[Returnanalytics-commits] r3820 - in pkg/Dowd: R man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Jul 15 01:18:11 CEST 2015
Author: dacharya
Date: 2015-07-15 01:18:11 +0200 (Wed, 15 Jul 2015)
New Revision: 3820
Added:
pkg/Dowd/R/LogNormalESPlot3D.R
pkg/Dowd/man/LogNormalESPlot3D.Rd
Log:
Function LogNormalESPlot3D added.
Added: pkg/Dowd/R/LogNormalESPlot3D.R
===================================================================
--- pkg/Dowd/R/LogNormalESPlot3D.R (rev 0)
+++ pkg/Dowd/R/LogNormalESPlot3D.R 2015-07-14 23:18:11 UTC (rev 3820)
@@ -0,0 +1,126 @@
+#' Plots log normal ES against confidence level and holding period
+#'
+#' Plots the ES of a portfolio against confidence level and holding period assuming that geometric
+#' returns are normally distributed, for specified confidence level and
+#' holding period.
+#'
+#' @param returns Vector of daily geometric return data
+#' @param mu Mean of daily geometric return data
+#' @param sigma Standard deviation of daily geometric return data
+#' @param cl VaR confidence level and must be a vector
+#' @param hp VaR holding period and must be a vector
+#'
+#' @note The input arguments contain either return data or else mean and
+#' standard deviation data. Accordingly, number of input arguments is either 4
+#' or 5. In case there 4 input arguments, the mean and standard deviation of
+#' data is computed from return data. See examples for details.
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Plots VaR against confidene level given geometric return data
+#' data <- runif(5, min = 0, max = .2)
+#' LogNormalESPlot3D(returns = data, investment = 5, cl = seq(.85,.99,.01), hp = 60:90)
+#'
+#' # Computes VaR against confidence level given mean and standard deviation of return data
+#' LogNormalESPlot3D(mu = .012, sigma = .03, investment = 5, cl = seq(.85,.99,.02), hp = 40:80)
+#'
+#'
+#' @export
+LogNormalESPlot3D <- function(...){
+ # Determine if there are four or five arguments, and ensure that arguments are read as intended
+ if (nargs() < 4) {
+ stop("Too few arguments")
+ }
+ if (nargs() > 5) {
+ stop("Too many arguments")
+ }
+ args <- list(...)
+ if (nargs() == 5) {
+ mu <- args$mu
+ investment <- args$investment
+ cl <- args$cl
+ sigma <- args$sigma
+ hp <- args$hp
+ }
+ if (nargs() == 4) {
+ mu <- mean(args$returns)
+ investment <- args$investment
+ cl <- args$cl
+ sigma <- sd(args$returns)
+ hp <- args$hp
+ }
+
+ # Check that inputs have correct dimensions
+ mu <- as.matrix(mu)
+ mu.row <- dim(mu)[1]
+ mu.col <- dim(mu)[2]
+ if (max(mu.row, mu.col) > 1) {
+ stop("Mean must be a scalar")
+ }
+ sigma <- as.matrix(sigma)
+ sigma.row <- dim(sigma)[1]
+ sigma.col <- dim(sigma)[2]
+ if (max(sigma.row, sigma.col) > 1) {
+ stop("Standard deviation must be a scalar")
+ }
+ cl <- as.matrix(cl)
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ if (min(cl.row, cl.col) > 1) {
+ stop("Confidence level must be a vector")
+ }
+ hp <- as.matrix(hp)
+ hp.row <- dim(hp)[1]
+ hp.col <- dim(hp)[2]
+ if (min(hp.row, hp.col) > 1) {
+ stop("Holding period must be a vector")
+ }
+
+ # Check that cl is read as row vector
+ if (cl.row > cl.col) {
+ cl <- t(cl)
+ }
+ # Check that hp is read as column vector
+ if (hp.col > hp.row) {
+ hp <- t(hp)
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (sigma < 0) {
+ stop("Standard deviation must be non-negative")
+ }
+ if (max(cl) >= 1){
+ stop("Confidence levels must be less than 1")
+ }
+ if (min(cl) <= 0){
+ stop("Confidence levels must be greater than 0")
+ }
+ if (min(hp) <= 0){
+ stop("Holding periods must be greater than 0")
+ }
+
+ # VaR estimation
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+
+ VaR <- investment - exp(sigma[1,1] * sqrt(hp) %*% qnorm(1 - cl, 0, 1) + mu[1,1] * hp %*% matrix(1,cl.row,cl.col) + log(investment)) # VaR
+
+ # ES estimation
+ n <- 1000 # Number of slices into which tail is divided
+ cl0 <- cl # Initial confidence level
+ delta.cl <- (1 - cl) / n # Increment to confidence level as each slice is taken
+ v <- VaR
+ for (i in 1:(n-1)) {
+ cl <- cl0 + i * delta.cl # Revised cl
+ v <- v + investment - exp(sigma[1,1] * sqrt(hp) %*% qnorm(1 - cl, 0, 1) + mu[1,1] * hp %*% matrix(1,cl.row,cl.col) + log(investment))
+ }
+ v <- v/n
+
+ # Plotting
+ persp(x=cl, y=hp, t(VaR), xlab = "Confidence Level",
+ ylab = "Holding Period", zlab = "VaR",
+ main = "Log-t ES against confidence level")
+}
Added: pkg/Dowd/man/LogNormalESPlot3D.Rd
===================================================================
--- pkg/Dowd/man/LogNormalESPlot3D.Rd (rev 0)
+++ pkg/Dowd/man/LogNormalESPlot3D.Rd 2015-07-14 23:18:11 UTC (rev 3820)
@@ -0,0 +1,45 @@
+% Generated by roxygen2 (4.1.1): do not edit by hand
+% Please edit documentation in R/LogNormalESPlot3D.R
+\name{LogNormalESPlot3D}
+\alias{LogNormalESPlot3D}
+\title{Plots log normal ES against confidence level and holding period}
+\usage{
+LogNormalESPlot3D(...)
+}
+\arguments{
+\item{returns}{Vector of daily geometric return data}
+
+\item{mu}{Mean of daily geometric return data}
+
+\item{sigma}{Standard deviation of daily geometric return data}
+
+\item{cl}{VaR confidence level and must be a vector}
+
+\item{hp}{VaR holding period and must be a vector}
+}
+\description{
+Plots the ES of a portfolio against confidence level and holding period assuming that geometric
+ returns are normally distributed, for specified confidence level and
+ holding period.
+}
+\note{
+The input arguments contain either return data or else mean and
+ standard deviation data. Accordingly, number of input arguments is either 4
+ or 5. In case there 4 input arguments, the mean and standard deviation of
+ data is computed from return data. See examples for details.
+}
+\examples{
+# Plots VaR against confidene level given geometric return data
+ data <- runif(5, min = 0, max = .2)
+ LogNormalESPlot3D(returns = data, investment = 5, cl = seq(.85,.99,.01), hp = 60:90)
+
+ # Computes VaR against confidence level given mean and standard deviation of return data
+ LogNormalESPlot3D(mu = .012, sigma = .03, investment = 5, cl = seq(.85,.99,.02), hp = 40:80)
+}
+\author{
+Dinesh Acharya
+}
+\references{
+Dowd, K. Measuring Market Risk, Wiley, 2007.
+}
+
More information about the Returnanalytics-commits
mailing list