[Returnanalytics-commits] r3447 - in pkg/PortfolioAnalytics: R sandbox

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sun Jun 29 18:18:42 CEST 2014


Author: rossbennett34
Date: 2014-06-29 18:18:42 +0200 (Sun, 29 Jun 2014)
New Revision: 3447

Added:
   pkg/PortfolioAnalytics/R/meucci_moments.R
   pkg/PortfolioAnalytics/R/meucci_ranking.R
Modified:
   pkg/PortfolioAnalytics/R/EntropyProg.R
   pkg/PortfolioAnalytics/sandbox/scriptFFV.R
Log:
Adding Meucci ranking

Modified: pkg/PortfolioAnalytics/R/EntropyProg.R
===================================================================
--- pkg/PortfolioAnalytics/R/EntropyProg.R	2014-06-29 12:50:14 UTC (rev 3446)
+++ pkg/PortfolioAnalytics/R/EntropyProg.R	2014-06-29 16:18:42 UTC (rev 3447)
@@ -1,227 +1,274 @@
-#' Entropy pooling program for blending views on scenarios with a prior scenario-probability distribution
-#'
-#' Entropy program will change the initial predictive distribution 'p' to a new set 'p_' that satisfies
-#' specified moment conditions but changes other propoerties of the new distribution the least by
-#' minimizing the relative entropy between the two distributions. Theoretical note: Relative Entropy (Kullback-Leibler information criterion KLIC) is an
-#' asymmetric measure. 
-#'
-#' We retrieve a new set of probabilities for the joint-scenarios using the Entropy pooling method
-#' Of the many choices of 'p' that satisfy the views, we choose 'p' that minimize the entropy or distance of the new probability
-#' distribution to the prior joint-scenario probabilities
-#' We use Kullback-Leibler divergence or relative entropy dist(p,q): Sum across all scenarios [ p-t * ln( p-t / q-t ) ]
-#' Therefore we define solution as p* = argmin (choice of p ) [ sum across all scenarios: p-t * ln( p-t / q-t) ], 
-#' such that 'p' satisfies views. The views modify the prior in a cohrent manner (minimizing distortion)
-#' We forumulate the stress tests of the baseline scenarios as linear constraints on yet-to-be defined probabilities
-#' Note that the numerical optimization acts on a very limited number of variables equal
-#' to the number of views. It does not act directly on the very large number of variables
-#' of interest, namely the probabilities of the Monte Carlo scenarios. This feature guarantees
-#' the numerical feasability of entropy optimization
-#' Note that new probabilities are generated in much the same way that the state-price density modifies
-#' objective probabilities of pay-offs to risk-neutral probabilities in contingent-claims asset pricing
-#'
-#' Compute posterior (=change of measure) with Entropy Pooling, as described in
-#'
-#' @param  p        a vector of initial probabilities based on prior (reference model, empirical distribution, etc.). Sum of 'p' must be 1
-#' @param  Aeq      matrix consisting of equality constraints (paired with argument 'beq'). Denoted as 'H' in the Meucci paper. (denoted as 'H' in the "Meucci - Flexible Views Theory & Practice" paper formlua 86 on page 22)
-#' @param  beq      vector corresponding to the matrix of equality constraints (paired with argument 'Aeq'). Denoted as 'h' in the Meucci paper
-#' @param  A        matrix consisting of inequality constraints (paired with argument 'b'). Denoted as 'F' in the Meucci paper
-#' @param  b        vector consisting of inequality constraints (paired with matrix A). Denoted as 'f' in the Meucci paper
-#'
-#' ' \deqn{ \tilde{p}  \equiv  argmin_{Fx \leq f, Hx  \equiv  h}  \big\{ \sum_1^J  x_{j}  \big(ln \big( x_{j} \big) - ln \big( p_{j} \big) \big)  \big\} 
-#' \\ \ell  \big(x,  \lambda,  \nu \big)  \equiv  x'  \big(ln \big(x\big) - ln \big(p\big) \big) +   \lambda' \big(Fx - f\big)  +   \nu' \big(Hx - h\big)}
-#' @return a list with 
-#'      p_                       revised probabilities based on entropy pooling
-#'      optimizationPerformance  a list with status of optimization, value, number of iterations and sum of probabilities.
-#' @author Ram Ahluwalia \email{ram@@wingedfootcapital.com}
-#' @references 
-#' A. Meucci - "Fully Flexible Views: Theory and Practice". See page 22 for illustration of numerical implementation
-#' Symmys site containing original MATLAB source code \url{http://www.symmys.com}
-#' NLOPT open-source optimization site containing background on algorithms \url{http://ab-initio.mit.edu/wiki/index.php/NLopt}
-#' We use the information-theoretic estimator of Kitamur and Stutzer (1997). 
