[Returnanalytics-commits] r3882 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Jul 30 01:11:01 CEST 2015
Author: dacharya
Date: 2015-07-30 01:11:01 +0200 (Thu, 30 Jul 2015)
New Revision: 3882
Added:
pkg/Dowd/R/BlackScholesPutESSim.R
Log:
Function BlackScholesPutESSim added.
Added: pkg/Dowd/R/BlackScholesPutESSim.R
===================================================================
--- pkg/Dowd/R/BlackScholesPutESSim.R (rev 0)
+++ pkg/Dowd/R/BlackScholesPutESSim.R 2015-07-29 23:11:01 UTC (rev 3882)
@@ -0,0 +1,70 @@
+#' ES of Black-Scholes put using Monte Carlo Simulation
+#'
+#' Estimates ES of Black-Scholes Put Option using Monte Carlo simulation
+#'
+#' @param amountInvested Total amount paid for the Put Option and is positive
+#' (negative) if the option position is long (short)
+#' @param stockPrice Stock price of underlying stock
+#' @param strike Strike price of the option
+#' @param r Risk-free rate
+#' @param mu Expected rate of return on the underlying asset and is in
+#' annualised term
+#' @param sigma Volatility of the underlying stock and is in annualised
+#' term
+#' @param maturity The term to maturity of the option in days
+#' @param numberTrials The number of interations in the Monte Carlo simulation
+#' exercise
+#' @param cl Confidence level for which ES is computed and is scalar
+#' @param hp Holding period of the option in days and is scalar
+#' @return ES
+#' @references Dowd, Kevin. Measuring Market Risk, Wiley, 2007.
+#'
+#' Lyuu, Yuh-Dauh. Financial Engineering & Computation: Principles,
+#' Mathematics, Algorithms, Cambridge University Press, 2002.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Market Risk of American Put with given parameters.
+#' BlackScholesPutESSim(0.20, 27.2, 25, .03, .12, .05, 60, 1000, .95, 30)
+#'
+#' @export
+BlackScholesPutESSim <- function(amountInvested, stockPrice, strike, r, mu,
+ sigma, maturity, numberTrials, cl, hp){
+ # Precompute Constants
+ annualMaturity <- maturity / 360 # Annualised maturity
+ annualHp <- hp / 360 # Annualised holding period
+ N <- 1 # Number of steps - only one needed for black scholes option
+ dt <- annualHp / N # Size of time-increment equal to holding period
+ nudt <- (mu - .5 * sigma^2) * dt
+ sigmadt <- sigma * sqrt(dt)
+ lnS <- log(stockPrice)
+ M <- numberTrials
+ initialOptionPrice <- BlackScholesPutPrice(stockPrice, strike,
+ r, sigma, maturity)
+ numberOfOptions <- abs(amountInvested) / initialOptionPrice
+ # Stock price simulation process
+ lnSt <- matrix(0, M, N)
+ newStockPrice <- matrix(0, M, N)
+ for (i in 1:M){
+ lnSt[i] <- lnS + rnorm(1, nudt, sigmadt) # Random stock price movement
+ newStockPrice[i] <- exp(lnSt[i, 1]) # New stock price
+ }
+ # Profit/Loss camculation
+ profitOrLoss <- double(M)
+ if (amountInvested > 0) { # If option position is long
+ for (i in 1:M) {
+ profitOrLoss[i] <- (BlackScholesPutPrice(newStockPrice[i], strike, r,
+ sigma, maturity - hp) - initialOptionPrice) * numberOfOptions
+ }
+ }
+ if (amountInvested < 0) { # If option position is short
+ for (i in 1:M) {
+ profitOrLoss[i] <- (-BlackScholesPutPrice(newStockPrice[i], strike, r,
+ sigma, maturity - hp) + initialOptionPrice) * numberOfOptions
+ }
+ }
+ # VaR estimation
+ y <- HSES(profitOrLoss, cl) # VaR
+ return(y)
+}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list