[Returnanalytics-commits] r3828 - in pkg/Dowd: R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Jul 17 16:35:12 CEST 2015


Author: dacharya
Date: 2015-07-17 16:35:12 +0200 (Fri, 17 Jul 2015)
New Revision: 3828

Added:
   pkg/Dowd/R/LogNormalVaRETLPlot2DCL.R
   pkg/Dowd/man/LogNormalVaRETLPlot2DCL.Rd
Log:
Function LogNormalVaRETLPlot2DCL added.

Added: pkg/Dowd/R/LogNormalVaRETLPlot2DCL.R
===================================================================
--- pkg/Dowd/R/LogNormalVaRETLPlot2DCL.R	                        (rev 0)
+++ pkg/Dowd/R/LogNormalVaRETLPlot2DCL.R	2015-07-17 14:35:12 UTC (rev 3828)
@@ -0,0 +1,146 @@
+#' Plots log normal VaR and ETL against confidence level
+#' 
+#' Plots the VaR and ETL of a portfolio against confidence level assuming that geometric
+#'  returns are normally distributed, for specified confidence level and 
+#'  holding period.
+#' 
+#' @param returns Vector of daily geometric return data
+#' @param mu Mean of daily geometric return data
+#' @param sigma Standard deviation of daily geometric return data
+#' @param investment Size of investment
+#' @param cl VaR confidence level and must be a vector
+#' @param hp VaR holding period and must be a scalar
+#'  
+#'  @note The input arguments contain either return data or else mean and 
+#'  standard deviation data. Accordingly, number of input arguments is either 4
+#'  or 5. In case there are 4 input arguments, the mean and standard deviation of 
+#'  data is computed from return data. See examples for details.
+#'  
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#' 
+#'    # Plots VaR and ETL against confidene level given geometric return data
+#'    data <- runif(5, min = 0, max = .2)
+#'    LogNormalVaRETLPlot2DCL(returns = data, investment = 5, cl = seq(.85,.99,.01), hp = 60)
+#'    
+#'    # Computes VaR against confidence level given mean and standard deviation of return data
+#'    LogNormalVaRETLPlot2DCL(mu = .012, sigma = .03, investment = 5, cl = seq(.85,.99,.01), hp = 40)
+#'
+#'
+#' @export
+LogNormalVaRETLPlot2DCL<- function(...){
+  # Determine if there are four or five arguments, and ensure that arguments are read as intended
+  if (nargs() < 4) {
+    stop("Too few arguments")
+  }
+  if (nargs() > 5) {
+    stop("Too many arguments")
+  }
+  args <- list(...)
+  if (nargs() == 5) {
+    mu <- args$mu
+    investment <- args$investment
+    cl <- args$cl
+    sigma <- args$sigma
+    hp <- args$hp
+  }
+  if (nargs() == 4) {
+    mu <- mean(args$returns)
+    investment <- args$investment
+    cl <- args$cl
+    sigma <- sd(args$returns)
+    hp <- args$hp
+  }
+  
+  # Check that inputs have correct dimensions
+  mu <- as.matrix(mu)
+  mu.row <- dim(mu)[1]
+  mu.col <- dim(mu)[2]
+  if (max(mu.row, mu.col) > 1) {
+    stop("Mean must be a scalar")
+  }
+  sigma <- as.matrix(sigma)
+  sigma.row <- dim(sigma)[1]
+  sigma.col <- dim(sigma)[2]
+  if (max(sigma.row, sigma.col) > 1) {
+    stop("Standard deviation must be a scalar")
+  }
+  cl <- as.matrix(cl)
+  cl.row <- dim(cl)[1]
+  cl.col <- dim(cl)[2]
+  if (min(cl.row, cl.col) > 1) {
+    stop("Confidence level must be a vector")
+  }
+  hp <- as.matrix(hp)
+  hp.row <- dim(hp)[1]
+  hp.col <- dim(hp)[2]
+  if (max(hp.row, hp.col) > 1) {
+    stop("Holding period must be a scalar")
+  }
+  
+  # Check that cl is read as row vector
+  if (cl.row > cl.col) {
+    cl <- t(cl)
+  }
+  
+  # Check that inputs obey sign and value restrictions
+  if (sigma < 0) {
+    stop("Standard deviation must be non-negative")
+  }
+  if (max(cl) >= 1){
+    stop("Confidence level(s) must be less than 1")
+  }
+  if (min(cl) <= 0){
+    stop("Confidence level(s) must be greater than 0")
+  }
+  if (min(hp) <= 0){
+    stop("Holding period must be greater than 0")
+  }
+  # VaR estimation  
+  cl.row <- dim(cl)[1]
+  cl.col <- dim(cl)[2]
+  VaR <- investment - exp(sigma[1,1] * sqrt(hp[1,1]) * qnorm(1 - cl, 0, 1)+mu[1,1]*hp[1,1]*matrix(1,cl.row,cl.col) + log(investment)) # VaR
+  
+  # ES estimation
+  n <- 1000 # Number of slices into which tail is divided
+  cl0 <- cl # Initial confidence level
+  delta.cl <- (1 - cl) / n # Increment to confidence level as each slice is taken
+  v <- VaR
+  for (i in 1:(n-1)) {
+    cl <- cl0 + i * delta.cl # Revised cl
+    v <- v + investment - exp(sigma[1,1] * sqrt(hp[1,1]) * 
+                                      qnorm(1 - cl, 0, 1) + mu[1,1] * hp[1,1] * 
+                                      matrix(1, cl.row, cl.col) + log(investment))
+  }
+  v <- v/n
+  
+  
+  # Plotting
+  ymin <- min(VaR, v)
+  ymax <- max(VaR, v)
+  xmin <- min(cl0)
+  xmax <- max(cl0)
+  
+  plot(cl0, VaR, type = "l", xlim = c(xmin, xmax), ylim = c(ymin, ymax), xlab = "Confidence level", ylab = "VaR/ETL")
+  par(new=TRUE)
+  plot(cl0, v, type = "l", xlim = c(xmin, xmax), ylim = c(ymin, ymax), xlab = "Confidence level", ylab = "VaR/ETL")
+  
+  title("Lognormal VaR and ETL against confidence level")
+  xmin <- min(cl0)+.3*(max(cl0)-min(cl0))
+  text(xmin,max(VaR)-.1*(max(VaR)-min(VaR)),
+       'Input parameters', cex=.75, font = 2)
+  text(xmin,max(VaR)-.15*(max(VaR)-min(VaR)),
+       paste('Daily mean geometric return = ',round(mu[1,1],3)),cex=.75)
+  text(xmin,max(VaR)-.2*(max(VaR)-min(VaR)),
+       paste('Stdev. of daily geometric returns = ',round(sigma[1,1],3)),cex=.75)
+  text(xmin,max(VaR)-.25*(max(VaR)-min(VaR)),
+       paste('Investment size = ',investment),cex=.75)
+  text(xmin,max(VaR)-.3*(max(VaR)-min(VaR)),
+       paste('Holding period = ',hp,'days'),cex=.75)
+  # VaR and ETL labels
+  text(max(cl0)-.4*(max(cl0)-min(cl0)),min(VaR)+.3*(max(VaR)-min(VaR)),'Upper line - ETL',cex=.75);
+  text(max(cl0)-.4*(max(cl0)-min(cl0)),min(VaR)+.2*(max(VaR)-min(VaR)),'Lower line - VaR',cex=.75);
+       
+}