-#' Reversing 'p' and 'p_' leads to the empirical likelihood" estimator of Qin and Lawless (1994). 
-#' See Robertson et al, "Forecasting Using Relative Entropy" (2002) for more theory
-#'  @export
-EntropyProg = function( p , A = NULL , b = NULL , Aeq , beq )
-{
-    library( nloptr ) 
-
-    if( !length(b) ) A = matrix( ,nrow = 0, ncol = 0)
-    if( !length(b) ) b = matrix( ,nrow = 0, ncol = 0)
-    # count the number of constraints
-    K_ = nrow( A )  # K_ is the number of inequality constraints in the matrix-vector pair A-b
-    K  = nrow( Aeq ) # K is the number of equality views in the matrix-vector pair Aeq-beq
-    
-    # parameter checks        
-    if ( K_ + K == 0 ) { stop( "at least one equality or inequality constraint must be specified")}    
-    if ( ( ( .999999 < sum(p)) & (sum(p) < 1.00001) ) == FALSE ) { stop( "sum of probabilities from prior distribution must equal 1")}            
-    if ( nrow(Aeq)!=nrow(beq) ) { stop( "number of inequality constraints in matrix Aeq must match number of elements in vector beq") }
-    if ( nrow(A)!=nrow(b) ) { stop( "number of equality constraints in matrix A must match number of elements in vector b") }              
-    
-    # calculate derivatives of constraint matrices
-    A_   = t( A )
-    b_   = t( b )    
-    Aeq_ = t( Aeq )
-    beq_ = t( beq )        
-    
-    # starting guess for optimization search with length = to number of views
-    x0 = matrix( 0 , nrow = K_ + K , ncol = 1 ) 
-    
-    if ( !K_ ) # equality constraints only    
-    {    
-        # define maximum likelihood, gradient, and hessian functions for unconstrained and constrained optimization    
-        eval_f_list = function( v ) # cost function for unconstrained optimization (no inequality constraints)
-        {
-            x = exp( log(p) - 1 - Aeq_ %*% v )
-            x = apply( cbind( x , 10^-32 ) , 1 , max )  # robustification
-            # L is the Lagrangian dual function (without inequality constraints). See formula 88 on p. 22 in "Meucci - Fully Flexible Views - Theory and Practice (2010)"
-            # t(x) is the derivative x'
-            # Aeq_ is the derivative of the Aeq matrix of equality constraints (denoted as 'H in the paper)
-            # beq_ is the transpose of the vector associated with Aeq equality constraints  
-            # L=  x'  *  ( log(x) - log(p) + Aeq_  *  v ) -   beq_ *  v
-            #    1xJ  *   ( Jx1   - Jx1  + JxN+1 * N+1x1 ) - 1xN+1 * N+1x1    
-            L = t(x) %*% ( log(x) - log(p) + Aeq_ %*% v ) - beq_ %*% v
-            mL = -L # take negative values since we want to maximize
-            
-            # evaluate gradient
-            gradient = beq - Aeq %*% x
-            
-            # evaluate Hessian
-            # We comment this out for now -- to be used when we find an optimizer that can utilize the Hessian in addition to the gradient
-            # H = ( Aeq %*% (( x %*% ones(1,K) ) * Aeq_) ) # Hessian computed by Chen Qing, Lin Daimin, Meng Yanyan, Wang Weijun
-            
-            return( list( objective = mL , gradient = gradient ) )
-        }         
-        
-        # setup unconstrained optimization
-        start = Sys.time()    
-        opts = list( algorithm = "NLOPT_LD_LBFGS" , xtol_rel = 1.0e-6 , 
-                check_derivatives = TRUE , check_derivatives_print = "all" , print_level = 2 , maxeval = 1000 )    
-        optimResult = nloptr(x0 = x0, eval_f = eval_f_list , opts = opts )    
-        end = Sys.time()
-        print( c("Optimization completed in " , end - start )) ; rm( start ) ; rm( end )
-        
-        if ( optimResult$status < 0 ) { print( c("Exit code " , optimResult$status ) ) ; stop( "Error: The optimizer did not converge" ) }
-        
-        # return results of optimization
-        v = optimResult$solution
-        p_ = exp( log(p) - 1 - Aeq_ %*% v ) 	    
-        optimizationPerformance = list( converged = (optimResult$status > 0) , ml = optimResult$objective , iterations = optimResult$iterations , sumOfProbabilities = sum( p_ ) )        
-    }else # case inequality constraints are specified    
-    {        
-        # setup variables for constrained optimization
-        InqMat = -diag( 1 , K_ + K ) # -1 * Identity Matrix with dimension equal to number of constraints
