[Returnanalytics-commits] r3424 - pkg/FactorAnalytics/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Jun 17 22:13:06 CEST 2014


Author: pragnya
Date: 2014-06-17 22:13:06 +0200 (Tue, 17 Jun 2014)
New Revision: 3424

Modified:
   pkg/FactorAnalytics/R/fitStatisticalFactorModel.R
Log:
Changed the description of fitStatisticalFactorModel

Modified: pkg/FactorAnalytics/R/fitStatisticalFactorModel.R
===================================================================
--- pkg/FactorAnalytics/R/fitStatisticalFactorModel.R	2014-06-16 21:26:51 UTC (rev 3423)
+++ pkg/FactorAnalytics/R/fitStatisticalFactorModel.R	2014-06-17 20:13:06 UTC (rev 3424)
@@ -1,405 +1,410 @@
-#' Fit statistical factor model using principle components analysis
-#' 
-#' Fit statistical factor model using principle components. This function is
-#' mainly adapted from S+FinMetric function \code{mfactor}.
-#' 
-#' 
-#' @param data a vector, matrix, data.frame, xts, timeSeries or zoo object with asset returns 
-#' and factors retunrs names. If data does not have xts class, rownames must provide 
-#' xts compatible time index.  
-#' @param k numbers of factors if it is scalar or method of choosing optimal
-#' number of factors. "bn" represents Bai and Ng (2002) method and "ck"
-#' represents Connor and korajczyk (1993) method. Default is k = 1.
-#' @param refine \code{TRUE} By default, the APCA fit will use the
-#' Connor-Korajczyk refinement.
-#' @param check check if some variables has identical values. Default is FALSE.
-#' @param max.k scalar, select the number that maximum number of factors to be
-#' considered.
-#' @param sig significant level when ck method uses.
-#' @param na.rm if allow missing values. Default is FALSE.
-#' 
-#' 
-#' @return
-#' \itemize{
-#' \item{factors}{ T x K the estimated factors.}
-#' \item{loadings}{ K x N the asset specific factor loadings beta_i.
-#' estimated from regress the asset returns on factors.}
-#' \item{alpha}{ 1 x N the estimated intercepts alpha_i}
-#' \item{ret.cov}{ N x N asset returns sample variance covariance matrix.}
-#' \item{r2}{ regression r square value from regress the asset returns on
-#' factors.}
-#' \item{k}{ the number of the facotrs.}
-#' \item{eigen}{ eigenvalues from the sample covariance matrix.}
-#' \item{residuals}{ T x N matrix of residuals from regression.}
-#' \item{asset.ret}{ asset returns}
-#' \item{asset.fit}{ List of regression lm class of individual returns on
-#' factors.}
-#' \item{resid.variance}{ vector of residual variances.}
-#' \item{mimic}{ N x K matrix of factor mimicking portfolio returns.}
-#' }
-#' @author Eric Zivot and Yi-An Chen
-#' @references Zivot and Wang, (2006) "Modeling Financial Time Series with S-PLUS, 2nd edition"
-#' @examples
-#' 
-#' # load data for fitStatisticalFactorModel.r
-#' # data from finmetric berndt.dat and folio.dat
-#' 
-#' data(stat.fm.data)
-#' ##
-#' # sfm.dat is for pca
-#' # sfm.apca.dat is for apca
-#' class(sfm.dat)
-#' class(sfm.apca.dat)
-#' 
-#' # pca
-#' args(fitStatisticalFactorModel)
-#' sfm.pca.fit <- fitStatisticalFactorModel(sfm.dat,k=2)
-#' class(sfm.pca.fit)
-#' names(sfm.pca.fit)
-#' sfm.pca.fit$factors
-#' sfm.pca.fit$loadings
-#' sfm.pca.fit$r2
-#' sfm.pca.fit$residuals
-#' sfm.pca.fit$resid.variance
-#' sfm.pca.fit$mimic
-#' # apca
-#' sfm.apca.fit <- fitStatisticalFactorModel(sfm.apca.dat,k=1)
-#' names(sfm.apca.fit)
-#' sfm.apca.res <- sfm.apca.fit$residuals
-#' sfm.apca.mimic <- sfm.apca.fit$mimic
-#' # apca with bai and Ng method
-#' sfm.apca.fit.bn <- fitStatisticalFactorModel(sfm.apca.dat,k="bn")
-#' class(sfm.apca.fit.bn)
-#' names(sfm.apca.fit.bn)
-#' sfm.apca.fit.bn$mimic
-#' 
-#' # apca with ck method
-#' sfm.apca.fit.ck <- fitStatisticalFactorModel(sfm.apca.dat,k="ck")
-#' class(sfm.apca.fit.ck)
-#' names(sfm.apca.fit.ck)
-#' sfm.apca.fit.ck$mimic
-#' 
-#' @export
-#' 
-fitStatisticalFactorModel <-
-function(data, k = 1, refine = TRUE, check = FALSE, max.k = NULL, sig = 0.05, na.rm = FALSE){
-	
-# load package
-require(MASS)  
-require(PerformanceAnalytics)
-
-
-
-  
- # function of test
- mfactor.test <- function(data, method = "bn", refine = TRUE, check = FALSE, max.k = NULL, sig = 0.05){
-  
-    if(is.null(max.k)) {
-		max.k <- min(10, nrow(data) - 1)
-	} 	else if (max.k >= nrow(data)) {
-		stop("max.k must be less than the number of observations.")
