[Returnanalytics-commits] r3303 - pkg/PortfolioAnalytics/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sun Jan 19 20:59:06 CET 2014


Author: braverock
Date: 2014-01-19 20:59:05 +0100 (Sun, 19 Jan 2014)
New Revision: 3303

Modified:
   pkg/PortfolioAnalytics/R/applyFUN.R
Log:
- roll back an errant `cat >>`


Modified: pkg/PortfolioAnalytics/R/applyFUN.R
===================================================================
--- pkg/PortfolioAnalytics/R/applyFUN.R	2014-01-19 19:52:42 UTC (rev 3302)
+++ pkg/PortfolioAnalytics/R/applyFUN.R	2014-01-19 19:59:05 UTC (rev 3303)
@@ -155,4107 +155,6 @@
   return(out)
 }
 
-#' classic risk reward scatter
-#' 
-#' This function charts the \code{optimize.portfolio} object in risk-return space.
-#' 
-#' @details
-#' \code{neighbors} may be specified in three ways.  
-#' The first is as a single number of neighbors.  This will extract the \code{neighbors} closest 
-#' portfolios in terms of the \code{out} numerical statistic.
-#' The second method consists of a numeric vector for \code{neighbors}.
-#' This will extract the \code{neighbors} with portfolio index numbers that correspond to the vector contents.
-#' The third method for specifying \code{neighbors} is to pass in a matrix.  
-#' This matrix should look like the output of \code{\link{extractStats}}, and should contain
-#' \code{risk.col},\code{return.col}, and weights columns all properly named. 
-#' 
-#' @param object optimal portfolio created by \code{\link{optimize.portfolio}}.
-#' @param neighbors set of 'neighbor' portfolios to overplot, see Details.
-#' @param \dots any other passthru parameters.
-#' @param return.col string matching the objective of a 'return' objective, on vertical axis.
-#' @param risk.col string matching the objective of a 'risk' objective, on horizontal axis.
-#' @param chart.assets TRUE/FALSE. Includes a risk reward scatter of the assets in the chart.
-#' @param element.color color for the default plot scatter points.
-#' @param cex.axis The magnification to be used for axis annotation relative to the current setting of \code{cex}.
-#' @param xlim set the x-axis limit, same as in \code{\link{plot}}.
-#' @param ylim set the y-axis limit, same as in \code{\link{plot}}.
-#' @param rp TRUE/FALSE to generate random portfolios to plot the feasible space
-#' @param main a main title for the plot.
-#' @param labels.assets TRUE/FALSE to include the names in the plot. 
-#' @param pch.assets plotting character of the assets, same as in \code{\link{plot}}
-#' @param cex.assets numerical value giving the amount by which the asset points should be magnified relative to the default.
-#' @param cex.lab numerical value giving the amount by which the labels should be magnified relative to the default.
-#' @param colorset color palette or vector of colors to use.
-#' @seealso \code{\link{optimize.portfolio}}
-#' @export
-chart.RiskReward <- function(object, ...){
-  UseMethod("chart.RiskReward")
-}
-
-
-#' Chart the efficient frontier and risk-return scatter
-#' 
-#' Chart the efficient frontier and risk-return scatter of the assets for 
-#' \code{optimize.portfolio} or \code{efficient.frontier} objects
-#' 
-#' @details
-#' For objects created by optimize.portfolio with 'DEoptim', 'random', or 'pso'
-#' specified as the optimize_method:
-#' \itemize{
-#'   \item The efficient frontier plotted is based on the the trace information (sets of 
-#'   portfolios tested by the solver at each iteration) in objects created by 
-#'   \code{optimize.portfolio}.
-#' }
-#' 
-#' For objects created by optimize.portfolio with 'ROI' specified as the 
-#' optimize_method:
-#' \itemize{
-#'   \item The mean-StdDev or mean-ETL efficient frontier can be plotted for optimal
-#'   portfolio objects created by \code{optimize.portfolio}.
-#' 
-#'   \item If \code{match.col="StdDev"}, the mean-StdDev efficient frontier is plotted.
-#' 
-#'   \item If \code{match.col="ETL"} (also "ES" or "CVaR"), the mean-ETL efficient frontier is plotted.
-#' }
-#' 
-#' Note that \code{trace=TRUE} must be specified in \code{\link{optimize.portfolio}}
-#' 
-#' GenSA does not return any useable trace information for portfolios tested at 
-#' each iteration, therfore we cannot extract and chart an efficient frontier.