-        InqMat = InqMat[ -c( K_+1:nrow( InqMat ) ) , ] # drop rows corresponding to equality constraints
-        InqVec = matrix( 0 , K_ , 1 )
-        
-        # define maximum likelihood, gradient, and hessian functions for constrained optimization    
-        InqConstraint = function( x ) { return( InqMat %*% x ) } # function used to evalute A %*% x <= 0 or A %*% x <= c(0,0) if there is more than one inequality constraint
-        
-        jacobian_constraint = function( x ) { return( InqMat ) } 
-        # Jacobian of the constraints matrix. One row per constraint, one column per control parameter (x1,x2)
-        # Turns out the Jacobian of the constraints matrix is always equal to InqMat
-        
-        nestedfunC = function( lv )
-        {           
-            lv = as.matrix( lv )    
-            l = lv[ 1:K_ , , drop = FALSE ] # inequality Lagrange multiplier
-            v = lv[ (K_+1):length(lv) , , drop = FALSE ] # equality lagrange multiplier
-            x = exp( log(p) - 1 - A_ %*% l - Aeq_ %*% v )
-            x = apply( cbind( x , 10^-32 ) , 1 , max )  
-            
-            # L is the cost function used for constrained optimization
-            # L is the Lagrangian dual function with inequality constraints and equality constraints
-            L = t(x) %*% ( log(x) - log(p) ) + t(l) %*% (A %*% x-b) + t(v) %*% (Aeq %*% x-beq)    
-            objective = -L  # take negative values since we want to maximize
-            
-            # calculate the gradient
-            gradient = rbind( b - A%*%x , beq - Aeq %*% x )       
-            
-            # compute the Hessian (commented out since no R optimizer supports use of Hessian)
-            # Hessian computed by Chen Qing, Lin Daimin, Meng Yanyan, Wang Weijun    
-            #onesToK_ = array( rep( 1 , K_ ) ) ;onesToK = array( rep( 1 , K ) )            
-            #x = as.matrix( x )            
-            #H11 = A %*% ((x %*% onesToK_) * A_) ;  H12 = A %*% ((x %*% onesToK) * Aeq_)
-            #H21 = Aeq %*% ((x %*% onesToK_) * A_) ; H22 = Aeq %*% ((x %*% onesToK) * Aeq_)
-            #H1 = cbind( H11 , H12 ) ; H2 = cbind( H21 , H22 ) ; H = rbind( H1 , H2 ) # Hessian for constrained optimization            
-            return( list( objective = objective , gradient = gradient ) )  
-        }
-        
-        # find minimum of constrained multivariate function        
-        start = Sys.time()
-        # Note: other candidates for constrained optimization in library nloptr: NLOPT_LD_SLSQP, NLOPT_LD_MMA, NLOPT_LN_AUGLAG, NLOPT_LD_AUGLAG_EQ
-        # See NLOPT open-source site for more details: http://ab-initio.mit.edu/wiki/index.php/NLopt
-        local_opts <- list( algorithm = "NLOPT_LD_SLSQP", xtol_rel = 1.0e-6 , 
-                check_derivatives = TRUE , check_derivatives_print = "all" , 
-                eval_f = nestedfunC , eval_g_ineq = InqConstraint , eval_jac_g_ineq = jacobian_constraint )
-        optimResult = nloptr( x0 = x0 , eval_f = nestedfunC , eval_g_ineq = InqConstraint , eval_jac_g_ineq = jacobian_constraint ,
-                opts = list( algorithm = "NLOPT_LD_AUGLAG" , local_opts = local_opts ,
-                        print_level = 2 , maxeval = 1000 , 
-                        check_derivatives = TRUE , check_derivatives_print = "all" , xtol_rel = 1.0e-6 ) )
-        end = Sys.time()
-        print( c("Optimization completed in " , end - start )) ; rm( start ) ; rm( end )    
-        
-        if ( optimResult$status < 0 ) { print( c("Exit code " , optimResult$status ) ) ; stop( "Error: The optimizer did not converge" ) }       
-        
-        # return results of optimization
-        lv = matrix( optimResult$solution , ncol = 1 )
-        l = lv[ 1:K_ , , drop = FALSE ] # inequality Lagrange multipliers
-        v = lv[ (K_+1):nrow( lv ) , , drop = FALSE ] # equality Lagrange multipliers
-        p_ = exp( log(p) -1 - A_ %*% l - Aeq_ %*% v )            
-        optimizationPerformance = list( converged = (optimResult$status > 0) , ml = optimResult$objective , iterations = optimResult$iterations , sumOfProbabilities = sum( p_ ) )
-    }
-    
-    print( optimizationPerformance )
-    
-    if ( sum( p_ ) < .999 ) { stop( "Sum or revised probabilities is less than 1!" ) }