-	}
-	if(check) {
-		if(mfactor.check(data)) {
-			warning("Some variables have identical observations.")
-			return(list(factors = NA, loadings = NA, k = NA))
-		}
-	}
-	method <- casefold(method)
-	if(method == "bn") {
-		ans <- mfactor.bn(data, max.k, refine = refine)
-	}
-	else if(method == "ck") {
-		ans <- mfactor.ck(data, max.k, refine = refine, sig = sig)
-	}
-	else {
-		stop("Invalid choice for optional argument method.")
-	}
- return(ans)
-    
-}
-
- 
-# function of ck
-mfactor.ck <- function(data, max.k, sig = 0.05, refine = TRUE) {
-  
-  n <- ncol(data)
-  m <- nrow(data)
-	idx <- 2 * (1:(m/2))
-	#
-	f <- mfactor.apca(data, k = 1, refine = refine, check = FALSE)
-	f1 <- cbind(1, f$factors)
-	B <- backsolve(chol(crossprod(f1)), diag(2))
-	eps <- data - f1 %*% crossprod(t(B)) %*% crossprod(f1, data)
-	s <- eps^2/(1 - 2/m - 1/n)
-	#	
-	for(i in 2:max.k) {
-		f.old <- f
-		s.old <- s
-		f <- mfactor.apca(data, k = i, refine = refine, check = FALSE)
-		f1 <- cbind(1, f$factors)
-		B <- backsolve(chol(crossprod(f1)), diag(i + 1))
-		eps <- data - f1 %*% crossprod(t(B)) %*% crossprod(f1, data)
-		s <- eps^2/(1 - (i + 1)/m - i/n)
-		delta <- rowMeans(s.old[idx - 1,  , drop = FALSE]) - rowMeans(
-			s[idx,  , drop = FALSE])
-		if(t.test(delta, alternative = "greater")$p.value > sig) {
-			return(f.old)
-		}
-	}
-	return(f)
-}
-
-# funciton of check  
-  mfactor.check <- function(data) {
-  temp <- apply(data, 2, range)
-  if(any(abs(temp[2,  ] - temp[1,  ]) < .Machine$single.eps)) {
-		TRUE
-	}
-	else {
-		FALSE
-	}
-}
-
-  # function of bn
-  mfactor.bn <- function(data, max.k, refine = TRUE) {
-  
-  # Parameters:
-	#         data : T x N return matrix
-	#     max.k : maxinum number of factors to be considered
-		# Returns:
-	#      k : the optimum number of factors
-	n <- ncol(data)
-	m <- nrow(data)
-	s <- vector("list", max.k) 
-	for(i in 1:max.k) {
-		f <- cbind(1, mfactor.apca(data, k = i, refine = refine, check = 
-			FALSE)$factors)
-		B <- backsolve(chol(crossprod(f)), diag(i + 1))
-		eps <- data - f %*% crossprod(t(B)) %*% crossprod(f, data)
-		sigma <- colSums(eps^2)/(m - i - 1)
-		s[[i]] <- mean(sigma)
-	}
-	s <- unlist(s)
-	idx <- 1:max.k
-	Cp1 <- s[idx] + (idx * s[max.k] * (n + m))/(n * m) * log((n * m)/
-		(n + m))
-	Cp2 <- s[idx] + (idx * s[max.k] * (n + m))/(n * m) * log(min(n, m))
-	if(order(Cp1)[1] != order(Cp2)[1]) {
-		warning("Cp1 and Cp2 did not yield same result. The smaller one is used."	)
-	}
-	k <- min(order(Cp1)[1], order(Cp2)[1])
-	f <- mfactor.apca(data, k = k, refine = refine, check = FALSE)
- return(f)  
- }
-
-  
-  # function of pca
-  mfactor.pca <- function(data, k, check = FALSE, ret.cov = NULL) {
-  
-  if(check) {
-		if(mfactor.check(data)) {
-			warning("Some variables have identical observations.")