-#' 
-#' By default, the tangency portfolio (maximum Sharpe Ratio or modified Sharpe Ratio)
-#' will be plotted using a risk free rate of 0. Set \code{rf=NULL} to omit 
-#' this from the plot. 
-#' 
-#' @param object object to chart.
-#' @param \dots passthru parameters to \code{\link{plot}}
-#' @param match.col string name of column to use for risk (horizontal axis).
-#' \code{match.col} must match the name of an objective measure in the 
-#' \code{objective_measures} or \code{opt_values} slot in the object created 
-#' by \code{\link{optimize.portfolio}}.
-#' @param n.portfolios number of portfolios to use to plot the efficient frontier.
-#' @param xlim set the x-axis limit, same as in \code{\link{plot}}.
-#' @param ylim set the y-axis limit, same as in \code{\link{plot}}.
-#' @param cex.axis numerical value giving the amount by which the axis should be magnified relative to the default.
-#' @param element.color provides the color for drawing less-important chart elements, such as the box lines, axis lines, etc.
-#' @param main a main title for the plot.
-#' @param RAR.text string name for risk adjusted return text to plot in the legend.
-#' @param rf risk free rate. If \code{rf} is not null, the maximum Sharpe Ratio or modified Sharpe Ratio tangency portfolio will be plotted.
-#' @param tangent.line TRUE/FALSE to plot the tangent line.
-#' @param cex.legend numerical value giving the amount by which the legend should be magnified relative to the default.
-#' @param chart.assets TRUE/FALSE to include the assets.
-#' @param labels.assets TRUE/FALSE to include the asset names in the plot. 
-#' \code{chart.assets} must be \code{TRUE} to plot asset names.
-#' @param pch.assets plotting character of the assets, same as in \code{\link{plot}}.
-#' @param cex.assets numerical value giving the amount by which the asset points and labels should be magnified relative to the default.
-#' @author Ross Bennett
-#' @rdname chart.EfficientFrontier
-#' @export
-chart.EfficientFrontier <- function(object, ...){
-  UseMethod("chart.EfficientFrontier")
-}
-
-#' @rdname chart.EfficientFrontier
-#' @method chart.EfficientFrontier optimize.portfolio.ROI
-#' @S3method chart.EfficientFrontier optimize.portfolio.ROI
-chart.EfficientFrontier.optimize.portfolio.ROI <- function(object, ..., match.col="ES", n.portfolios=25, xlim=NULL, ylim=NULL, cex.axis=0.8, element.color="darkgray", main="Efficient Frontier", RAR.text="SR", rf=0, tangent.line=TRUE, cex.legend=0.8, chart.assets=TRUE, labels.assets=TRUE, pch.assets=21, cex.assets=0.8){
-  if(!inherits(object, "optimize.portfolio.ROI")) stop("object must be of class optimize.portfolio.ROI")
-  
-  portf <- object$portfolio
-  R <- object$R
-  if(is.null(R)) stop(paste("Not able to get asset returns from", object))
-  wts <- object$weights
-  objectclass <- class(object)[1]
-  
-  # objnames <- unlist(lapply(portf$objectives, function(x) x$name))
-  # if(!(match.col %in% objnames)){
-  #   stop("match.col must match an objective name")
-  # }
-  
-  # get the optimal return and risk metrics
-  xtract <- extractStats(object=object)
-  columnames <- names(xtract)
-  if(!(("mean") %in% columnames)){
-    # we need to calculate the mean given the optimal weights
-    opt_ret <- applyFUN(R=R, weights=wts, FUN="mean")
-  } else {
-    opt_ret <- xtract["mean"]
-  }
-  # get the match.col column
-  mtc <- pmatch(match.col, columnames)
-  if(is.na(mtc)) {
-    mtc <- pmatch(paste(match.col,match.col,sep='.'), columnames)
-  }