-    if ( sum( p_ ) > 1.001 ) { stop( "Sum or revised probabilities is greater than 1!" ) }
-    
-    return ( list ( p_ = p_ , optimizationPerformance = optimizationPerformance ) )
-}
-
-
-
-#' Generates histogram
-#'
-#' @param X       a vector containing the data points
-#' @param p       a vector containing the probabilities for each of the data points in X
-#' @param nBins   expected number of Bins the data set is to be broken down into
-#' @param freq    a boolean variable to indicate whether the graphic is a representation of frequencies
-#'
-#' @return a list with 
-#'             f   the frequency for each midpoint
-#'             x   the midpoints of the nBins intervals
-#'
-#' @references 
-#' \url{http://www.symmys.com}
-#' See Meucci script pHist.m used for plotting
-#' @author Ram Ahluwalia \email{ram@@wingedfootcapital.com} and Xavier Valls \email{flamejat@@gmail.com}
-
-pHist = function( X , p , nBins, freq = FALSE )    
-{      
-  if ( length( match.call() ) < 3 )
-  {
-    J = dim( X )[ 1 ]        
-    nBins = round( 10 * log(J) )
-  }
-  
-  dist = hist( x = X , breaks = nBins , plot = FALSE );
-  n = dist$counts
-  x = dist$breaks    
-  D = x[2] - x[1]
-  
-  N = length(x)
-  np = zeros(N , 1)
-  
-  for (s in 1:N)
-  {
-    # The boolean Index is true is X is within the interval centered at x(s) and within a half-break distance
-    Index = ( X >= x[s] - D/2 ) & ( X <= x[s] + D/2 )    
-    # np = new probabilities?
-    np[ s ] = sum( p[ Index ] )
-    f = np/D
-  }
-  
-  plot( x , f , type = "h", main = "Portfolio return distribution")
-  
-  return( list( f = f , x = x ) )
-}
+#' Entropy pooling program for blending views on scenarios with a prior scenario-probability distribution
+#'
+#' Entropy program will change the initial predictive distribution 'p' to a new set 'p_' that satisfies
+#' specified moment conditions but changes other propoerties of the new distribution the least by
+#' minimizing the relative entropy between the two distributions. Theoretical note: Relative Entropy (Kullback-Leibler information criterion KLIC) is an
+#' asymmetric measure. 
+#'
+#' We retrieve a new set of probabilities for the joint-scenarios using the Entropy pooling method
+#' Of the many choices of 'p' that satisfy the views, we choose 'p' that minimize the entropy or distance of the new probability
+#' distribution to the prior joint-scenario probabilities.
+#' 
+#' We use Kullback-Leibler divergence or relative entropy dist(p,q): Sum across all scenarios [ p-t * ln( p-t / q-t ) ]
+#' Therefore we define solution as p* = argmin (choice of p ) [ sum across all scenarios: p-t * ln( p-t / q-t) ], 
+#' such that 'p' satisfies views. The views modify the prior in a cohrent manner (minimizing distortion)
+#' We forumulate the stress tests of the baseline scenarios as linear constraints on yet-to-be defined probabilities
+#' Note that the numerical optimization acts on a very limited number of variables equal
+#' to the number of views. It does not act directly on the very large number of variables
+#' of interest, namely the probabilities of the Monte Carlo scenarios. This feature guarantees
+#' the numerical feasability of entropy optimization.
+#' 
+#' Note that new probabilities are generated in much the same way that the state-price density modifies
+#' objective probabilities of pay-offs to risk-neutral probabilities in contingent-claims asset pricing
+#'
+#' Compute posterior (=change of measure) with Entropy Pooling, as described in
+#'
+#' @param  p        a vector of initial probabilities based on prior (reference model, empirical distribution, etc.). Sum of 'p' must be 1
+#' @param  Aeq      matrix consisting of equality constraints (paired with argument 'beq'). Denoted as 'H' in the Meucci paper. (denoted as 'H' in the "Meucci - Flexible Views Theory & Practice" paper formlua 86 on page 22)
+#' @param  beq      vector corresponding to the matrix of equality constraints (paired with argument 'Aeq'). Denoted as 'h' in the Meucci paper
+#' @param  A        matrix consisting of inequality constraints (paired with argument 'b'). Denoted as 'F' in the Meucci paper
+#' @param  b        vector consisting of inequality constraints (paired with matrix A). Denoted as 'f' in the Meucci paper
+#' @param verbose   If TRUE, prints out additional information. Default FALSE.
