[Returnanalytics-commits] r3963 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Sun Aug 16 14:30:52 CEST 2015
Author: dacharya
Date: 2015-08-16 14:30:52 +0200 (Sun, 16 Aug 2015)
New Revision: 3963
Added:
pkg/Dowd/R/BoxCoxVaR.R
Log:
Function BoxCoxVaR added.
Added: pkg/Dowd/R/BoxCoxVaR.R
===================================================================
--- pkg/Dowd/R/BoxCoxVaR.R (rev 0)
+++ pkg/Dowd/R/BoxCoxVaR.R 2015-08-16 12:30:52 UTC (rev 3963)
@@ -0,0 +1,75 @@
+#' Estimates VaR with Box-Cox transformation
+#'
+#' Function estimates the VaR of a portfolio assuming P and L data set transformed
+#' using the BoxCox transformation to make it as near normal as possible, for
+#' specified confidence level and holding period implied by data frequency.
+#'
+#' @param PandLdata Daily Profit/Loss data
+#' @param cl Confidence Level. It can be a scalar or a vector.
+#' @return Estimated Box-Cox VaR. Its dimension is same as that of cl
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' Hamilton, S. A. and Taylor, M. G. A Comparision of the Box-Cox
+#' transformation method and nonparametric methods for estimating quantiles
+#' in clinical data with repeated measures. J. Statist. Comput. Simul., vol.
+#' 45, 1993, pp. 185 - 201.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Estimates Box-Cox VaR
+#' a<-rnorm(100)
+#' BoxCoxVaR(a,.95)
+#'
+#' @import forecast
+#'
+#' @export
+BoxCoxVaR <- function(PandLdata, cl){
+ # Check that inputs have correct dimensions
+ cl <- as.matrix(cl)
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ if (min(cl.row, cl.col) > 1) {
+ stop("Confidence level must be a scalar or a vector")
+ }
+
+ if (cl.row > cl.col) {
+ cl <- t(cl)
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (max(cl) >= 1){
+ stop("Confidence level(s) must be less than 1")
+ }
+ if (min(cl) <= 0){
+ stop("Confidence level(s) must be greater than 0")
+ }
+ # Transform data and obtain lambda
+ loss.data <- -PandLdata
+ loss.data <- loss.data - min(loss.data) + 1
+ loss.data <- sort(loss.data)
+ lambda <- BoxCox.lambda(loss.data, method="loglik")
+ transdat <- BoxCox(loss.data, lambda)
+
+ # Alternative method:
+ # for dependence only on MASS and not on forecast package (not working yet!)
+ # model <- lm(loss.data~1)
+ # boxcox <- boxcox(model,plotit=FALSE)
+ # lambda <- with(bc, x[which.max(y)])
+ # box cox transformation
+ # if(lambda == 0) {
+ # transdat <- log(loss.data)
+ # } else {
+ # transdat <- (loss.data^lambda -1)/lambda
+ # }
+
+ # Estimate mean and standard deviation of transformed data
+ mu <- mean(transdat)
+ sigma <- sd(transdat)
+ VaR <- double(length(cl))
+ for(i in 1:length(cl)){
+ VaR[i] <- (1 + lambda * (mu + sigma * qnorm(cl[i]))) ^ (1 / lambda) + min(-PandLdata) - 1 # i-th VaR
+ }
+ return(VaR)
+}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list