-			return(list(factors = NA, loadings = NA, k = NA))
-		}
-	}
-	n <- ncol(data)
-	m <- nrow(data)
-	if(is.null(dimnames(data))) {
-		dimnames(data) <- list(1:m, paste("V", 1:n, sep = "."))
-	}
-	data.names <- dimnames(data)[[2]]
-  # demean
-	xc <- t(t(data) - colMeans(data))
-	if(is.null(ret.cov)) {
-		ret.cov <- crossprod(xc)/m
-	}
-	eigen.tmp <- eigen(ret.cov, symmetric = TRUE)
-  # compute loadings beta
-	B <- t(eigen.tmp$vectors[, 1:k, drop = FALSE])
-  # compute estimated factors
-	f <- data %*% eigen.tmp$vectors[, 1:k, drop = FALSE]
-	tmp <- data - f %*% B
-	alpha <- colMeans(tmp)
-  # compute residuals
-	resid <- t(t(tmp) - alpha)
-	r2 <- (1 - colSums(resid^2)/colSums(xc^2))
-	ret.cov <- t(B) %*% var(f) %*% B
-	diag(ret.cov) <- diag(ret.cov) + colSums(resid^2)/(m - k - 1)
-	dimnames(B) <- list(paste("F", 1:k, sep = "."), data.names)
-	dimnames(f) <- list(dimnames(data)[[1]], paste("F", 1:k, sep = "."))
-	dimnames(ret.cov) <- list(data.names, data.names)
-	names(alpha) <- data.names
-  
-#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
-    f <- xts(f,index(data.xts))
-    resid <- xts(resid,index(data.xts))
-#     }
-  
-  
-  # create lm list for plot
-  reg.list = list()
-#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
-    for (i in data.names) {
-      reg.xts = merge(data.xts[,i],f)
-      colnames(reg.xts)[1] <- i
-      fm.formula = as.formula(paste(i,"~", ".", sep=" "))
-      fm.fit = lm(fm.formula, data=reg.xts)
-      reg.list[[i]] = fm.fit
-    }
-#       } else {
-#     for (i in data.names) {
-#     reg.df = as.data.frame(cbind(data[,i],coredata(f)))
-#     colnames(reg.df)[1] <- i
-#     fm.formula = as.formula(paste(i,"~", ".", sep=" "))
-#     fm.fit = lm(fm.formula, data=reg.df)
-#     reg.list[[i]] = fm.fit
-#     }
-#   }
-  
-	ans <-  list(factors = f, loadings = B, k = k, alpha = alpha, ret.cov = ret.cov,
-	            	r2 = r2, eigen = eigen.tmp$values, residuals=resid, asset.ret = data,
-               asset.fit=reg.list)
- 
-  return(ans)
- 
-}
-
-  # funciont of apca
-  mfactor.apca <- function(data, k, refine = TRUE, check = FALSE, ret.cov = NULL) {
-  
-  if(check) {
-		if(mfactor.check(data)) {
-			warning("Some variables have identical observations.")
-			return(list(factors = NA, loadings = NA, k = NA))
-		}
-	}
-	n <- ncol(data)
-	m <- nrow(data)
-	if(is.null(dimnames(data))) {
-		dimnames(data) <- list(1:m, paste("V", 1:n, sep = "."))