+#'
+#' ' \deqn{ \tilde{p}  \equiv  argmin_{Fx \leq f, Hx  \equiv  h}  \big\{ \sum_1^J  x_{j}  \big(ln \big( x_{j} \big) - ln \big( p_{j} \big) \big)  \big\} 
+#' \\ \ell  \big(x,  \lambda,  \nu \big)  \equiv  x'  \big(ln \big(x\big) - ln \big(p\big) \big) +   \lambda' \big(Fx - f\big)  +   \nu' \big(Hx - h\big)}
+#' @return a list with
+#' \itemize{ 
+#'   \item{\code{p_}:}{ revised probabilities based on entropy pooling}
+#'    \item{\code{optimizationPerformance}:}{ a list with status of optimization, 
+#'    value, number of iterations, and sum of probabilities}
+#' }
+#' @author Ram Ahluwalia \email{ram@@wingedfootcapital.com}
+#' @references 
+#' A. Meucci - "Fully Flexible Views: Theory and Practice". See page 22 for illustration of numerical implementation
+#' Symmys site containing original MATLAB source code \url{http://www.symmys.com}
+#' NLOPT open-source optimization site containing background on algorithms \url{http://ab-initio.mit.edu/wiki/index.php/NLopt}
+#' We use the information-theoretic estimator of Kitamur and Stutzer (1997). 
+#' Reversing 'p' and 'p_' leads to the empirical likelihood" estimator of Qin and Lawless (1994). 
+#' See Robertson et al, "Forecasting Using Relative Entropy" (2002) for more theory
+#' @export
+EntropyProg = function( p , A = NULL , b = NULL , Aeq , beq, verbose=FALSE )
+{
+  stopifnot("package:nloptr" %in% search()  ||  require("nloptr",quietly = TRUE) )
+  
+  if( !length(b) ) A = matrix( ,nrow = 0, ncol = 0)
+  if( !length(b) ) b = matrix( ,nrow = 0, ncol = 0)
+  
+  # count the number of constraints
+  K_ = nrow( A )  # K_ is the number of inequality constraints in the matrix-vector pair A-b
+  K  = nrow( Aeq ) # K is the number of equality views in the matrix-vector pair Aeq-beq
+  
+  # parameter checks        
+  if ( K_ + K == 0 ) { stop( "at least one equality or inequality constraint must be specified")}    
+  if ( ( ( .999999 < sum(p)) & (sum(p) < 1.00001) ) == FALSE ) { stop( "sum of probabilities from prior distribution must equal 1")}            
+  if ( nrow(Aeq) != nrow(beq) ) { stop( "number of inequality constraints in matrix Aeq must match number of elements in vector beq") }
+  if ( nrow(A) != nrow(b) ) { stop( "number of equality constraints in matrix A must match number of elements in vector b") }              
+  
+  # calculate derivatives of constraint matrices
+  A_   = t( A )
+  b_   = t( b )    
+  Aeq_ = t( Aeq )
+  beq_ = t( beq )        
+  
+  # starting guess for optimization search with length = to number of views
+  x0 = matrix( 0 , nrow = K_ + K , ncol = 1 )
+  
+  # set up print arguments for verbose
+  if(verbose){
+    check_derivatives_print = "none"
+    print_level = 0
+  } else {
+    check_derivatives_print = "all"
+    print_level = 2
+  }
+  
+  if ( !K_ ) # equality constraints only    
+  {    
+    # define maximum likelihood, gradient, and hessian functions for unconstrained and constrained optimization    
+    eval_f_list = function( v ) # cost function for unconstrained optimization (no inequality constraints)
+    {
+      x = exp( log(p) - 1 - Aeq_ %*% v )
+      x = apply( cbind( x , 10^-32 ) , 1 , max )  # robustification
+      # L is the Lagrangian dual function (without inequality constraints). See formula 88 on p. 22 in "Meucci - Fully Flexible Views - Theory and Practice (2010)"
+      # t(x) is the derivative x'
+      # Aeq_ is the derivative of the Aeq matrix of equality constraints (denoted as 'H in the paper)
+      # beq_ is the transpose of the vector associated with Aeq equality constraints  
+      # L=  x'  *  ( log(x) - log(p) + Aeq_  *  v ) -   beq_ *  v
+      #    1xJ  *   ( Jx1   - Jx1  + JxN+1 * N+1x1 ) - 1xN+1 * N+1x1    
+      L = t(x) %*% ( log(x) - log(p) + Aeq_ %*% v ) - beq_ %*% v
+      mL = -L # take negative values since we want to maximize
+      
+      # evaluate gradient
+      gradient = beq - Aeq %*% x
