[Returnanalytics-commits] r3680 - in pkg/Dowd: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Jun 18 23:54:56 CEST 2015


Author: dacharya
Date: 2015-06-18 23:54:56 +0200 (Thu, 18 Jun 2015)
New Revision: 3680

Added:
   pkg/Dowd/R/AdjustedVarianceCovarianceES.R
   pkg/Dowd/man/AdjustedVarianceCovarianceES.Rd
Modified:
   pkg/Dowd/NAMESPACE
Log:
AdjustedVarianceCovarianceES: source and documentation

Modified: pkg/Dowd/NAMESPACE
===================================================================
--- pkg/Dowd/NAMESPACE	2015-06-18 00:11:57 UTC (rev 3679)
+++ pkg/Dowd/NAMESPACE	2015-06-18 21:54:56 UTC (rev 3680)
@@ -3,6 +3,7 @@
 export(ADTestStat)
 export(AdjustedNormalESHotspots)
 export(AdjustedNormalVaRHotspots)
+export(AdjustedVarianceCovarianceES)
 export(BinomialBacktest)
 export(BlancoIhleBacktest)
 export(BootstrapES)

Added: pkg/Dowd/R/AdjustedVarianceCovarianceES.R
===================================================================
--- pkg/Dowd/R/AdjustedVarianceCovarianceES.R	                        (rev 0)
+++ pkg/Dowd/R/AdjustedVarianceCovarianceES.R	2015-06-18 21:54:56 UTC (rev 3680)
@@ -0,0 +1,125 @@
+#' @title Cornish-Fisher adjusted Variance-Covariance ES
+#' 
+#' @description Function estimates the Variance-Covariance ES of a multi-asset
+#' portfolio using the Cornish - Fisher adjustment for portfolio return 
+#' non-normality, for specified confidence level and holding period.
+#' 
+#' @param vc.matrix Variance covariance matrix for returns
+#' @param mu Vector of expected position returns
+#' @param skew Return skew
+#' @param kurtisos Return kurtosis
+#' @param positions Vector of positions
+#' @param cl Confidence level and is scalar
+#' @param hp Holding period and is scalar
+#' 
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#' 
+#' @author Dinesh Acharya
+#' 
+#' @examples
+#' 
+#'    # Variance-covariance ES for randomly generated portfolio
+#'    vc.matrix <- matrix(rnorm(16), 4, 4)
+#'    skew <- .5
+#'    kurtosis <- 1.2
+#'    positions <- c(5, 2, 6, 10)
+#'    cl <- .95
+#'    hp <- 280
+#'    AdjustedVarianceCovarianceES(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
+#' 
+#' @export
+AdjustedVarianceCovarianceES <- function(vc.matrix, mu, skew, kurtosis, 
+                                         positions, cl, hp){
+  
+  # Check that cl is read as a row vector
+  cl <- as.matrix(cl)
+  if (dim(cl)[1] > dim(cl)[2]) {
+    cl <- t(cl)
+  }
+  
+  # Check that hp is read as a column vector
+  hp <- as.matrix(hp)
+  if (dim(hp)[1] < dim(hp)[2]) {
+    hp <- t(hp)
+  }
+  
+  # Check that positions vector read as a scalar or row vector
+  positions <- as.matrix(positions)
+  if (dim(positions)[1] > dim(positions)[2]){
+    positions <- t(positions)
+  }
+  
+  # Check that expected returns vector is read as a scalar or row vector
+  mu <- as.matrix(mu)
+  if (dim(mu)[1] > dim(mu)[2]){
+    mu <- t(mu)
+  }
+  
+  # Check that dimensions are correct
+  if (max(dim(mu)) != max(dim(positions))){
+    stop("Positions vector and expected returns vector must have same size")
+  }
+  if (max(dim(vc.matrix)) != max(dim(positions))){
+    stop("Positions vector and expected returns vector must have same size")
+  }
+  
+  # Check that inputs obey sign and value restrictions
+  if (cl >= 1){
+    stop("Confidence level must be less than 1")
+  }
+  if (cl <= 0){
+    stop("Confidence level must be greater than 0");
+  }
+  if (hp <= 0){
+    stop("Holding period must be greater than 0");
+  }
+  
+  # Portfolio return standard deviation
+  sigma <- positions %*% vc.matrix %*% t(positions)/(sum(positions)^2) # Initial 
+  # standard deviation of portfolio returns
+  # VaR and ES estimation
+  z <- double(length(cl))
+  adjustment <- z
+  VaR <- matrix(0, length(cl), length(hp))
+  cl0 <- cl
+  term <- VaR
+  es <- VaR
+  delta.cl <- cl
+  for (i in 1:length(cl)) {
+    
+    # Cornish-Fisher adjustment
+    z[i] <- qnorm(1 - cl[i], 0 ,1)
+    adjustment[i] <- (1 / 6) * (z[i] ^ 2 - 1) * skew + (1 / 24) * 
+      (z[i] ^ 3 - 3 * z[i]) * (kurtosis - 3) - (1 / 36) * 
+      (2 * z[i] ^ 3 - 5 * z[i]) * skew ^ 2
+    
+    for (j in 1:length(hp)){
+      
+      VaR[i,j] <- - mu %*% t(positions) * hp[j] - (z[i] + adjustment[i]) * 
+        sigma * (sum(positions)^2) * sqrt(hp[j]) # VaR
+      # ES Estimation
+      n <- 1000 # Number of slives into which tail is divided
+      cl0[i] <- cl[i] # Initial confidence level
+      term[i, j] <- VaR[i, j]
+      delta.cl[i] <- (1 - cl[i]) / n # Increment to confidence level as each 
+                                     # slice is taken
+      
+      for (k in 1:(n - 1)) {
+        
+        cl[i] <- cl0[i] + k * delta.cl[i] # Revised cl
+        z[i] <- qnorm(1 - cl[i], 0, 1)
+        adjustment[i]=(1 / 6) * (z[i] ^ 2 - 1) * skew + (1 / 24) * 
+          (z[i] ^ 3 - 3 * z[i]) * (kurtosis - 3) - (1 / 36) * 
+          (2 * z[i] ^ 3 - 5 * z[i]) * skew ^ 2
+        term[i, j] <- term[i, j] - mu %*% t(positions) * hp[j] - 
+          (z[i] + adjustment) * sigma * (sum(positions)^2) * sqrt(hp[j])
+        
+      }
+      es[i, j] <- term[i, j]/n
+    
+    }
+  }
+  y <- t(es)
+  return(es)
+  
+}

