[Returnanalytics-commits] r3814 - in pkg/Dowd: R man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Mon Jul 13 14:03:56 CEST 2015
Author: dacharya
Date: 2015-07-13 14:03:55 +0200 (Mon, 13 Jul 2015)
New Revision: 3814
Added:
pkg/Dowd/R/LogNormalES.R
pkg/Dowd/man/LogNormalES.Rd
Log:
Function LogNormalES added.
Added: pkg/Dowd/R/LogNormalES.R
===================================================================
--- pkg/Dowd/R/LogNormalES.R (rev 0)
+++ pkg/Dowd/R/LogNormalES.R 2015-07-13 12:03:55 UTC (rev 3814)
@@ -0,0 +1,125 @@
+#' ES for normally distributed geometric returns
+#'
+#' Estimates the ES of a portfolio assuming that geometric returns are
+#' normally distributed, for specified confidence level and holding period.
+#'
+#' @param returns Vector of daily geometric return data
+#' @param mu Mean of daily geometric return data
+#' @param sigma Standard deviation of daily geometric return data
+#' @param investment Size of investment
+#' @param cl VaR confidence level
+#' @param hp VaR holding period in days
+#' @return Matrix of ES whose dimension depends on dimension of hp and cl. If
+#' cl and hp are both scalars, the matrix is 1 by 1. If cl is a vector and hp is
+#' a scalar, the matrix is row matrix, if cl is a scalar and hp is a vector,
+#' the matrix is column matrix and if both cl and hp are vectors, the matrix
+#' has dimension length of cl * length of hp.
+#'
+#' @note The input arguments contain either return data or else mean and
+#' standard deviation data. Accordingly, number of input arguments is either 4
+#' or 5. In case there 4 input arguments, the mean and standard deviation of
+#' data is computed from return data. See examples for details.
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Computes ES given geometric return data
+#' data <- runif(5, min = 0, max = .2)
+#' LogNormalES(returns = data, investment = 5, cl = .95, hp = 90)
+#'
+#' # Computes ES given mean and standard deviation of return data
+#' LogNormalES(mu = .012, sigma = .03, investment = 5, cl = .95, hp = 90)
+#'
+#'
+#' @export
+LogNormalES <- function(...){
+ # Determine if there are four or fice arguments and ensure that arguments are
+ # read as intended
+ if (nargs() < 4) {
+ stop("Too few arguments")
+ }
+ if (nargs() > 5) {
+ stop("Too many arguments")
+ }
+ args <- list(...)
+ if (nargs() == 5) {
+ mu <- args$mu
+ investment <- args$investment
+ cl <- args$cl
+ sigma <- args$sigma
+ hp <- args$hp
+ }
+ if (nargs() == 4) {
+ mu <- mean(args$returns)
+ investment <- args$investment
+ cl <- args$cl
+ sigma <- sd(args$returns)
+ hp <- args$hp
+ }
+
+ # Check that inputs have correct dimensions
+ mu <- as.matrix(mu)
+ mu.row <- dim(mu)[1]
+ mu.col <- dim(mu)[2]
+ if (max(mu.row, mu.col) > 1) {
+ stop("Mean must be a scalar")
+ }
+ sigma <- as.matrix(sigma)
+ sigma.row <- dim(sigma)[1]
+ sigma.col <- dim(sigma)[2]
+ if (max(sigma.row, sigma.col) > 1) {
+ stop("Standard deviation must be a scalar")
+ }
+ cl <- as.matrix(cl)
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ if (min(cl.row, cl.col) > 1) {
+ stop("Confidence level must be a scalar or a vector")
+ }
+ hp <- as.matrix(hp)
+ hp.row <- dim(hp)[1]
+ hp.col <- dim(hp)[2]
+ if (min(hp.row, hp.col) > 1) {
+ stop("Holding period must be a scalar or a vector")
+ }
+
+ # Check that cl and hp are read as row and column vectors respectively
+ if (cl.row > cl.col) {
+ cl <- t(cl)
+ }
+ if (hp.row > hp.col) {
+ hp <- t(hp)
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (sigma < 0) {
+ stop("Standard deviation must be non-negative")
+ }
+ if (max(cl) >= 1){
+ stop("Confidence levels must be less than 1")
+ }
+ if (min(cl) <= 0){
+ stop("Confidence levels must be greater than 0")
+ }
+ if (min(hp) <= 0){
+ stop("Holding periods must be greater than 0")
+ }
+ # VaR estimation
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ VaR <- investment - exp(sigma[1,1] * sqrt(hp) %*% qnorm(1 - cl, 0, 1) + mu[1,1] * hp %*% matrix(1,cl.row,cl.col) + log(investment)) # VaR
+
+ # ES estimation
+ n <- 1000 # Number of slices into which tail is divided
+ cl0 <- cl # Initial confidence level
+ delta.cl <- (1 - cl) / n # Increment to confidence level as each slice is taken
+ term <- VaR
+ for (i in 1:(n-1)) {
+ cl <- cl0 + i * delta.cl # Revised cl
+ term <- term + investment - exp(sigma[1,1] * sqrt(hp) %*% qnorm(1 - cl, 0, 1) + mu[1,1] * hp %*% matrix(1,cl.row,cl.col) + log(investment))
+ }
+ y <- term/n
+ return (y)
+}
\ No newline at end of file
Added: pkg/Dowd/man/LogNormalES.Rd
===================================================================
--- pkg/Dowd/man/LogNormalES.Rd (rev 0)
+++ pkg/Dowd/man/LogNormalES.Rd 2015-07-13 12:03:55 UTC (rev 3814)
@@ -0,0 +1,53 @@
+% Generated by roxygen2 (4.1.1): do not edit by hand
+% Please edit documentation in R/LogNormalES.R
+\name{LogNormalES}
+\alias{LogNormalES}
+\title{ES for normally distributed geometric returns}
+\usage{
+LogNormalES(...)
+}
+\arguments{
+\item{returns}{Vector of daily geometric return data}
+
+\item{mu}{Mean of daily geometric return data}
+
+\item{sigma}{Standard deviation of daily geometric return data}
+
+\item{investment}{Size of investment}
+
+\item{cl}{VaR confidence level}
+
+\item{hp}{VaR holding period in days}
+}
+\value{
+Matrix of ES whose dimension depends on dimension of hp and cl. If
+cl and hp are both scalars, the matrix is 1 by 1. If cl is a vector and hp is
+ a scalar, the matrix is row matrix, if cl is a scalar and hp is a vector,
+ the matrix is column matrix and if both cl and hp are vectors, the matrix
+ has dimension length of cl * length of hp.
+}
+\description{
+Estimates the ES of a portfolio assuming that geometric returns are
+normally distributed, for specified confidence level and holding period.
+}
+\note{
+The input arguments contain either return data or else mean and
+ standard deviation data. Accordingly, number of input arguments is either 4
+ or 5. In case there 4 input arguments, the mean and standard deviation of
+ data is computed from return data. See examples for details.
+}
+\examples{
+# Computes ES given geometric return data
+ data <- runif(5, min = 0, max = .2)
+ LogNormalES(returns = data, investment = 5, cl = .95, hp = 90)
+
+ # Computes ES given mean and standard deviation of return data
+ LogNormalES(mu = .012, sigma = .03, investment = 5, cl = .95, hp = 90)
+}
+\author{
+Dinesh Acharya
+}
+\references{
+Dowd, K. Measuring Market Risk, Wiley, 2007.
+}
+
More information about the Returnanalytics-commits
mailing list