+      
+      # evaluate Hessian
+      # We comment this out for now -- to be used when we find an optimizer that can utilize the Hessian in addition to the gradient
+      # H = ( Aeq %*% (( x %*% ones(1,K) ) * Aeq_) ) # Hessian computed by Chen Qing, Lin Daimin, Meng Yanyan, Wang Weijun
+      
+      return( list( objective = mL , gradient = gradient ) )
+    }         
+    
+    # setup unconstrained optimization
+    start = Sys.time()
+    opts = list( algorithm = "NLOPT_LD_LBFGS" , 
+                 xtol_rel = 1.0e-6 , 
+                 check_derivatives = TRUE , 
+                 check_derivatives_print = check_derivatives_print , 
+                 print_level = print_level , 
+                 maxeval = 1000 )    
+    optimResult = nloptr(x0 = x0, eval_f = eval_f_list , opts = opts )    
+    end = Sys.time()
+    
+    if(verbose){
+      print( c("Optimization completed in ", end - start ))
+    }
+    
+    if ( optimResult$status < 0 ) { 
+      print( c("Exit code " , optimResult$status ) )
+      stop( "Error: The optimizer did not converge" )
+    }
+    
+    # return results of optimization
+    v = optimResult$solution
+    p_ = exp( log(p) - 1 - Aeq_ %*% v ) 	    
+    optimizationPerformance = list( converged = (optimResult$status > 0) , 
+                                    ml = optimResult$objective , 
+                                    iterations = optimResult$iterations , 
+                                    sumOfProbabilities = sum( p_ ) )        
+  }else # case inequality constraints are specified    
+  {        
+    # setup variables for constrained optimization
+    InqMat = -diag( 1 , K_ + K ) # -1 * Identity Matrix with dimension equal to number of constraints
+    InqMat = InqMat[ -c( K_+1:nrow( InqMat ) ) , ] # drop rows corresponding to equality constraints
+    InqVec = matrix( 0 , K_ , 1 )
+    
+    # define maximum likelihood, gradient, and hessian functions for constrained optimization    
+    InqConstraint = function( x ) { return( InqMat %*% x ) } # function used to evalute A %*% x <= 0 or A %*% x <= c(0,0) if there is more than one inequality constraint
+    
+    jacobian_constraint = function( x ) { return( InqMat ) } 
+    # Jacobian of the constraints matrix. One row per constraint, one column per control parameter (x1,x2)
+    # Turns out the Jacobian of the constraints matrix is always equal to InqMat
+    
+    nestedfunC = function( lv )
+    {           
+      lv = as.matrix( lv )    
+      l = lv[ 1:K_ , , drop = FALSE ] # inequality Lagrange multiplier
+      v = lv[ (K_+1):length(lv) , , drop = FALSE ] # equality lagrange multiplier
+      x = exp( log(p) - 1 - A_ %*% l - Aeq_ %*% v )
+      x = apply( cbind( x , 10^-32 ) , 1 , max )  
+      
+      # L is the cost function used for constrained optimization
+      # L is the Lagrangian dual function with inequality constraints and equality constraints
+      L = t(x) %*% ( log(x) - log(p) ) + t(l) %*% (A %*% x-b) + t(v) %*% (Aeq %*% x-beq)    
+      objective = -L  # take negative values since we want to maximize
+      
+      # calculate the gradient
+      gradient = rbind( b - A%*%x , beq - Aeq %*% x )       
+      
+      # compute the Hessian (commented out since no R optimizer supports use of Hessian)
+      # Hessian computed by Chen Qing, Lin Daimin, Meng Yanyan, Wang Weijun    
+      #onesToK_ = array( rep( 1 , K_ ) ) ;onesToK = array( rep( 1 , K ) )            
+      #x = as.matrix( x )            
+      #H11 = A %*% ((x %*% onesToK_) * A_) ;  H12 = A %*% ((x %*% onesToK) * Aeq_)
+      #H21 = Aeq %*% ((x %*% onesToK_) * A_) ; H22 = Aeq %*% ((x %*% onesToK) * Aeq_)
+      #H1 = cbind( H11 , H12 ) ; H2 = cbind( H21 , H22 ) ; H = rbind( H1 , H2 ) # Hessian for constrained optimization            
+      return( list( objective = objective , gradient = gradient ) )  
+    }
+    