-  if(is.na(mtc)){
-    # if(is.na(mtc)) stop("could not match match.col with column name of extractStats output")
-    opt_risk <- applyFUN(R=R, weights=wts, FUN=match.col)
-  } else {
-    opt_risk <- xtract[mtc]
-  }
-  
-  # get the data to plot scatter of asset returns
-  asset_ret <- scatterFUN(R=R, FUN="mean")
-  asset_risk <- scatterFUN(R=R, FUN=match.col)
-  rnames <- colnames(R)
-  
-  if(match.col %in% c("ETL", "ES", "CVaR")){
-    frontier <- meanetl.efficient.frontier(portfolio=portf, R=R, n.portfolios=n.portfolios)
-    rar <- "STARR"
-  }
-  if(match.col == "StdDev"){
-    frontier <- meanvar.efficient.frontier(portfolio=portf, R=R, n.portfolios=n.portfolios)
-    rar <- "SR"
-  }
-  # data points to plot the frontier
-  x.f <- frontier[, match.col]
-  y.f <- frontier[, "mean"]
-  
-  # Points for the Sharpe Ratio ((mu - rf) / StdDev) or STARR ((mu - rf) / ETL)
-  if(!is.null(rf)){
-    sr <- (y.f - rf) / (x.f)
-    idx.maxsr <- which.max(sr)
-    srmax <- sr[idx.maxsr]
-  }
-  
-  # set the x and y limits
-  if(is.null(xlim)){
-    xlim <- range(c(x.f, asset_risk))
-    # xlim[1] <- xlim[1] * 0.8
-    xlim[1] <- 0
-    xlim[2] <- xlim[2] * 1.15
-  }
-  if(is.null(ylim)){
-    ylim <- range(c(y.f, asset_ret))
-    # ylim[1] <- ylim[1] * 0.9
-    ylim[1] <- 0
-    ylim[2] <- ylim[2] * 1.1
-  }
-  
-  # plot the efficient frontier line
-  plot(x=x.f, y=y.f, ylab="Mean", xlab=match.col, main=main, xlim=xlim, ylim=ylim, axes=FALSE, ...)
-  
-  # Add the global minimum variance or global minimum ETL portfolio
-  points(x=x.f[1], y=y.f[1], pch=16)
-  
-  if(chart.assets){
-    # risk-return scatter of the assets
-    points(x=asset_risk, y=asset_ret, pch=pch.assets, cex=cex.assets)
-    if(labels.assets) text(x=asset_risk, y=asset_ret, labels=rnames, pos=4, cex=cex.assets)
-  }
-  
-  # plot the optimal portfolio
-  points(opt_risk, opt_ret, col="blue", pch=16) # optimal
-  text(x=opt_risk, y=opt_ret, labels="Optimal",col="blue", pos=4, cex=0.8)
-  if(!is.null(rf)){
-    # Plot tangency line and points at risk-free rate and tangency portfolio
-    if(tangent.line) abline(rf, srmax, lty=2)
-    points(0, rf, pch=16)
-    points(x.f[idx.maxsr], y.f[idx.maxsr], pch=16)
-    # text(x=x.f[idx.maxsr], y=y.f[idx.maxsr], labels="T", pos=4, cex=0.8)
-    # Add lengend with max Sharpe Ratio and risk-free rate
-    legend("topleft", paste(RAR.text, " = ", signif(srmax,3), sep = ""), bty = "n", cex=cex.legend)
-    legend("topleft", inset = c(0,0.05), paste("rf = ", signif(rf,3), sep = ""), bty = "n", cex=cex.legend)
-  }
-  axis(1, cex.axis = cex.axis, col = element.color)
-  axis(2, cex.axis = cex.axis, col = element.color)
-  box(col = element.color)
-}
-
-#' @rdname chart.EfficientFrontier
-#' @method chart.EfficientFrontier optimize.portfolio
-#' @S3method chart.EfficientFrontier optimize.portfolio
-chart.EfficientFrontier.optimize.portfolio <- function(object, ..., match.col="ES", n.portfolios=25, xlim=NULL, ylim=NULL, cex.axis=0.8, element.color="darkgray", main="Efficient Frontier", RAR.text="SR", rf=0, tangent.line=TRUE, cex.legend=0.8, chart.assets=TRUE, labels.assets=TRUE, pch.assets=21, cex.assets=0.8){
-  # This function will work with objects of class optimize.portfolio.DEoptim,
-  # optimize.portfolio.random, and optimize.portfolio.pso
-  
-  if(inherits(object, "optimize.portfolio.GenSA")){
-    stop("GenSA does not return any useable trace information for portfolios tested, thus we cannot extract an efficient frontier.")