-	}
-	data.names <- dimnames(data)[[2]]
-	xc <- t(t(data) - colMeans(data))
-	if(is.null(ret.cov)) {
-		ret.cov <- crossprod(t(xc))/n
-	}
-	eig.tmp <- eigen(ret.cov, symmetric = TRUE)
-	f <- eig.tmp$vectors[, 1:k, drop = FALSE]
-	f1 <- cbind(1, f)
-	B <- backsolve(chol(crossprod(f1)), diag(k + 1))
-	B <- crossprod(t(B)) %*% crossprod(f1, data)
-	sigma <- colSums((data - f1 %*% B)^2)/(m - k - 1)
-	if(refine) {
-		xs <- t(xc)/sqrt(sigma)
-		ret.cov <- crossprod(xs)/n
-		eig.tmp <- eigen(ret.cov, symmetric = TRUE)
-		f <- eig.tmp$vectors[, 1:k, drop = FALSE]
-		f1 <- cbind(1, f)
-		B <- backsolve(chol(crossprod(f1)), diag(k + 1))
-		B <- crossprod(t(B)) %*% crossprod(f1, data)
-		sigma <- colSums((data - f1 %*% B)^2)/(m - k - 1)
-	}
-	alpha <- B[1,  ]
-	B <- B[-1,  , drop = FALSE]
-	ret.cov <- t(B) %*% var(f) %*% B
-	diag(ret.cov) <- diag(ret.cov) + sigma
-	dimnames(B) <- list(paste("F", 1:k, sep = "."), data.names)
-	dimnames(f) <- list(dimnames(data)[[1]], paste("F", 1:k, sep = "."))
-	names(alpha) <- data.names
-	resid <- t(t(data) - alpha) - f %*% B
-	r2 <- (1 - colSums(resid^2)/colSums(xc^2))
-  
-#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
-    f <- xts(f,index(data.xts))
-    resid <- xts(resid,index(data.xts))
-#   }
-  
-  # create lm list for plot
-  reg.list = list()
-#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
-    for (i in data.names) {
-      reg.xts = merge(data.xts[,i],f)
-      colnames(reg.xts)[1] <- i
-      fm.formula = as.formula(paste(i,"~", ".", sep=" "))
-      fm.fit = lm(fm.formula, data=reg.xts)
-      reg.list[[i]] = fm.fit
-    }
-#   } else {
-#     for (i in data.names) {
-#       reg.df = as.data.frame(cbind(data[,i],coredata(f)))
-#       colnames(reg.df)[1] <- i
-#       fm.formula = as.formula(paste(i,"~", ".", sep=" "))
-#       fm.fit = lm(fm.formula, data=reg.df)
-#       reg.list[[i]] = fm.fit
-#     }
-#   }
-  
-  
-  ans <- 	list(factors = f, loadings = B, k = k, alpha = alpha, ret.cov = ret.cov,
-		           r2 = r2, eigen = eig.tmp$values, residuals=resid,asset.ret = data,
-               asset.fit=reg.list)
- return(ans)
-}
-
-# check data 
-data.xts <- checkData(data,method="xts") 
-
-
-  call <- match.call()  
-  pos <- rownames(coredata(data.xts))
-	data.m <- as.matrix(coredata(data.xts))
-	if(any(is.na(data.m))) {
-		if(na.rm) {
-			data.m <- na.omit(data.m)
-		}		else {
-			stop("Missing values are not allowed if na.rm=F.")
-		}
-	}
-	# use PCA if T > N
-	if(ncol(data.m) < nrow(data.m)) {
-		if(is.character(k)) {
-			stop("k must be the number of factors for PCA.")
-		}
-		if(k >= ncol(data.m)) {
-			stop("Number of factors must be smaller than number of variables."
-				)
-		}
-		ans <- mfactor.pca(data.m, k, check = check)
-	}	else if(is.character(k)) {
-		ans <- mfactor.test(data.m, k, refine = refine, check = 
-			check, max.k = max.k, sig = sig)
-	}	else { # use aPCA if T <= N
-		if(k >= ncol(data.m)) {
-			stop("Number of factors must be smaller than number of variables."
-				)
-		}
-		ans <- mfactor.apca(data.m, k, refine = refine, check = 
-			check)
-	}
-  
-  # mimic function
-  f <- ans$factors
-	
-	if(is.data.frame(f)) {
-		f <- as.matrix(f)
-	}
-
-	if(nrow(data.m) < ncol(data.m)) {
-		mimic <- ginv(data.m) %*% f
-	}	else {
-		mimic <- qr.solve(data.m, f)
-	}
-	
-  mimic <- t(t(mimic)/colSums(mimic))
-	dimnames(mimic)[[1]] <- dimnames(data.m)[[2]]
-  
-  ans$mimic <- mimic
-  ans$resid.variance <- apply(ans$residuals,2,var)
-  ans$call <- call
-  ans$data <- data
-  ans$assets.names  <- colnames(data.m)
-class(ans) <- "StatFactorModel"
-  return(ans)
-}
-
+#' Fit a statistical factor model using principal component analysis
+#' 
+#' Fits a statistical factor model using principal component analysis. 
