[Returnanalytics-commits] r3845 - in pkg/Dowd: R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Jul 22 23:30:21 CEST 2015


Author: dacharya
Date: 2015-07-22 23:30:21 +0200 (Wed, 22 Jul 2015)
New Revision: 3845

Added:
   pkg/Dowd/R/NormalVaRDFPerc.R
   pkg/Dowd/man/NormalVaRDFPerc.Rd
Log:
Function NormalVaRDFPerc added.

Added: pkg/Dowd/R/NormalVaRDFPerc.R
===================================================================
--- pkg/Dowd/R/NormalVaRDFPerc.R	                        (rev 0)
+++ pkg/Dowd/R/NormalVaRDFPerc.R	2015-07-22 21:30:21 UTC (rev 3845)
@@ -0,0 +1,159 @@
+#' Percentiles of VaR distribution function for normally distributed P/L
+#' 
+#' Estimates the percentile of VaR distribution function for normally distributed P/L, using the theory of order statistics.
+#' 
+#' @param ... The input arguments contain either return data or else mean and 
+#' standard deviation data. Accordingly, number of input arguments is either 4 
+#' or 6. In case there 4 input arguments, the mean, standard deviation and number of observations of 
+#' data are computed from returns data. See examples for details.
+#' 
+#' returns Vector of daily geometric return data
+#' 
+#'  mu Mean of daily geometric return data
+
+#'  sigma Standard deviation of daily geometric return data
+#' 
+#'  n Sample size
+#' 
+#'  perc Desired percentile
+#' 
+#'  cl VaR confidence level and must be a scalar
+#' 
+#'  hp VaR holding period and must be a a scalar
+#'  
+#' @return Percentiles of VaR distribution function and is scalar
+#'  
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#' 
+#'    # Estimates Percentiles of VaR distribution
+#'    data <- runif(5, min = 0, max = .2)
+#'    NormalVaRDFPerc(returns = data, perc = .7, cl = .95, hp = 60)
+#'    
+#'    # Estimates Percentiles of VaR distribution
+#'    NormalVaRDFPerc(mu = .012, sigma = .03, n= 10, perc = .8, cl = .99, hp = 40)
+#'
+#'
+#' @export
+NormalVaRDFPerc <- function(...){
+  # Determine if there are four or six arguments, and ensure that arguments are read as intended
+  if (nargs() < 4) {
+    stop("Too few arguments")
+  }
+  if (nargs() == 5) {
+    stop("Incorrect number of arguments")
+  }
+  if (nargs() > 6) {
+    stop("Too many arguments")
+  }
+  args <- list(...)
+  if (nargs() == 6) {
+    mu <- args$mu
+    cl <- args$cl
+    perc <- args$sigma
+    n <- args$n
+    sigma <- args$sigma
+    hp <- args$hp
+  }
+  if (nargs() == 4) {
+    mu <- mean(args$returns)
+    n <- max(dim(as.matrix(args$returns)))
+    perc <- args$perc
+    cl <- args$cl
+    sigma <- sd(args$returns)
+    hp <- args$hp
+  }
+  
+  # Check that inputs have correct dimensions
+  mu <- as.matrix(mu)
+  mu.row <- dim(mu)[1]
+  mu.col <- dim(mu)[2]
+  if (max(mu.row, mu.col) > 1) {
+    stop("Mean must be a scalar")
+  }
+  sigma <- as.matrix(sigma)
+  sigma.row <- dim(sigma)[1]
+  sigma.col <- dim(sigma)[2]
+  if (max(sigma.row, sigma.col) > 1) {
+    stop("Standard deviation must be a scalar")
+  }
+  n <- as.matrix(n)
+  n.row <- dim(n)[1]
+  n.col <- dim(n)[2]
+  if (max(n.row, n.col) > 1) {
+    stop("Number of observations in a sample must be an integer")
+  }
+  if (n %% 1 != 0) {
+    stop("Number of observations in a sample must be an integer.")
+  }
+  perc <- as.matrix(perc)
+  perc.row <- dim(perc)[1]
+  perc.col <- dim(perc)[2]
+  if (max(perc.row, perc.col) > 1) {
+    stop("Chosen percentile of the distribution must be a scalar")
+  }
+  cl <- as.matrix(cl)
+  cl.row <- dim(cl)[1]
+  cl.col <- dim(cl)[2]
+  if (max(cl.row, cl.col) > 1) {
+    stop("Confidence level must be a scalar")
+  }
+  hp <- as.matrix(hp)
+  hp.row <- dim(hp)[1]
+  hp.col <- dim(hp)[2]
+  if (max(hp.row, hp.col) > 1) {
+    stop("Holding period must be a scalar")
+  }
+  
+  # Check that inputs obey sign and value restrictions
+  if (sigma < 0) {
+    stop("Standard deviation must be non-negative")
+  }
+  if (n < 0) {
+    stop("Number of observations must be non-negative")
+  }
+  if (perc > 1){
+    stop("Chosen percentile must not exceed 1")
+  }
+  if (perc <= 0){
+    stop("Chosen percentile must be positive")
+  }
+  if (cl >= 1){
+    stop("Confidence level(s) must be less than 1")
+  }
+  if (cl <= 0){
+    stop("Confidence level must be greater than 0")
+  }
+  if (hp <= 0){
+    stop("Honding period must be greater than 0")
+  }
+  
+  # Derive order statistic and ensure it is an integer
+  w <- n * cl # Derive r-th order statistic
+  r <- round(w) # Round r to nearest integer
+  
+  # Bisection routine 
+  a <- 0
+  fa <- -Inf
+  b <- 1
+  fb <- Inf
+  eps <- .Machine$double.eps
+  while (b - a > eps * b) {
+    x <- (a + b) / 2
+    fx <- 1 - pbinom(r - 1, n, x) - perc
+    if (sign(fx) == sign(fa)){
+      a = x
+      fa = fx
+    } else {
+      b = x
+      fb = fx
+    }
+  }
+  
+  # VaR estimation
+  y <- qnorm(x, -mu * hp, sigma*sqrt(hp)) # Value of percentile; not normal VaR formula
+  
+  return(y)
+}

