[Returnanalytics-commits] r3923 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Fri Aug 7 10:18:58 CEST 2015
Author: dacharya
Date: 2015-08-07 10:18:58 +0200 (Fri, 07 Aug 2015)
New Revision: 3923
Added:
pkg/Dowd/R/tVaRDFPerc.R
Log:
Function tVaRDFPerc added
Added: pkg/Dowd/R/tVaRDFPerc.R
===================================================================
--- pkg/Dowd/R/tVaRDFPerc.R (rev 0)
+++ pkg/Dowd/R/tVaRDFPerc.R 2015-08-07 08:18:58 UTC (rev 3923)
@@ -0,0 +1,172 @@
+#' Percentiles of VaR distribution function
+#'
+#' Plots the VaR of a portfolio against confidence level assuming that P/L are
+#' t- distributed, for specified confidence level and holding period.
+#'
+#' @param ... The input arguments contain either return data or else mean and
+#' standard deviation data. Accordingly, number of input arguments is either 5
+#' or 7. In case there 6 input arguments, the mean, standard deviation and
+#' number of observations of the data is computed from return data. See examples
+#' for details.
+#'
+#' returns Vector of daily geometric return data
+#'
+#' mu Mean of daily geometric return data
+#'
+#' sigma Standard deviation of daily geometric return data
+#'
+#' n Sample size
+#'
+#' perc Desired percentile
+#'
+#' df Number of degrees of freedom in the t distribution
+#'
+#' cl VaR confidence level and must be a scalar
+#'
+#' hp VaR holding period and must be a a scalar
+#'
+#' Percentiles of VaR distribution function
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Estimates Percentiles of VaR distribution
+#' data <- runif(5, min = 0, max = .2)
+#' tVaRDFPerc(returns = data, perc = .7,
+#' df = 6, cl = .95, hp = 60)
+#'
+#' # Computes v given mean and standard deviation of return data
+#' tVaRDFPerc(mu = .012, sigma = .03, n= 10,
+#' perc = .8, df = 6, cl = .99, hp = 40)
+#'
+#'
+#' @export
+tVaRDFPerc <- function(...){
+ # Determine if there are five or seven arguments, and ensure that arguments are read as intended
+ if (nargs() < 5) {
+ stop("Too few arguments")
+ }
+ if (nargs() == 6) {
+ stop("Incorrect number of arguments")
+ }
+ if (nargs() > 7) {
+ stop("Too many arguments")
+ }
+ args <- list(...)
+ if (nargs() == 7) {
+ mu <- args$mu
+ df <- args$df
+ cl <- args$cl
+ perc <- args$perc
+ n <- args$n
+ sigma <- args$sigma
+ hp <- args$hp
+ }
+ if (nargs() == 5) {
+ mu <- mean(args$returns)
+ df <- args$df
+ n <- max(dim(as.matrix(args$returns)))
+ perc <- args$perc
+ cl <- args$cl
+ sigma <- sd(args$returns)
+ hp <- args$hp
+ }
+
+ # Check that inputs have correct dimensions
+ mu <- as.matrix(mu)
+ mu.row <- dim(mu)[1]
+ mu.col <- dim(mu)[2]
+ if (max(mu.row, mu.col) > 1) {
+ stop("Mean must be a scalar")
+ }
+ sigma <- as.matrix(sigma)
+ sigma.row <- dim(sigma)[1]
+ sigma.col <- dim(sigma)[2]
+ if (max(sigma.row, sigma.col) > 1) {
+ stop("Standard deviation must be a scalar")
+ }
+ n <- as.matrix(n)
+ n.row <- dim(n)[1]
+ n.col <- dim(n)[2]
+ if (max(n.row, n.col) > 1) {
+ stop("Number of observations in a sample must be an integer")
+ }
+ perc <- as.matrix(perc)
+ perc.row <- dim(perc)[1]
+ perc.col <- dim(perc)[2]
+ if (max(perc.row, perc.col) > 1) {
+ stop("Chosen percentile of the distribution must be a scalar")
+ }
+ cl <- as.matrix(cl)
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ if (max(cl.row, cl.col) > 1) {
+ stop("Confidence level must be a scalar")
+ }
+ hp <- as.matrix(hp)
+ hp.row <- dim(hp)[1]
+ hp.col <- dim(hp)[2]
+ if (max(hp.row, hp.col) > 1) {
+ stop("Holding period must be a scalar")
+ }
+ df <- as.matrix(df)
+ df.row <- dim(df)[1]
+ df.col <- dim(df)[2]
+ if (max(df.row, df.col) > 1) {
+ stop("Number of degrees of freedom must be a scalar")
+ }
+
+
+ # Check that inputs obey sign and value restrictions
+ if (sigma < 0) {
+ stop("Standard deviation must be non-negative")
+ }
+ if (n < 0) {
+ stop("Number of observations must be non-negative")
+ }
+ if (perc > 1){
+ stop("Chosen percentile must not exceed 1")
+ }
+ if (perc <= 0){
+ stop("Chosen percentile must be positive")
+ }
+ if (cl >= 1){
+ stop("Confidence level(s) must be less than 1")
+ }
+ if (cl <= 0){
+ stop("Confidence level(s) must be greater than 0")
+ }
+ if (hp <= 0){
+ stop("Honding period(s) must be greater than 0")
+ }
+ if (df < 3) {
+ stop("Number of degrees of freedom must be at least 3 for first two moments of distribution to be defined")
+ }
+
+ # Derive order statistic and ensure it is an integer
+ w <- n * cl # Derive r-th order statistic
+ r <- round(w) # Round r to nearest integer
+ # Bisection routine
+ a <- 0
+ fa <- -Inf
+ b <- 1
+ fb <- Inf
+ eps <- .Machine$double.eps
+ while (b - a > eps * b) {
+ x <- (a + b) / 2
+ fx <- 1 - pbinom(r - 1, n, x) - perc
+ if (sign(fx) == sign(fa)){
+ a <- x
+ fa <- fx
+ } else {
+ b <- x
+ fb <- fx
+ }
+ }
+ # VaR estimation
+ y <- -mu %*% hp + sigma %*% sqrt(hp) %*% sqrt((df - 2) / df) %*% qt(x, df)# VaR
+
+ return(y)
+}
More information about the Returnanalytics-commits
mailing list