+#' This is an adaptation of the S+FinMetric function \code{mfactor}.
+#' 
+#' 
+#' @param data a vector, matrix, data.frame, xts, timeSeries or zoo object with 
+#' asset returns and factors names. If data is not of class xts, rownames must 
+#' provide an xts compatible time index.  
+#' @param k numbers of factors. Can be a scalar value or a method for 
+#' determining the optimal number of factors. k="bn" corresponds to Bai and 
+#' Ng (2002) and k="ck" corresponds to Connor and Korajczyk (1993). Defaults to 1.
+#' @param refine a logical value that when set to \code{TRUE}, specifies the 
+#' Connor-Korajczyk refinement for APCA (Asymptotic Principal Component Analysis). 
+#' Defaults to \code{TRUE}.
+#' @param check Checks if any two assets have identical values. Defaults to 
+#' \code{FALSE}.
+#' @param max.k a scalar that specifies the maximum number of factors to be 
+#' considered.
+#' @param sig desired level of significant when "ck"" method is specified.
+#' @param na.rm a logical value to specify if missing values should be removed. 
+#' Defaults to FALSE.
+#' 
+#' 
+#' @return
+#' \itemize{
+#' \item{factors}{ T x K matrix of estimated factors.}
+#' \item{loadings}{ K x N matrix of asset specific factor loadings beta_i,
+#' estimated by regressing the asset returns on factors.}
+#' \item{alpha}{ 1 x N vector of estimated intercepts alpha_i}
+#' \item{ret.cov}{ N x N matrix of asset returns' sample covariance matrix.}
+#' \item{r2}{ r-squared value from regressing the asset returns on the factors.}
+#' \item{k}{ the number of facotrs.}
+#' \item{eigen}{ eigenvalues from the sample covariance matrix.}
+#' \item{residuals}{ T x N matrix of residuals from regression.}
+#' \item{asset.ret}{ asset returns}
+#' \item{asset.fit}{ List of regression lm class of individual returns on
+#' factors.}
+#' \item{resid.variance}{ vector of residual variances.}
+#' \item{mimic}{ N x K matrix of factor mimicking portfolio returns.}
+#' }
+#' Where N is the number of assets, K is the number of factors, and T is the 
+#' number of observations.
+#' 
+#' @author Eric Zivot and Yi-An Chen
+#' @references Zivot and Wang, (2006) "Modeling Financial Time Series with S-PLUS, 2nd edition"
+#' @examples
+#' 
+#' # load data for fitStatisticalFactorModel.r
+#' # data from finmetric berndt.dat and folio.dat
+#' 
+#' data(stat.fm.data)
+#' ##
+#' # sfm.dat is for pca
+#' # sfm.apca.dat is for apca
+#' class(sfm.dat)
+#' class(sfm.apca.dat)
+#' 
+#' # pca
+#' args(fitStatisticalFactorModel)
+#' sfm.pca.fit <- fitStatisticalFactorModel(sfm.dat,k=2)
+#' class(sfm.pca.fit)
+#' names(sfm.pca.fit)
+#' sfm.pca.fit$factors
+#' sfm.pca.fit$loadings
+#' sfm.pca.fit$r2
+#' sfm.pca.fit$residuals
+#' sfm.pca.fit$resid.variance
+#' sfm.pca.fit$mimic
+#' # apca
+#' sfm.apca.fit <- fitStatisticalFactorModel(sfm.apca.dat,k=1)
+#' names(sfm.apca.fit)
+#' sfm.apca.res <- sfm.apca.fit$residuals
+#' sfm.apca.mimic <- sfm.apca.fit$mimic
+#' # apca with bai and Ng method
+#' sfm.apca.fit.bn <- fitStatisticalFactorModel(sfm.apca.dat,k="bn")
+#' class(sfm.apca.fit.bn)
+#' names(sfm.apca.fit.bn)
+#' sfm.apca.fit.bn$mimic
+#' 
+#' # apca with ck method
+#' sfm.apca.fit.ck <- fitStatisticalFactorModel(sfm.apca.dat,k="ck")
+#' class(sfm.apca.fit.ck)
+#' names(sfm.apca.fit.ck)
+#' sfm.apca.fit.ck$mimic
+#' 
+#' @export
+#' 
+fitStatisticalFactorModel <-
+function(data, k = 1, refine = TRUE, check = FALSE, max.k = NULL, sig = 0.05, na.rm = FALSE){
+	
+# load package
+require(MASS)  
+require(PerformanceAnalytics)
+
+
+
+  
+ # function of test
+ mfactor.test <- function(data, method = "bn", refine = TRUE, check = FALSE, max.k = NULL, sig = 0.05){
+  
+    if(is.null(max.k)) {
+		max.k <- min(10, nrow(data) - 1)
+	} 	else if (max.k >= nrow(data)) {
+		stop("max.k must be less than the number of observations.")