-  }
-  
-  if(!inherits(object, "optimize.portfolio")) stop("object must be of class optimize.portfolio")
-  
-  portf <- object$portfolio
-  R <- object$R
-  if(is.null(R)) stop(paste("Not able to get asset returns from", object))
-  wts <- object$weights
-  
-  # get the stats from the object
-  xtract <- extractStats(object=object)
-  columnames <- colnames(xtract)
-  
-  # Check if match.col is in extractStats output
-  if(!(match.col %in% columnames)){
-    stop(paste(match.col, "is not a column in extractStats output"))
-  }
-  
-  # check if 'mean' is in extractStats output
-  if(!("mean" %in% columnames)){
-    stop("mean is not a column in extractStats output")
-  }
-  
-  # get the stats of the optimal portfolio
-  optstats <- xtract[which.min(xtract[, "out"]), ]
-  opt_ret <- optstats["mean"]
-  opt_risk <- optstats[match.col]
-  
-  # get the data to plot scatter of asset returns
-  asset_ret <- scatterFUN(R=R, FUN="mean")
-  asset_risk <- scatterFUN(R=R, FUN=match.col)
-  rnames <- colnames(R)
-  
-  # get the data of the efficient frontier
-  frontier <- extract.efficient.frontier(object=object, match.col=match.col, n.portfolios=n.portfolios)
-  
-  # data points to plot the frontier
-  x.f <- frontier[, match.col]
-  y.f <- frontier[, "mean"]
-  
-  # Points for the Sharpe or Modified Sharpe Ratio
-  if(!is.null(rf)){
-    sr <- (y.f - rf) / (x.f)
-    idx.maxsr <- which.max(sr)
-    srmax <- sr[idx.maxsr]
-  }
-  
-  # set the x and y limits
-  if(is.null(xlim)){
-    xlim <- range(c(x.f, asset_risk))
-    # xlim[1] <- xlim[1] * 0.8
-    xlim[1] <- 0
-    xlim[2] <- xlim[2] * 1.15
-  }
-  if(is.null(ylim)){
-    ylim <- range(c(y.f, asset_ret))
-    # ylim[1] <- ylim[1] * 0.9
-    ylim[1] <- 0
-    ylim[2] <- ylim[2] * 1.1
-  }
-  
-  # plot the efficient frontier line
-  plot(x=x.f, y=y.f, ylab="Mean", xlab=match.col, main=main, xlim=xlim, ylim=ylim, axes=FALSE, ...)
-  
-  # Add the global minimum variance or global minimum ETL portfolio
-  points(x=x.f[1], y=y.f[1], pch=16)
-  
-  if(chart.assets){
-    # risk-return scatter of the assets
-    points(x=asset_risk, y=asset_ret, pch=pch.assets, cex=cex.assets)
-    if(labels.assets) text(x=asset_risk, y=asset_ret, labels=rnames, pos=4, cex=cex.assets)
-  }
-  
-  # plot the optimal portfolio
-  points(opt_risk, opt_ret, col="blue", pch=16) # optimal
-  text(x=opt_risk, y=opt_ret, labels="Optimal",col="blue", pos=4, cex=0.8)
-  if(!is.null(rf)){
-    # Plot tangency line and points at risk-free rate and tangency portfolio
-    if(tangent.line) abline(rf, srmax, lty=2)
-    points(0, rf, pch=16)
-    points(x.f[idx.maxsr], y.f[idx.maxsr], pch=16)
-    # text(x=x.f[idx.maxsr], y=y.f[idx.maxsr], labels="T", pos=4, cex=0.8)
-    # Add lengend with max Sharpe Ratio and risk-free rate
-    legend("topleft", paste(RAR.text, " = ", signif(srmax,3), sep = ""), bty = "n", cex=cex.legend)
-    legend("topleft", inset = c(0,0.05), paste("rf = ", signif(rf,3), sep = ""), bty = "n", cex=cex.legend)
-  }
-  axis(1, cex.axis = cex.axis, col = element.color)
-  axis(2, cex.axis = cex.axis, col = element.color)
-  box(col = element.color)
-}
-
-
-#' Chart weights along an efficient frontier
-#' 
-#' This function produces a stacked barplot of weights along an efficient frontier.
-#' 
-#' @param object object of class \code{efficient.frontier} or \code{optimize.portfolio}.
-#' @param \dots passthru parameters to \code{barplot}.
-#' @param colorset color palette or vector of colors to use.
