[Returnanalytics-commits] r3917 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Aug 5 22:37:08 CEST 2015
Author: dacharya
Date: 2015-08-05 22:37:07 +0200 (Wed, 05 Aug 2015)
New Revision: 3917
Added:
pkg/Dowd/R/tVaRESPlot2DCL.R
Log:
Function tVaRESPlot2DCL added
Added: pkg/Dowd/R/tVaRESPlot2DCL.R
===================================================================
--- pkg/Dowd/R/tVaRESPlot2DCL.R (rev 0)
+++ pkg/Dowd/R/tVaRESPlot2DCL.R 2015-08-05 20:37:07 UTC (rev 3917)
@@ -0,0 +1,155 @@
+#' Plots t VaR and ES against confidence level
+#'
+#' Plots the VaR and ES of a portfolio against confidence level assuming that P/L
+#' data are t distributed, for specified confidence level and
+#' holding period.
+#'
+#' @param ... The input arguments contain either return data or else mean and
+#' standard deviation data. Accordingly, number of input arguments is either 4
+#' or 5. In case there are 4 input arguments, the mean and standard deviation of
+#' data is computed from return data. See examples for details.
+#'
+#' returns Vector of daily geometric return data
+#'
+#' mu Mean of daily geometric return data
+#'
+#' sigma Standard deviation of daily geometric return data
+#'
+#' cl VaR confidence level and must be a vector
+#'
+#' hp VaR holding period and must be a scalar
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Plots VaR and ETL against confidene level given P/L data
+#' data <- runif(5, min = 0, max = .2)
+#' tVaRESPlot2DCL(returns = data, df = 7, cl = seq(.85,.99,.01), hp = 60)
+#'
+#' # Computes VaR against confidence level given mean and standard deviation of P/L data
+#' tVaRESPlot2DCL(mu = .012, sigma = .03, df = 7, cl = seq(.85,.99,.01), hp = 40)
+#'
+#'
+#' @export
+tVaRESPlot2DCL<- function(...){
+ # Determine if there are four or five arguments, and ensure that arguments
+ # are read as intended
+ if (nargs() < 4) {
+ stop("Too few arguments")
+ }
+ if (nargs() > 5) {
+ stop("Too many arguments")
+ }
+ args <- list(...)
+ if (nargs() == 5) {
+ mu <- args$mu
+ cl <- args$cl
+ sigma <- args$sigma
+ hp <- args$hp
+ df <- args$df
+ }
+ if (nargs() == 4) {
+ mu <- mean(args$returns)
+ cl <- args$cl
+ sigma <- sd(args$returns)
+ hp <- args$hp
+ df <- args$df
+ }
+
+ # Check that inputs have correct dimensions
+ mu <- as.matrix(mu)
+ mu.row <- dim(mu)[1]
+ mu.col <- dim(mu)[2]
+ if (max(mu.row, mu.col) > 1) {
+ stop("Mean must be a scalar")
+ }
+ sigma <- as.matrix(sigma)
+ sigma.row <- dim(sigma)[1]
+ sigma.col <- dim(sigma)[2]
+ if (max(sigma.row, sigma.col) > 1) {
+ stop("Standard deviation must be a scalar")
+ }
+ cl <- as.matrix(cl)
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ if (min(cl.row, cl.col) > 1) {
+ stop("Confidence level must be a vector")
+ }
+ hp <- as.matrix(hp)
+ hp.row <- dim(hp)[1]
+ hp.col <- dim(hp)[2]
+ if (max(hp.row, hp.col) > 1) {
+ stop("Holding period must be a scalar")
+ }
+ df <- as.matrix(df)
+ df.row <- dim(df)[1]
+ df.col <- dim(df)[2]
+ if (max(df.row, df.col) > 1) {
+ stop("Number of degrees of freedom must be a scalar")
+ }
+
+ # Check that cl is read as row vector
+ if (cl.row > cl.col) {
+ cl <- t(cl)
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (sigma < 0) {
+ stop("Standard deviation must be non-negative")
+ }
+ if (df < 3) {
+ stop("Number of degrees of freedom must be at least 3 for first two moments of distribution to be defined")
+ }
+ if (max(cl) >= 1){
+ stop("Confidence level(s) must be less than 1")
+ }
+ if (min(cl) <= 0){
+ stop("Confidence level(s) must be greater than 0")
+ }
+ if (min(hp) <= 0){
+ stop("Holding period must be greater than 0")
+ }
+ # VaR estimation
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ VaR <- (-sigma[1,1] * sqrt(t(hp)) %*% sqrt((df - 2) / df) %*% qt(1 - cl, df)) + (- mu[1,1] * t(hp) %*% matrix(1, cl.row, cl.col)) # VaR
+
+ # ES estimation
+ n <- 1000 # Number of slices into which tail is divided
+ cl0 <- cl # Initial confidence level
+ v <- VaR
+ delta.cl <- (1 - cl)/n # Increment to confidence level as each slice is taken
+ for (i in 1:(n-1)) {
+ cl <- cl0 + i * delta.cl # Revised cl
+ v <- v + (-sigma[1,1] * sqrt(t(hp)) %*% sqrt((df - 2) / df) %*% qt(1 - cl, df)) + (- mu[1,1] * t(hp) %*% matrix(1, cl.row, cl.col))
+ }
+ v <- v/n # ES
+
+ # Plotting
+ ymin <- min(VaR, v)
+ ymax <- max(VaR, v)
+ xmin <- min(cl0)
+ xmax <- max(cl0)
+ plot(cl0, VaR, type = "l", xlim = c(xmin, xmax), ylim = c(ymin, ymax), xlab = "Confidence level", ylab = "VaR/ETL")
+ par(new=TRUE)
+ plot(cl0, v, type = "l", xlim = c(xmin, xmax), ylim = c(ymin, ymax), xlab = "Confidence level", ylab = "VaR/ETL")
+
+ title("t VaR and ETL against confidence level")
+ xmin <- min(cl0)+.3*(max(cl0)-min(cl0))
+ text(xmin,max(VaR)-.1*(max(VaR)-min(VaR)),
+ 'Input parameters', cex=.75, font = 2)
+ text(xmin,max(VaR)-.175*(max(VaR)-min(VaR)),
+ paste('Daily mean L/P = ',round(mu[1,1],3)),cex=.75)
+ text(xmin,max(VaR)-.25*(max(VaR)-min(VaR)),
+ paste('Stdev. of daily L/P = ',round(sigma[1,1],3)),cex=.75)
+ text(xmin,max(VaR)-.325*(max(VaR)-min(VaR)),
+ paste('Degrees of freedom = ',df),cex=.75)
+ text(xmin,max(VaR)-.4*(max(VaR)-min(VaR)),
+ paste('Holding period = ',hp,'days'),cex=.75)
+ # VaR and ETL labels
+ text(max(cl0)-.4*(max(cl0)-min(cl0)),min(VaR)+.3*(max(VaR)-min(VaR)),'Upper line - ETL',cex=.75);
+ text(max(cl0)-.4*(max(cl0)-min(cl0)),min(VaR)+.2*(max(VaR)-min(VaR)),'Lower line - VaR',cex=.75);
+
+}
More information about the Returnanalytics-commits
mailing list