+	}
+	if(check) {
+		if(mfactor.check(data)) {
+			warning("Some variables have identical observations.")
+			return(list(factors = NA, loadings = NA, k = NA))
+		}
+	}
+	method <- casefold(method)
+	if(method == "bn") {
+		ans <- mfactor.bn(data, max.k, refine = refine)
+	}
+	else if(method == "ck") {
+		ans <- mfactor.ck(data, max.k, refine = refine, sig = sig)
+	}
+	else {
+		stop("Invalid choice for optional argument method.")
+	}
+ return(ans)
+    
+}
+
+ 
+# function of ck
+mfactor.ck <- function(data, max.k, sig = 0.05, refine = TRUE) {
+  
+  n <- ncol(data)
+  m <- nrow(data)
+	idx <- 2 * (1:(m/2))
+	#
+	f <- mfactor.apca(data, k = 1, refine = refine, check = FALSE)
+	f1 <- cbind(1, f$factors)
+	B <- backsolve(chol(crossprod(f1)), diag(2))
+	eps <- data - f1 %*% crossprod(t(B)) %*% crossprod(f1, data)
+	s <- eps^2/(1 - 2/m - 1/n)
+	#	
+	for(i in 2:max.k) {
+		f.old <- f
+		s.old <- s
+		f <- mfactor.apca(data, k = i, refine = refine, check = FALSE)
+		f1 <- cbind(1, f$factors)
+		B <- backsolve(chol(crossprod(f1)), diag(i + 1))
+		eps <- data - f1 %*% crossprod(t(B)) %*% crossprod(f1, data)
+		s <- eps^2/(1 - (i + 1)/m - i/n)
+		delta <- rowMeans(s.old[idx - 1,  , drop = FALSE]) - rowMeans(
+			s[idx,  , drop = FALSE])
+		if(t.test(delta, alternative = "greater")$p.value > sig) {
+			return(f.old)
+		}
+	}
+	return(f)
+}
+
+# funciton of check  
+  mfactor.check <- function(data) {
+  temp <- apply(data, 2, range)
+  if(any(abs(temp[2,  ] - temp[1,  ]) < .Machine$single.eps)) {
+		TRUE
+	}
+	else {
+		FALSE
+	}
+}
+
+  # function of bn
+  mfactor.bn <- function(data, max.k, refine = TRUE) {
+  
+  # Parameters:
+	#         data : T x N return matrix
+	#     max.k : maxinum number of factors to be considered
+		# Returns:
+	#      k : the optimum number of factors
+	n <- ncol(data)
+	m <- nrow(data)
+	s <- vector("list", max.k) 
+	for(i in 1:max.k) {
+		f <- cbind(1, mfactor.apca(data, k = i, refine = refine, check = 
+			FALSE)$factors)
+		B <- backsolve(chol(crossprod(f)), diag(i + 1))
+		eps <- data - f %*% crossprod(t(B)) %*% crossprod(f, data)
+		sigma <- colSums(eps^2)/(m - i - 1)
+		s[[i]] <- mean(sigma)
+	}
+	s <- unlist(s)
+	idx <- 1:max.k
+	Cp1 <- s[idx] + (idx * s[max.k] * (n + m))/(n * m) * log((n * m)/
+		(n + m))
+	Cp2 <- s[idx] + (idx * s[max.k] * (n + m))/(n * m) * log(min(n, m))
+	if(order(Cp1)[1] != order(Cp2)[1]) {
+		warning("Cp1 and Cp2 did not yield same result. The smaller one is used."	)
+	}
+	k <- min(order(Cp1)[1], order(Cp2)[1])
+	f <- mfactor.apca(data, k = k, refine = refine, check = FALSE)
+ return(f)  
+ }
+
+  
+  # function of pca
+  mfactor.pca <- function(data, k, check = FALSE, ret.cov = NULL) {
+  
+  if(check) {
+		if(mfactor.check(data)) {
+			warning("Some variables have identical observations.")