-#' @param n.portfolios number of portfolios to extract along the efficient frontier.
-#' @param by.groups TRUE/FALSE. If TRUE, the group weights are charted.
-#' @param match.col string name of column to use for risk (horizontal axis). Must match the name of an objective.
-#' @param main title used in the plot.
-#' @param cex.lab the magnification to be used for x-axis and y-axis labels relative to the current setting of 'cex'.
-#' @param cex.axis the magnification to be used for sizing the axis text relative to the current setting of 'cex', similar to \code{\link{plot}}.
-#' @param cex.legend the magnification to be used for sizing the legend relative to the current setting of 'cex', similar to \code{\link{plot}}.
-#' @param legend.labels character vector to use for the legend labels.
-#' @param element.color provides the color for drawing less-important chart elements, such as the box lines, axis lines, etc.
-#' @param legend.loc NULL, "topright", "right", or "bottomright". If legend.loc is NULL, the legend will not be plotted.
-#' @author Ross Bennett
-#' @rdname chart.Weights.EF
-#' @export
-chart.Weights.EF <- function(object, ...){
-  UseMethod("chart.Weights.EF")
-}
-
-
-#' @rdname chart.Weights.EF
-#' @method chart.Weights.EF efficient.frontier
-#' @S3method chart.Weights.EF efficient.frontier
-chart.Weights.EF.efficient.frontier <- function(object, ..., colorset=NULL, n.portfolios=25, by.groups=FALSE, match.col="ES", main="", cex.lab=0.8, cex.axis=0.8, cex.legend=0.8, legend.labels=NULL, element.color="darkgray", legend.loc="topright"){
-  # using ideas from weightsPlot.R in fPortfolio package
-  
-  if(!inherits(object, "efficient.frontier")) stop("object must be of class 'efficient.frontier'")
-  
-  if(is.list(object)){
-    # Objects created with create.EfficientFrontier will be a list of 2 elements
-    frontier <- object$frontier
-  } else {
-    # Objects created with extractEfficientFrontier will only be an efficient.frontier object
-    frontier <- object
-  }
-  
-  
-  # get the columns with weights
-  cnames <- colnames(frontier)
-  wts_idx <- grep(pattern="^w\\.", cnames)
-  wts <- frontier[, wts_idx]
-  
-  if(by.groups){
-    constraints <- get_constraints(object$portfolio)
-    groups <- constraints$groups
-    if(is.null(groups)) stop("group constraints not in portfolio object")
-    if(!is.null(groups)){
-      groupfun <- function(weights, groups){
-        # This function is to calculate weights by group given the group list
-        # and a matrix of weights along the efficient frontier
-        ngroups <- length(groups)
-        group_weights <- rep(0, ngroups)
-        for(i in 1:ngroups){
-          group_weights[i] <- sum(weights[groups[[i]]])
-        }
-        group_weights
-      }
-      wts <- t(apply(wts, 1, groupfun, groups=groups))
-    }
-  }
-  
-  # return along the efficient frontier
-  # get the "mean" column
-  mean.mtc <- pmatch("mean", cnames)
-  if(is.na(mean.mtc)) {
-    mean.mtc <- pmatch("mean.mean", cnames)
-  }
-  if(is.na(mean.mtc)) stop("could not match 'mean' with column name of extractStats output")
-  
-  # risk along the efficient frontier
-  # get the match.col column
-  mtc <- pmatch(match.col, cnames)
-  if(is.na(mtc)) {
-    mtc <- pmatch(paste(match.col,match.col,sep='.'),cnames)
-  }
-  if(is.na(mtc)) stop("could not match match.col with column name of extractStats output")
-  
-  # compute the weights for the barplot
-  pos.weights <- +0.5 * (abs(wts) + wts)
-  neg.weights <- -0.5 * (abs(wts) - wts)
-  
-  # Define Plot Range:
-  ymax <- max(rowSums(pos.weights))
-  ymin <- min(rowSums(neg.weights))
-  range <- ymax - ymin
-  ymax <- ymax + 0.005 * range
-  ymin <- ymin - 0.005 * range
-  dim <- dim(wts)
-  range <- dim[1]
-  xmin <- 0
-  if(is.null(legend.loc)){
-    xmax <- range
-  } else {
-    xmax <- range + 0.3 * range
-  }
-  
-  # set the colorset if no colorset is passed in
-  if(is.null(colorset))
-    colorset <- 1:dim[2]
-  
-  # plot the positive weights
-  barplot(t(pos.weights), col = colorset, space = 0, ylab = "",
-          xlim = c(xmin, xmax), ylim = c(ymin, ymax),
-          border = element.color, cex.axis=cex.axis, 
-          axisnames=FALSE, ...)