Added: pkg/Dowd/man/AdjustedVarianceCovarianceES.Rd
===================================================================
--- pkg/Dowd/man/AdjustedVarianceCovarianceES.Rd	                        (rev 0)
+++ pkg/Dowd/man/AdjustedVarianceCovarianceES.Rd	2015-06-18 21:54:56 UTC (rev 3680)
@@ -0,0 +1,45 @@
+% Generated by roxygen2 (4.1.1): do not edit by hand
+% Please edit documentation in R/AdjustedVarianceCovarianceES.R
+\name{AdjustedVarianceCovarianceES}
+\alias{AdjustedVarianceCovarianceES}
+\title{Cornish-Fisher adjusted Variance-Covariance ES}
+\usage{
+AdjustedVarianceCovarianceES(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
+}
+\arguments{
+\item{vc.matrix}{Variance covariance matrix for returns}
+
+\item{mu}{Vector of expected position returns}
+
+\item{skew}{Return skew}
+
+\item{positions}{Vector of positions}
+
+\item{cl}{Confidence level and is scalar}
+
+\item{hp}{Holding period and is scalar}
+
+\item{kurtisos}{Return kurtosis}
+}
+\description{
+Function estimates the Variance-Covariance ES of a multi-asset
+portfolio using the Cornish - Fisher adjustment for portfolio return
+non-normality, for specified confidence level and holding period.
+}
+\examples{
+# Variance-covariance ES for randomly generated portfolio
+   vc.matrix <- matrix(rnorm(16), 4, 4)
+   skew <- .5
+   kurtosis <- 1.2
+   positions <- c(5, 2, 6, 10)
+   cl <- .95
+   hp <- 280
+   AdjustedVarianceCovarianceES(vc.matrix, mu, skew, kurtosis, positions, cl, hp)
+}
+\author{
+Dinesh Acharya
+}
+\references{
+Dowd, K. Measuring Market Risk, Wiley, 2007.
+}
+



More information about the Returnanalytics-commits mailing list