+    # find minimum of constrained multivariate function        
+    start = Sys.time()
+    # Note: other candidates for constrained optimization in library nloptr: NLOPT_LD_SLSQP, NLOPT_LD_MMA, NLOPT_LN_AUGLAG, NLOPT_LD_AUGLAG_EQ
+    # See NLOPT open-source site for more details: http://ab-initio.mit.edu/wiki/index.php/NLopt
+    local_opts <- list( algorithm = "NLOPT_LD_SLSQP", 
+                        xtol_rel = 1.0e-6 , 
+                        check_derivatives = TRUE , 
+                        check_derivatives_print = check_derivatives_print , 
+                        eval_f = nestedfunC , 
+                        eval_g_ineq = InqConstraint , 
+                        eval_jac_g_ineq = jacobian_constraint )
+    optimResult = nloptr( x0 = x0 , 
+                          eval_f = nestedfunC , 
+                          eval_g_ineq = InqConstraint , 
+                          eval_jac_g_ineq = jacobian_constraint ,
+                          opts = list( algorithm = "NLOPT_LD_AUGLAG" , 
+                                       local_opts = local_opts ,
+                                       print_level = print_level , 
+                                       maxeval = 1000 , 
+                                       check_derivatives = TRUE , 
+                                       check_derivatives_print = check_derivatives_print ,
+                                       xtol_rel = 1.0e-6 ))
+    end = Sys.time()
+    if(verbose){
+      print( c("Optimization completed in " , end - start ))
+    }    
+    
+    if ( optimResult$status < 0 ) { 
+      print( c("Exit code " , optimResult$status ) )
+      stop( "Error: The optimizer did not converge" )
+    }       
+    
+    # return results of optimization
+    lv = matrix( optimResult$solution , ncol = 1 )
+    l = lv[ 1:K_ , , drop = FALSE ] # inequality Lagrange multipliers
+    v = lv[ (K_+1):nrow( lv ) , , drop = FALSE ] # equality Lagrange multipliers
+    p_ = exp( log(p) -1 - A_ %*% l - Aeq_ %*% v )            
+    optimizationPerformance = list( converged = (optimResult$status > 0), 
+                                    ml = optimResult$objective, 
+                                    iterations = optimResult$iterations,
+                                    sumOfProbabilities = sum( p_ ))
+  }
+  
+  if(verbose) print( optimizationPerformance )
+  
+  if ( sum( p_ ) < .999 ) { stop( "Sum of revised probabilities is less than 1!" ) }
+  if ( sum( p_ ) > 1.001 ) { stop( "Sum of revised probabilities is greater than 1!" ) }
+  
+  return ( list ( p_ = p_ , optimizationPerformance = optimizationPerformance ) )
+}
+
+
+
+#' Generates histogram
+#'
+#' @param X       a vector containing the data points
+#' @param p       a vector containing the probabilities for each of the data points in X
+#' @param nBins   expected number of Bins the data set is to be broken down into
+#' @param freq    a boolean variable to indicate whether the graphic is a representation of frequencies
+#'
+#' @return a list with 
+#'             f   the frequency for each midpoint
+#'             x   the midpoints of the nBins intervals
+#'
+#' @references 
+#' \url{http://www.symmys.com}
+#' See Meucci script pHist.m used for plotting
+#' @author Ram Ahluwalia \email{ram@@wingedfootcapital.com} and Xavier Valls \email{flamejat@@gmail.com}
+pHist = function( X , p , nBins, freq = FALSE )    
+{      
+  if ( length( match.call() ) < 3 )
+  {
+    J = dim( X )[ 1 ]        
+    nBins = round( 10 * log(J) )
+  }
+  
+  dist = hist( x = X , breaks = nBins , plot = FALSE );
+  n = dist$counts
+  x = dist$breaks    
+  D = x[2] - x[1]
+  
+  N = length(x)
+  np = zeros(N , 1)
+  
+  for (s in 1:N)
+  {
+    # The boolean Index is true is X is within the interval centered at x(s) and within a half-break distance
+    Index = ( X >= x[s] - D/2 ) & ( X <= x[s] + D/2 )    
+    # np = new probabilities?