-  
-  if(!is.null(legend.loc)){
-    if(legend.loc %in% c("topright", "right", "bottomright")){
-      # set the legend information
-      if(is.null(legend.labels)){
-        if(by.groups){
-          legend.labels <- names(groups)
-          if(is.null(legend.labels)) legend.labels <- constraints$group_labels
-        } else {
-          legend.labels <- gsub(pattern="^w\\.", replacement="", cnames[wts_idx])
-        }
-      }
-      legend(legend.loc, legend = legend.labels, bty = "n", cex = cex.legend, fill = colorset)
-    }
-  }
-  # plot the negative weights
-  barplot(t(neg.weights), col = colorset, space = 0, add = TRUE, border = element.color, 
-          cex.axis=cex.axis, axes=FALSE, axisnames=FALSE, ...)
-  
-  
-  # Add labels
-  ef.return <- frontier[, mean.mtc]
-  ef.risk <- frontier[, mtc]
-  n.risk <- length(ef.risk)
-  n.labels <- 6
-  M <- c(0, ( 1:(n.risk %/% n.labels) ) ) * n.labels + 1
-  # use 3 significant digits
-  axis(3, at = M, labels = signif(ef.risk[M], 3), cex.axis=cex.axis)
-  axis(1, at = M, labels = signif(ef.return[M], 3), cex.axis=cex.axis)
-  
-  # axis labels and titles
-  mtext(match.col, side = 3, line = 2, adj = 0.5, cex = cex.lab)
-  mtext("Mean", side = 1, line = 2, adj = 0.5, cex = cex.lab)
-  mtext("Weight", side = 2, line = 2, adj = 0.5, cex = cex.lab)
-  # add title
-  title(main=main, line=3)
-  # mtext(main, adj = 0, line = 2.5, font = 2, cex = 0.8)
-  box(col=element.color)
-}
-
-#' @rdname chart.Weights.EF
-#' @method chart.Weights.EF optimize.portfolio
-#' @S3method chart.Weights.EF optimize.portfolio
-chart.Weights.EF.optimize.portfolio <- function(object, ..., colorset=NULL, n.portfolios=25, by.groups=FALSE, match.col="ES", main="", cex.lab=0.8, cex.axis=0.8, cex.legend=0.8, legend.labels=NULL, element.color="darkgray", legend.loc="topright"){
-  # chart the weights along the efficient frontier of an objected created by optimize.portfolio
-  
-  if(!inherits(object, "optimize.portfolio")) stop("object must be of class optimize.portfolio")
-  
-  frontier <- extractEfficientFrontier(object=object, match.col=match.col, n.portfolios=n.portfolios)
-  PortfolioAnalytics:::chart.Weights.EF(object=frontier, colorset=colorset, ..., 
-                                        match.col=match.col, by.groups=by.groups, main=main, cex.lab=cex.lab, 
-                                        cex.axis=cex.axis, cex.legend=cex.legend, 
-                                        legend.labels=legend.labels, element.color=element.color,
-                                        legend.loc=legend.loc)
-}
-
-#' @rdname chart.EfficientFrontier
-#' @method chart.EfficientFrontier efficient.frontier
-#' @S3method chart.EfficientFrontier efficient.frontier
-chart.EfficientFrontier.efficient.frontier <- function(object, ..., match.col="ES", n.portfolios=NULL, xlim=NULL, ylim=NULL, cex.axis=0.8, element.color="darkgray", main="Efficient Frontier", RAR.text="SR", rf=0, tangent.line=TRUE, cex.legend=0.8, chart.assets=TRUE, labels.assets=TRUE, pch.assets=21, cex.assets=0.8){
-  if(!inherits(object, "efficient.frontier")) stop("object must be of class 'efficient.frontier'")
-  
-  # get the returns and efficient frontier object
-  R <- object$R
-  frontier <- object$frontier
-  
-  # get the column names from the frontier object
-  cnames <- colnames(frontier)
-  
-  # get the "mean" column
-  mean.mtc <- pmatch("mean", cnames)
-  if(is.na(mean.mtc)) {
-    mean.mtc <- pmatch("mean.mean", cnames)
-  }
