[Returnanalytics-commits] r3847 - in pkg/Dowd: R man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Jul 22 23:31:32 CEST 2015
Author: dacharya
Date: 2015-07-22 23:31:32 +0200 (Wed, 22 Jul 2015)
New Revision: 3847
Added:
pkg/Dowd/R/NormalVaR.R
pkg/Dowd/man/NormalVaR.Rd
Log:
Function NormalVaR added.
Added: pkg/Dowd/R/NormalVaR.R
===================================================================
--- pkg/Dowd/R/NormalVaR.R (rev 0)
+++ pkg/Dowd/R/NormalVaR.R 2015-07-22 21:31:32 UTC (rev 3847)
@@ -0,0 +1,118 @@
+#' VaR for normally distributed P/L
+#'
+#' Estimates the VaR of a portfolio assuming that P/L is
+#' normally distributed, for specified confidence level and holding period.
+#'
+#' @param ... The input arguments contain either return data or else mean and
+#' standard deviation data along with the remaining arguments. Accordingly, number of input arguments is either 3
+#' or 4. In case there 3 input arguments, the mean and standard deviation of
+#' data is computed from return data. See examples for details.
+#'
+#' returns Vector of daily geometric return data
+#'
+#' mu Mean of daily geometric return data
+#'
+#' sigma Standard deviation of daily geometric return data
+#'
+#' cl VaR confidence level
+#'
+#' hp VaR holding period in days
+#'
+#' @return Matrix of VaR whose dimension depends on dimension of hp and cl. If
+#' cl and hp are both scalars, the matrix is 1 by 1. If cl is a vector and hp is
+#' a scalar, the matrix is row matrix, if cl is a scalar and hp is a vector,
+#' the matrix is column matrix and if both cl and hp are vectors, the matrix
+#' has dimension length of cl * length of hp.
+#'
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Computes VaR given geometric return data
+#' data <- runif(5, min = 0, max = .2)
+#' NormalVaR(returns = data, cl = .95, hp = 90)
+#'
+#' # Computes VaR given mean and standard deviation of return data
+#' NormalVaR(mu = .012, sigma = .03, cl = .95, hp = 90)
+#'
+#'
+#' @export
+NormalVaR <- function(...){
+ # Determine if there are three or four arguments and ensure that arguments are
+ # read as intended
+ if (nargs() < 3) {
+ stop("Too few arguments")
+ }
+ if (nargs() > 4) {
+ stop("Too many arguments")
+ }
+ args <- list(...)
+ if (nargs() == 4) {
+ mu <- args$mu
+ cl <- args$cl
+ sigma <- args$sigma
+ hp <- args$hp
+ }
+ if (nargs() == 3) {
+ mu <- mean(args$returns)
+ cl <- args$cl
+ sigma <- sd(args$returns)
+ hp <- args$hp
+ }
+
+ # Check that inputs have correct dimensions
+ mu <- as.matrix(mu)
+ mu.row <- dim(mu)[1]
+ mu.col <- dim(mu)[2]
+ if (max(mu.row, mu.col) > 1) {
+ stop("Mean must be a scalar")
+ }
+ sigma <- as.matrix(sigma)
+ sigma.row <- dim(sigma)[1]
+ sigma.col <- dim(sigma)[2]
+ if (max(sigma.row, sigma.col) > 1) {
+ stop("Standard deviation must be a scalar")
+ }
+ cl <- as.matrix(cl)
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ if (min(cl.row, cl.col) > 1) {
+ stop("Confidence level must be a scalar or a vector")
+ }
+ hp <- as.matrix(hp)
+ hp.row <- dim(hp)[1]
+ hp.col <- dim(hp)[2]
+ if (min(hp.row, hp.col) > 1) {
+ stop("Holding period must be a scalar or a vector")
+ }
+
+ # Check that cl and hp are read as row and column vectors respectively
+ if (cl.row > cl.col) {
+ cl <- t(cl)
+ }
+ if (hp.row > hp.col) {
+ hp <- t(hp)
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (sigma < 0) {
+ stop("Standard deviation must be non-negative")
+ }
+ if (max(cl) >= 1){
+ stop("Confidence level(s) must be less than 1")
+ }
+ if (min(cl) <= 0){
+ stop("Confidence level(s) must be greater than 0")
+ }
+ if (min(hp) <= 0){
+ stop("Holding Period(s) must be greater than 0")
+ }
+ # VaR estimation
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ VaR <- - sigma[1,1] * sqrt(hp) %*% qnorm(1 - cl, 0, 1) - mu[1,1] * hp %*% matrix(1,cl.row,cl.col) # VaR
+
+ return (VaR)
+}
\ No newline at end of file
Added: pkg/Dowd/man/NormalVaR.Rd
===================================================================
--- pkg/Dowd/man/NormalVaR.Rd (rev 0)
+++ pkg/Dowd/man/NormalVaR.Rd 2015-07-22 21:31:32 UTC (rev 3847)
@@ -0,0 +1,50 @@
+% Generated by roxygen2 (4.1.1): do not edit by hand
+% Please edit documentation in R/NormalVaR.R
+\name{NormalVaR}
+\alias{NormalVaR}
+\title{VaR for normally distributed P/L}
+\usage{
+NormalVaR(...)
+}
+\arguments{
+\item{...}{The input arguments contain either return data or else mean and
+ standard deviation data along with the remaining arguments. Accordingly, number of input arguments is either 3
+ or 4. In case there 3 input arguments, the mean and standard deviation of
+ data is computed from return data. See examples for details.
+
+ returns Vector of daily geometric return data
+
+ mu Mean of daily geometric return data
+
+ sigma Standard deviation of daily geometric return data
+
+ cl VaR confidence level
+
+ hp VaR holding period in days}
+}
+\value{
+Matrix of VaR whose dimension depends on dimension of hp and cl. If
+cl and hp are both scalars, the matrix is 1 by 1. If cl is a vector and hp is
+ a scalar, the matrix is row matrix, if cl is a scalar and hp is a vector,
+ the matrix is column matrix and if both cl and hp are vectors, the matrix
+ has dimension length of cl * length of hp.
+}
+\description{
+Estimates the VaR of a portfolio assuming that P/L is
+normally distributed, for specified confidence level and holding period.
+}
+\examples{
+# Computes VaR given geometric return data
+ data <- runif(5, min = 0, max = .2)
+ NormalVaR(returns = data, cl = .95, hp = 90)
+
+ # Computes VaR given mean and standard deviation of return data
+ NormalVaR(mu = .012, sigma = .03, cl = .95, hp = 90)
+}
+\author{
+Dinesh Acharya
+}
+\references{
+Dowd, K. Measuring Market Risk, Wiley, 2007.
+}
+
More information about the Returnanalytics-commits
mailing list