Added: pkg/Dowd/man/LogNormalVaRETLPlot2DCL.Rd
===================================================================
--- pkg/Dowd/man/LogNormalVaRETLPlot2DCL.Rd	                        (rev 0)
+++ pkg/Dowd/man/LogNormalVaRETLPlot2DCL.Rd	2015-07-17 14:35:12 UTC (rev 3828)
@@ -0,0 +1,47 @@
+% Generated by roxygen2 (4.1.1): do not edit by hand
+% Please edit documentation in R/LogNormalVaRETLPlot2DCL.R
+\name{LogNormalVaRETLPlot2DCL}
+\alias{LogNormalVaRETLPlot2DCL}
+\title{Plots log normal VaR and ETL against confidence level}
+\usage{
+LogNormalVaRETLPlot2DCL(...)
+}
+\arguments{
+\item{returns}{Vector of daily geometric return data}
+
+\item{mu}{Mean of daily geometric return data}
+
+\item{sigma}{Standard deviation of daily geometric return data}
+
+\item{investment}{Size of investment}
+
+\item{cl}{VaR confidence level and must be a vector}
+
+\item{hp}{VaR holding period and must be a scalar}
+}
+\description{
+Plots the VaR and ETL of a portfolio against confidence level assuming that geometric
+ returns are normally distributed, for specified confidence level and
+ holding period.
+}
+\note{
+The input arguments contain either return data or else mean and
+ standard deviation data. Accordingly, number of input arguments is either 4
+ or 5. In case there are 4 input arguments, the mean and standard deviation of
+ data is computed from return data. See examples for details.
+}
+\examples{
+# Plots VaR and ETL against confidene level given geometric return data
+   data <- runif(5, min = 0, max = .2)
+   LogNormalVaRETLPlot2DCL(returns = data, investment = 5, cl = seq(.85,.99,.01), hp = 60)
+
+   # Computes VaR against confidence level given mean and standard deviation of return data
+   LogNormalVaRETLPlot2DCL(mu = .012, sigma = .03, investment = 5, cl = seq(.85,.99,.01), hp = 40)
+}
+\author{
+Dinesh Acharya
+}
+\references{
+Dowd, K. Measuring Market Risk, Wiley, 2007.
+}
+



More information about the Returnanalytics-commits mailing list