[Returnanalytics-commits] r3908 - pkg/Dowd/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Aug 5 07:22:35 CEST 2015
Author: dacharya
Date: 2015-08-05 07:22:35 +0200 (Wed, 05 Aug 2015)
New Revision: 3908
Added:
pkg/Dowd/R/tESPlot2DCL.R
Log:
Function tESPlot2DCL added
Added: pkg/Dowd/R/tESPlot2DCL.R
===================================================================
--- pkg/Dowd/R/tESPlot2DCL.R (rev 0)
+++ pkg/Dowd/R/tESPlot2DCL.R 2015-08-05 05:22:35 UTC (rev 3908)
@@ -0,0 +1,144 @@
+#' Plots t- ES against confidence level
+#'
+#' Plots the ES of a portfolio against confidence level, assuming that L/P is
+#' t distributed, for specified confidence level and holding period.
+#'
+#' @param ... The input arguments contain either return data or else mean and
+#' standard deviation data. Accordingly, number of input arguments is either 4
+#' or 5. In case there 4 input arguments, the mean and standard deviation of
+#' data is computed from return data. See examples for details.
+#'
+#' returns Vector of daily geometric return data
+#'
+#' mu Mean of daily geometric return data
+#'
+#' sigma Standard deviation of daily geometric return data
+#'
+#' df Number of degrees of freedom in the t distribution
+#'
+#' cl ES confidence level and must be a vector
+#'
+#' hp ES holding period and must be a scalar
+#'
+#' @references Dowd, K. Measuring Market Risk, Wiley, 2007.
+#'
+#' Evans, M., Hastings, M. and Peacock, B. Statistical Distributions, 3rd
+#' edition, New York: John Wiley, ch. 38,39.
+#'
+#' @author Dinesh Acharya
+#' @examples
+#'
+#' # Computes ES given geometric return data
+#' data <- runif(5, min = 0, max = .2)
+#' tESPlot2DCL(returns = data, df = 6, cl = seq(.9,.99,.01), hp = 60)
+#'
+#' # Computes v given mean and standard deviation of return data
+#' tESPlot2DCL(mu = .012, sigma = .03, df = 6, cl = seq(.9,.99,.01), hp = 40)
+#'
+#'
+#' @export
+tESPlot2DCL <- function(...){
+ # Determine if there are five or six arguments, and ensure that arguments are read as intended
+ if (nargs() < 4) {
+ stop("Too few arguments")
+ }
+ if (nargs() > 5) {
+ stop("Too many arguments")
+ }
+ args <- list(...)
+ if (nargs() == 5) {
+ mu <- args$mu
+ df <- args$df
+ cl <- args$cl
+ sigma <- args$sigma
+ hp <- args$hp
+ }
+ if (nargs() == 4) {
+ mu <- mean(args$returns)
+ df <- args$df
+ cl <- args$cl
+ sigma <- sd(args$returns)
+ hp <- args$hp
+ }
+ # Check that inputs have correct dimensions
+ mu <- as.matrix(mu)
+ mu.row <- dim(mu)[1]
+ mu.col <- dim(mu)[2]
+ if (max(mu.row, mu.col) > 1) {
+ stop("Mean must be a scalar")
+ }
+ sigma <- as.matrix(sigma)
+ sigma.row <- dim(sigma)[1]
+ sigma.col <- dim(sigma)[2]
+ if (max(sigma.row, sigma.col) > 1) {
+ stop("Standard deviation must be a scalar")
+ }
+ cl <- as.matrix(cl)
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ if (min(cl.row, cl.col) > 1) {
+ stop("Confidence level must be a vector")
+ }
+ hp <- as.matrix(hp)
+ hp.row <- dim(hp)[1]
+ hp.col <- dim(hp)[2]
+ if (max(hp.row, hp.col) > 1) {
+ stop("Holding period must be a scalar")
+ }
+ df <- as.matrix(df)
+ df.row <- dim(df)[1]
+ df.col <- dim(df)[2]
+ if (max(df.row, df.col)>1){
+ stop('Number of degrees of freedom must be a scalar')
+ }
+ # Check that hp is read as row vector
+ if (cl.row > cl.col) {
+ cl <- t(cl)
+ }
+
+ # Check that inputs obey sign and value restrictions
+ if (sigma < 0) {
+ stop("Standard deviation must be non-negative")
+ }
+ if (df < 3) {
+ stop("Number of degrees of freedom must be at least 3 for first two moments of distribution to be defined")
+ }
+ if (max(cl) >= 1){
+ stop("Confidence level(s) must be less than 1")
+ }
+ if (min(cl) <= 0){
+ stop("Confidence level(s) must be greater than 0")
+ }
+ if (min(hp) <= 0){
+ stop("Holding period(s) must be greater than 0")
+ }
+ # VaR estimation
+ cl.row <- dim(cl)[1]
+ cl.col <- dim(cl)[2]
+ VaR <- (-sigma[1,1] * sqrt(hp[1,1]) * sqrt((df - 2) / df) %*% qt(1 - cl, df)) + (- mu[1,1] * hp[1,1] * matrix(1, cl.row, cl.col)) # VaR
+ # ES etimation
+ n <- 1000 # Number of slices into which tail is divided
+ cl0 <- cl # Initial confidence level
+ delta.cl <- (1 - cl) / n # Increment to confidence level as each slice is taken
+ v <- VaR
+ for (i in 1:(n-1)) {
+ cl <- cl0 + i * delta.cl # Revised cl
+ v <- v + (-sigma[1,1] * sqrt(hp[1,1]) * sqrt((df - 2) / df) %*% qt(1 - cl, df)) + (- mu[1,1] * hp[1,1] * matrix(1, cl.row, cl.col))
+ }
+ v <- v/n
+
+ # Plotting
+ plot(cl0, v, type = "l", xlab = "Holding Period", ylab = "ES")
+ title("t ES against confidence level")
+ xmin <-min(cl0)+.25*(max(cl0)-min(cl0))
+ text(xmin,max(v)-.1*(max(v)-min(v)),
+ 'Input parameters', cex=.75, font = 2)
+ text(xmin,max(v)-.15*(max(v)-min(v)),
+ paste('Daily mean L/P = ',round(mu[1,1],3)),cex=.75)
+ text(xmin,max(v)-.2*(max(v)-min(v)),
+ paste('Stdev. of daily L/P = ',round(sigma[1,1],3)),cex=.75)
+ text(xmin,max(v)-.25*(max(v)-min(v)),
+ paste('Degrees of freedom = ',df),cex=.75)
+ text(xmin,max(v)-.3*(max(v)-min(v)),
+ paste('Holding Period = ',hp),cex=.75)
+}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list