+			return(list(factors = NA, loadings = NA, k = NA))
+		}
+	}
+	n <- ncol(data)
+	m <- nrow(data)
+	if(is.null(dimnames(data))) {
+		dimnames(data) <- list(1:m, paste("V", 1:n, sep = "."))
+	}
+	data.names <- dimnames(data)[[2]]
+  # demean
+	xc <- t(t(data) - colMeans(data))
+	if(is.null(ret.cov)) {
+		ret.cov <- crossprod(xc)/m
+	}
+	eigen.tmp <- eigen(ret.cov, symmetric = TRUE)
+  # compute loadings beta
+	B <- t(eigen.tmp$vectors[, 1:k, drop = FALSE])
+  # compute estimated factors
+	f <- data %*% eigen.tmp$vectors[, 1:k, drop = FALSE]
+	tmp <- data - f %*% B
+	alpha <- colMeans(tmp)
+  # compute residuals
+	resid <- t(t(tmp) - alpha)
+	r2 <- (1 - colSums(resid^2)/colSums(xc^2))
+	ret.cov <- t(B) %*% var(f) %*% B
+	diag(ret.cov) <- diag(ret.cov) + colSums(resid^2)/(m - k - 1)
+	dimnames(B) <- list(paste("F", 1:k, sep = "."), data.names)
+	dimnames(f) <- list(dimnames(data)[[1]], paste("F", 1:k, sep = "."))
+	dimnames(ret.cov) <- list(data.names, data.names)
+	names(alpha) <- data.names
+  
+#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
+    f <- xts(f,index(data.xts))
+    resid <- xts(resid,index(data.xts))
+#     }
+  
+  
+  # create lm list for plot
+  reg.list = list()
+#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
+    for (i in data.names) {
+      reg.xts = merge(data.xts[,i],f)
+      colnames(reg.xts)[1] <- i
+      fm.formula = as.formula(paste(i,"~", ".", sep=" "))
+      fm.fit = lm(fm.formula, data=reg.xts)
+      reg.list[[i]] = fm.fit
+    }
+#       } else {
+#     for (i in data.names) {
+#     reg.df = as.data.frame(cbind(data[,i],coredata(f)))
+#     colnames(reg.df)[1] <- i
+#     fm.formula = as.formula(paste(i,"~", ".", sep=" "))
+#     fm.fit = lm(fm.formula, data=reg.df)
+#     reg.list[[i]] = fm.fit
+#     }
+#   }
+  
+	ans <-  list(factors = f, loadings = B, k = k, alpha = alpha, ret.cov = ret.cov,
+	            	r2 = r2, eigen = eigen.tmp$values, residuals=resid, asset.ret = data,
+               asset.fit=reg.list)
+ 
+  return(ans)
+ 
+}
+
+  # funciont of apca
+  mfactor.apca <- function(data, k, refine = TRUE, check = FALSE, ret.cov = NULL) {
+  
+  if(check) {
+		if(mfactor.check(data)) {
+			warning("Some variables have identical observations.")
+			return(list(factors = NA, loadings = NA, k = NA))
+		}
+	}
+	n <- ncol(data)
+	m <- nrow(data)
+	if(is.null(dimnames(data))) {
+		dimnames(data) <- list(1:m, paste("V", 1:n, sep = "."))