+    np[ s ] = sum( p[ Index ] )
+    f = np/D
+  }
+  
+  plot( x , f , type = "h", main = "Portfolio return distribution")
+  
+  return( list( f = f , x = x ) )
+}

Added: pkg/PortfolioAnalytics/R/meucci_moments.R
===================================================================
--- pkg/PortfolioAnalytics/R/meucci_moments.R	                        (rev 0)
+++ pkg/PortfolioAnalytics/R/meucci_moments.R	2014-06-29 16:18:42 UTC (rev 3447)
@@ -0,0 +1,29 @@
+
+
+#' Compute moments 
+#' 
+#' Compute the first and second moments using the Fully Flexible Views 
+#' framework as described in A. Meucci - "Fully Flexible Views: Theory and Practice".
+#' 
+#' @param R xts of asset returns
+#' @param p vector of posterior probabilities
+#' @return a list with the first and second moments
+#' \itemize{
+#'   \item{\code{mu}: }{vector of expected returns}
+#'   \item{\code{sigma}: }{covariance matrix}
+#' }
+#' @references 
+#' A. Meucci - "Fully Flexible Views: Theory and Practice".
+#' @author Ross Bennett
+#' @export
+meucci.moments <- function(R, p){
+  R <- coredata(R)
+  # expected return vector
+  mu <- t(R) %*% posterior_probs
+  
+  # covariance matrix
+  Scnd_Mom = t(R) %*% (R * (posterior_probs %*% matrix( 1, 1, ncol(R))))
+  Scnd_Mom = ( Scnd_Mom + t(Scnd_Mom) ) / 2
+  sigma = Scnd_Mom - mu %*% t(mu)
+  list(mu=mu, sigma=sigma)
+}

Added: pkg/PortfolioAnalytics/R/meucci_ranking.R
===================================================================
--- pkg/PortfolioAnalytics/R/meucci_ranking.R	                        (rev 0)
+++ pkg/PortfolioAnalytics/R/meucci_ranking.R	2014-06-29 16:18:42 UTC (rev 3447)
@@ -0,0 +1,58 @@
+
+#' Asset Ranking
+#' 
+#' Express views on the relative expected asset returns as in A. Meucci, 
+#' "Fully Flexible Views: Theory and Practice" and compute the first 
+#' and second moments.
+#' 
+#' @note This function is based on the \code{ViewRanking} function written by
+#' Ram Ahluwalia in the Meucci package.
+#' 
+#' @param R xts object of asset returns
+#' @param p a vector of the prior probability values
+#' @param order a vector of indexes of the relative of expected asset returns in
+#' ascending order. For example, \code{order = c(2, 3, 1, 4)} means that the 
+#' expected returns of \code{R[,2] < R[,3], < R[,1] < R[,4]}.
+#' 
+#' @return The estimated moments based on ranking views
+#' 
+#' @seealso \code{\link{meucci.moments}}
+#' 
+#' @references 
+#' A. Meucci, "Fully Flexible Views: Theory and Practice" \url{http://www.symmys.com/node/158}
+#' See Meucci script for "RankingInformation/ViewRanking.m"
+#' @example
+#' data(edhec)
+#' R <- edhec[,1:4]
+#' p <- rep(1 / nrow(R), nrow(R))
+#' meucci.ranking(R, p, c(2, 3, 1, 4))
+#' @export
+meucci.ranking <- function(R, p, order){
+  R = coredata(R)
+  
+  J = nrow( R )
+  N = ncol( R )
+  
+  k = length( order )
+  
+  # Equality constraints
+  # constrain probabilities to sum to one across all scenarios...
+  # Aeq = ones( 1 , J )
+  Aeq = matrix(rep(1, J), nrow=J)
+  beq = matrix(1, 1)
+  
+  # Inequality constraints
+  # ...constrain the expectations... A*x <= 0
+  # Expectation is assigned to each scenario
+  V = R[ , order[1:(k-1)] ] - R[ , order[2:k] ]
+  A = t( V )
+  b = matrix(rep(0, nrow(A)), ncol=1)
+  
+  # ...compute posterior probabilities
+  p_ = EntropyProg( p , A , b , Aeq , beq )
+  
+  # compute the moments
+  out <- meucci.moments(R, p_)
+  
+  return( out )
+}

Modified: pkg/PortfolioAnalytics/sandbox/scriptFFV.R
===================================================================
--- pkg/PortfolioAnalytics/sandbox/scriptFFV.R	2014-06-29 12:50:14 UTC (rev 3446)
+++ pkg/PortfolioAnalytics/sandbox/scriptFFV.R	2014-06-29 16:18:42 UTC (rev 3447)
@@ -47,5 +47,6 @@
 cov(R)
 
 
-all.equal(coredata(R[,1] - R[,2]), A, check.attributes=FALSE)
 
+
+



More information about the Returnanalytics-commits mailing list