tsfm"} like
 \code{fitTsfm}. The generic function such as \code{print}, \code{plot}, \code{predict}
 and \code{summary} methods exist. Also, the generic accessor functions \code{coef},
-\code{fitted} \code{residuals} and  \code{fmCov} can be applied as well.
+\code{fitted}, \code{residuals} and  \code{fmCov} can be applied as well.
 
 An object of class \code{"tsfm"} is a list containing the following
 components:
 \item{asset.fit}{list of fitted objects for each asset. Each object is of
 class \code{lm} if \code{fit.method="OLS" or "DLS"}, class \code{lmRob} if
-the \code{fit.method="Robust"}, or class \code{lars} if
-\code{variable.selection="lars"}.}
+the \code{fit.method="Robust"}.}
 \item{alpha}{length-N vector of estimated alphas.}
-\item{beta}{N x K matrix of estimated betas.}
+\item{beta}{N x 2 matrix of estimated betas.}
 \item{r2}{length-N vector of R-squared values.}
 \item{resid.sd}{length-N vector of residual standard deviations.}
-\item{fitted}{xts data object of fitted values; iff
-\code{variable.selection="lars"}}
 \item{call}{the matched function call.}
 \item{data}{xts data object containing the assets and factors.}
 \item{asset.names}{asset.names as input.}
-\item{factor.names}{factor.names as input.}
 \item{fit.method}{fit.method as input.}
-\item{variable.selection}{variable.selection as input.}
-Where N is the number of assets, K is the number of factors and T is the
+Where N is the number of assets and T is the
 number of time periods.
 }
 \description{
 This is a wrapper function to fits a time series market timing factor model for one
 or more asset returns or excess returns using time series regression.
 Users can choose between ordinary least squares-OLS, discounted least
-squares-DLS (or) robust regression. Several variable selection options
-including Stepwise, Subsets, Lars are available as well. An object of class
+squares-DLS (or) robust regression. An object of class
 \code{"tsfm"} is returned.
 }
 \details{

Modified: pkg/FactorAnalytics/man/fitTsfmUpDn.Rd
===================================================================
--- pkg/FactorAnalytics/man/fitTsfmUpDn.Rd	2015-03-06 18:46:18 UTC (rev 3609)
+++ pkg/FactorAnalytics/man/fitTsfmUpDn.Rd	2015-03-11 01:13:15 UTC (rev 3610)
@@ -4,23 +4,20 @@
 \alias{fitTsfmUpDn}
 \title{Fit a up and down market factor model using time series regression}
 \usage{
-fitTsfmUpDn(asset.names, factor.names = NULL, mkt.name = NULL,
-  rf.name = NULL, data = data, fit.method = c("OLS", "DLS", "Robust"),
-  variable.selection = c("none", "stepwise", "subsets", "lars"),
-  control = fitTsfm.control(...), ...)
+fitTsfmUpDn(asset.names, mkt.name, rf.name = NULL, data = data,
+  fit.method = c("OLS", "DLS", "Robust"), control = fitTsfm.control(...),
+  ...)
 }
 \arguments{
 \item{asset.names}{vector containing names of assets, whose returns or
 excess returns are the dependent variable.}
 
-\item{factor.names}{vector containing names of the macroeconomic factors.}
-
-\item{mkt.name}{name of the column for market excess returns (Rm-Rf). It
+\item{mkt.name}{name of the column for market returns. It
 is required for a up/down market model.}
 
 \item{rf.name}{name of the column of risk free rate variable to calculate
-excess returns for all assets (in \code{asset.names}) and factors (in
-\code{factor.names}). Default is NULL, and no action is taken.}
+excess returns for all assets (in \code{asset.names}) and the market factor (in
+\code{mkt.name}). Default is \code{NULL}, and no action is taken.}
 
 \item{data}{vector, matrix, data.frame, xts, timeSeries or zoo object
 containing column(s) named in \code{asset.names}, \code{factor.names} and
@@ -29,10 +26,6 @@
 \item{fit.method}{the estimation method, one of "OLS", "DLS" or "Robust".
 See details. Default is "OLS".}
 
-\item{variable.selection}{the variable selection method, one of "none",
-"stepwise","subsets","lars". See details. Default is "none".
-\code{mkt.name} is required if any of these options are to be implemented.}
-
 \item{control}{list of control parameters. The default is constructed by
 the function \code{\link{fitTsfm.control}}. See the documentation for
 \code{\link{fitTsfm.control}} for details.}
@@ -46,7 +39,7 @@
 It is also a list object containing \code{Up} and \code{Dn}. Both \code{Up} and \code{Dn} are class of \code{"tsfm"}. As a result, for each list
 object, The generic function such as \code{print}, \code{plot}, \code{predict}
 and \code{summary} methods exist for both \code{Up} and \code{Dn}. Also, the generic accessor functions \code{coef},
-\code{fitted} \code{residuals} and  \code{fmCov} can be applied as well.
+\code{fitted}, \code{residuals} and  \code{fmCov} can be applied as well.
 
 An object of class \code{"tsfmUpDn"} is a list containing \code{Up} and \code{Dn}:
 \item{Up}{An object of \code{tsfm} fitted by \code{fitTsfm} for the up market.}
@@ -55,35 +48,30 @@
 Each object of \code{tsfm} contains :
 \item{asset.fit}{list of fitted objects for each asset. Each object is of
 class \code{lm} if \code{fit.method="OLS" or "DLS"}, class \code{lmRob} if
-the \code{fit.method="Robust"}, or class \code{lars} if
-\code{variable.selection="lars"}.}
+the \code{fit.method="Robust"}}
 \item{alpha}{length-N vector of estimated alphas.}
-\item{beta}{N x K matrix of estimated betas.}
+\item{beta}{N x 1 matrix of estimated betas.}
 \item{r2}{length-N vector of R-squared values.}
 \item{resid.sd}{length-N vector of residual standard deviations.}
-\item{fitted}{xts data object of fitted values; iff
-\code{variable.selection="lars"}}
 \item{call}{the matched function call.}
 \item{data}{xts data object containing the assets and factors.}
 \item{asset.names}{asset.names as input.}
 \item{factor.names}{factor.names as input.}
 \item{fit.method}{fit.method as input.}
-\item{variable.selection}{variable.selection as input.}
-Where N is the number of assets, K is the number of factors and T is the
+Where N is the number of assets and T is the
 number of time periods.
 }
 \description{
 This is a wrapper function to fits a up and down market model for one
 or more asset returns or excess returns using time series regression.
 Users can choose between ordinary least squares-OLS, discounted least
-squares-DLS (or) robust regression. Several variable selection options
-including Stepwise, Subsets, Lars are available as well. An object of class
-\code{"tsfm"} is returned.
+squares-DLS (or) robust regression. An object of class
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/returnanalytics -r 3610


More information about the Returnanalytics-commits mailing list