+	}
+	data.names <- dimnames(data)[[2]]
+	xc <- t(t(data) - colMeans(data))
+	if(is.null(ret.cov)) {
+		ret.cov <- crossprod(t(xc))/n
+	}
+	eig.tmp <- eigen(ret.cov, symmetric = TRUE)
+	f <- eig.tmp$vectors[, 1:k, drop = FALSE]
+	f1 <- cbind(1, f)
+	B <- backsolve(chol(crossprod(f1)), diag(k + 1))
+	B <- crossprod(t(B)) %*% crossprod(f1, data)
+	sigma <- colSums((data - f1 %*% B)^2)/(m - k - 1)
+	if(refine) {
+		xs <- t(xc)/sqrt(sigma)
+		ret.cov <- crossprod(xs)/n
+		eig.tmp <- eigen(ret.cov, symmetric = TRUE)
+		f <- eig.tmp$vectors[, 1:k, drop = FALSE]
+		f1 <- cbind(1, f)
+		B <- backsolve(chol(crossprod(f1)), diag(k + 1))
+		B <- crossprod(t(B)) %*% crossprod(f1, data)
+		sigma <- colSums((data - f1 %*% B)^2)/(m - k - 1)
+	}
+	alpha <- B[1,  ]
+	B <- B[-1,  , drop = FALSE]
+	ret.cov <- t(B) %*% var(f) %*% B
+	diag(ret.cov) <- diag(ret.cov) + sigma
+	dimnames(B) <- list(paste("F", 1:k, sep = "."), data.names)
+	dimnames(f) <- list(dimnames(data)[[1]], paste("F", 1:k, sep = "."))
+	names(alpha) <- data.names
+	resid <- t(t(data) - alpha) - f %*% B
+	r2 <- (1 - colSums(resid^2)/colSums(xc^2))
+  
+#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
+    f <- xts(f,index(data.xts))
+    resid <- xts(resid,index(data.xts))
+#   }
+  
+  # create lm list for plot
+  reg.list = list()
+#   if (ckeckData.method == "xts" | ckeckData.method == "zoo" ) {
+    for (i in data.names) {
+      reg.xts = merge(data.xts[,i],f)
+      colnames(reg.xts)[1] <- i
+      fm.formula = as.formula(paste(i,"~", ".", sep=" "))
+      fm.fit = lm(fm.formula, data=reg.xts)
+      reg.list[[i]] = fm.fit
+    }
+#   } else {
+#     for (i in data.names) {
+#       reg.df = as.data.frame(cbind(data[,i],coredata(f)))
+#       colnames(reg.df)[1] <- i
+#       fm.formula = as.formula(paste(i,"~", ".", sep=" "))
+#       fm.fit = lm(fm.formula, data=reg.df)
+#       reg.list[[i]] = fm.fit
+#     }
+#   }
+  
+  
+  ans <- 	list(factors = f, loadings = B, k = k, alpha = alpha, ret.cov = ret.cov,
+		           r2 = r2, eigen = eig.tmp$values, residuals=resid,asset.ret = data,
+               asset.fit=reg.list)
+ return(ans)
+}
+
+# check data 
+data.xts <- checkData(data,method="xts") 
+
+
+  call <- match.call()  
+  pos <- rownames(coredata(data.xts))
+	data.m <- as.matrix(coredata(data.xts))
+	if(any(is.na(data.m))) {
+		if(na.rm) {
+			data.m <- na.omit(data.m)
+		}		else {
+			stop("Missing values are not allowed if na.rm=F.")
+		}
+	}
+	# use PCA if T > N
+	if(ncol(data.m) < nrow(data.m)) {
+		if(is.character(k)) {
+			stop("k must be the number of factors for PCA.")
+		}
+		if(k >= ncol(data.m)) {
+			stop("Number of factors must be smaller than number of variables."
+				)
+		}
+		ans <- mfactor.pca(data.m, k, check = check)
+	}	else if(is.character(k)) {
+		ans <- mfactor.test(data.m, k, refine = refine, check = 
+			check, max.k = max.k, sig = sig)
+	}	else { # use aPCA if T <= N
+		if(k >= ncol(data.m)) {
+			stop("Number of factors must be smaller than number of variables."
+				)
+		}
+		ans <- mfactor.apca(data.m, k, refine = refine, check = 
+			check)
+	}
+  
+  # mimic function
+  f <- ans$factors
+	
+	if(is.data.frame(f)) {
+		f <- as.matrix(f)
+	}
+
+	if(nrow(data.m) < ncol(data.m)) {
+		mimic <- ginv(data.m) %*% f
+	}	else {
+		mimic <- qr.solve(data.m, f)
+	}
+	
+  mimic <- t(t(mimic)/colSums(mimic))
+	dimnames(mimic)[[1]] <- dimnames(data.m)[[2]]
+  
+  ans$mimic <- mimic
+  ans$resid.variance <- apply(ans$residuals,2,var)
+  ans$call <- call
+  ans$data <- data
+  ans$assets.names  <- colnames(data.m)
+class(ans) <- "StatFactorModel"
+  return(ans)
+}
+



More information about the Returnanalytics-commits mailing list