Added: pkg/Dowd/man/NormalVaRDFPerc.Rd
===================================================================
--- pkg/Dowd/man/NormalVaRDFPerc.Rd	                        (rev 0)
+++ pkg/Dowd/man/NormalVaRDFPerc.Rd	2015-07-22 21:30:21 UTC (rev 3845)
@@ -0,0 +1,48 @@
+% Generated by roxygen2 (4.1.1): do not edit by hand
+% Please edit documentation in R/NormalVaRDFPerc.R
+\name{NormalVaRDFPerc}
+\alias{NormalVaRDFPerc}
+\title{Percentiles of VaR distribution function for normally distributed P/L}
+\usage{
+NormalVaRDFPerc(...)
+}
+\arguments{
+\item{...}{The input arguments contain either return data or else mean and
+standard deviation data. Accordingly, number of input arguments is either 4
+or 6. In case there 4 input arguments, the mean, standard deviation and number of observations of
+data are computed from returns data. See examples for details.
+
+returns Vector of daily geometric return data
+
+ mu Mean of daily geometric return data
+ sigma Standard deviation of daily geometric return data
+
+ n Sample size
+
+ perc Desired percentile
+
+ cl VaR confidence level and must be a scalar
+
+ hp VaR holding period and must be a a scalar}
+}
+\value{
+Percentiles of VaR distribution function and is scalar
+}
+\description{
+Estimates the percentile of VaR distribution function for normally distributed P/L, using the theory of order statistics.
+}
+\examples{
+# Estimates Percentiles of VaR distribution
+   data <- runif(5, min = 0, max = .2)
+   NormalVaRDFPerc(returns = data, perc = .7, cl = .95, hp = 60)
+
+   # Estimates Percentiles of VaR distribution
+   NormalVaRDFPerc(mu = .012, sigma = .03, n= 10, perc = .8, cl = .99, hp = 40)
+}
+\author{
+Dinesh Acharya
+}
+\references{
+Dowd, K. Measuring Market Risk, Wiley, 2007.
+}
+



More information about the Returnanalytics-commits mailing list