[Returnanalytics-commits] r3936 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Aug 11 09:40:00 CEST 2015
Author: dacharya
Date: 2015-08-11 09:40:00 +0200 (Tue, 11 Aug 2015)
New Revision: 3936
Added:
pkg/Dowd/R/VarianceCovarianceES.R
Log:
Function VarianceCovarianceES.R added
Added: pkg/Dowd/R/VarianceCovarianceES.R
===================================================================
--- pkg/Dowd/R/VarianceCovarianceES.R (rev 0)
+++ pkg/Dowd/R/VarianceCovarianceES.R 2015-08-11 07:40:00 UTC (rev 3936)
@@ -0,0 +1,103 @@
+#' @title Variance-covariance ES for normally distributed returns
+#'
+#' @description Estimates the variance-covariance VaR of a
+#' portfolio assuming individual asset returns are normally distributed,
+#' for specified confidence level and holding period.
+#'
+#' @param vc.matrix Variance covariance matrix for returns
+#' @param mu Vector of expected position returns
+#' @param positions Vector of positions
+#' @param cl Confidence level and is scalar
+#' @param hp Holding period and is scalar
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#'
+#' @examples
+#'
+#' # Variance-covariance ES for randomly generated portfolio
+#' vc.matrix <- matrix(rnorm(16), 4, 4)
+#' mu <- rnorm(4)
+#' positions <- c(5, 2, 6, 10)
+#' cl <- .95
+#' hp <- 280
+#' VarianceCovarianceES(vc.matrix, mu, positions, cl, hp)
+#'
+#' @export
+VarianceCovarianceES <- function(vc.matrix, mu, positions, cl, hp){
+
+ # Check that cl is read as a row vector
+ cl <- as.matrix(cl)
+ if (dim(cl)[1] > dim(cl)[2]) {
+ cl <- t(cl)
+ }
+
+ # Check that hp is read as a column vector
+ hp <- as.matrix(hp)
+ if (dim(hp)[1] < dim(hp)[2]) {
+ hp <- t(hp)
+ }
+
+ # Check that positions vector read as a scalar or row vector
+ positions <- as.matrix(positions)
+ if (dim(positions)[1] > dim(positions)[2]){
+ positions <- t(positions)
+ }
+
+ # Check that expected returns vector is read as a scalar or row vector
+ mu <- as.matrix(mu)
+ if (dim(mu)[1] > dim(mu)[2]){
+ mu <- t(mu)
+ }
+
+ # Check that dimensions are correct
+ if (max(dim(mu)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+ if (max(dim(vc.matrix)) != max(dim(positions))){
+ stop("Positions vector and expected returns vector must have same size")
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (cl >= 1){
+ stop("Confidence level must be less than 1")
+ }
+ if (cl <= 0){
+ stop("Confidence level must be greater than 0");
+ }
+ if (hp <= 0){
+ stop("Holding period must be greater than 0");
+ }
+
+ # VaR and ES estimation
+ VaR <- matrix(0, length(cl), length(hp))
+ term <- matrix(0, length(cl), length(hp))
+ es <- matrix(0, length(cl), length(hp))
+ cl0 <- double(length(cl))
+ delta.cl <- double(length(cl))
+ for (i in 1:length(cl)) {
+ for (j in 1:length(hp)) {
+ VaR[i,j] <- - mu %*% t(positions) * hp[j] - qnorm(1-cl[i],0,1) *
+ (positions%*%vc.matrix%*%t(positions))*sqrt(hp[j]) # VaR
+ # ES Estimation
+ n <- 1000 # Number of slives into which tail is divided
+ cl0[i] <- cl[i] # Initial confidence level
+ term[i, j] <- VaR[i, j]
+ delta.cl[i] <- (1 - cl[i]) / n # Increment to confidence level as each
+ # slice is taken
+
+ for (k in 1:(n - 1)) {
+
+ cl[i] <- cl0[i] + k * delta.cl[i] # Revised cl
+ term[i, j] <- term[i, j] - mu %*% t(positions) * hp[j] -
+ (qnorm(1-cl[i],0,1)) * (positions%*%vc.matrix%*%t(positions))*sqrt(hp[j])
+ }
+ es[i, j] <- term[i, j]/n
+
+ }
+ }
+ y <- t(es)
+ return(y)
+
+}
More information about the Returnanalytics-commits
mailing list