-  if(is.na(mean.mtc)) stop("could not match 'mean' with column name of efficient frontier")
-  
-  # get the match.col column
-  mtc <- pmatch(match.col, cnames)
-  if(is.na(mtc)) {
-    mtc <- pmatch(paste(match.col,match.col,sep='.'),cnames)
-  }
-  if(is.na(mtc)) stop("could not match match.col with column name of efficient frontier")
-  
-  # get the data to plot scatter of asset returns
-  asset_ret <- scatterFUN(R=R, FUN="mean")
-  asset_risk <- scatterFUN(R=R, FUN=match.col)
-  rnames <- colnames(R)
-  
-  # set the x and y limits
-  if(is.null(xlim)){
-    xlim <- range(c(frontier[, mtc], asset_risk))
-    # xlim[1] <- xlim[1] * 0.8
-    xlim[1] <- 0
-    xlim[2] <- xlim[2] * 1.15
-  }
-  if(is.null(ylim)){
-    ylim <- range(c(frontier[, mean.mtc], asset_ret))
-    # ylim[1] <- ylim[1] * 0.9
-    ylim[1] <- 0
-    ylim[2] <- ylim[2] * 1.1
-  }
-  
-  if(!is.null(rf)){
-    sr <- (frontier[, mean.mtc] - rf) / (frontier[, mtc])
-    idx.maxsr <- which.max(sr)
-    srmax <- sr[idx.maxsr]
-  }
-  
-  # plot the efficient frontier line
-  plot(x=frontier[, mtc], y=frontier[, mean.mtc], ylab="Mean", xlab=match.col, main=main, xlim=xlim, ylim=ylim, axes=FALSE, ...)
-  
-  # Add the global minimum variance or global minimum ETL portfolio
-  points(x=frontier[1, mtc], y=frontier[1, mean.mtc], pch=16)
-  
-  if(chart.assets){
-    # risk-return scatter of the assets
-    points(x=asset_risk, y=asset_ret, pch=pch.assets, cex=cex.assets)
-    if(labels.assets) text(x=asset_risk, y=asset_ret, labels=rnames, pos=4, cex=cex.assets)
-  }
-  
-  if(!is.null(rf)){
-    # Plot tangency line and points at risk-free rate and tangency portfolio
-    if(tangent.line) abline(rf, srmax, lty=2)
-    points(0, rf, pch=16)
-    points(frontier[idx.maxsr, mtc], frontier[idx.maxsr, mean.mtc], pch=16)
-    # text(x=frontier[idx.maxsr], y=frontier[idx.maxsr], labels="T", pos=4, cex=0.8)
-    # Add legend with max Risk adjusted Return ratio and risk-free rate
-    legend("topleft", paste(RAR.text, " = ", signif(srmax,3), sep = ""), bty = "n", cex=cex.legend)
-    legend("topleft", inset = c(0,0.05), paste("rf = ", signif(rf,3), sep = ""), bty = "n", cex=cex.legend)
-  }
-  axis(1, cex.axis = cex.axis, col = element.color)
-  axis(2, cex.axis = cex.axis, col = element.color)
-  box(col = element.color)
-}
-
-#' Plot multiple efficient frontiers
-#' 
-#' Overlay the efficient frontiers of multiple portfolio objects on a single plot.
-#' 
-#' @param R an xts object of asset returns
-#' @param portfolio_list list of portfolio objects created by \code{\link{portfolio.spec}}
-#' @param type type of efficient frontier, see \code{\link{create.EfficientFrontier}}
-#' @param n.portfolios number of portfolios to extract along the efficient frontier.
-#' This is only used for objects of class \code{optimize.portfolio}
-#' @param match.col string name of column to use for risk (horizontal axis).
-#' Must match the name of an objective.
-#' @param search_size passed to optimize.portfolio for type="DEoptim" or type="random".
-#' @param main title used in the plot.
-#' @param cex.axis the magnification to be used for sizing the axis text relative to the current setting of 'cex', similar to \code{\link{plot}}.
-#' @param element.color provides the color for drawing less-important chart elements, such as the box lines, axis lines, etc.
-#' @param legend.loc location of the legend; NULL, "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".
-#' @param legend.labels character vector to use for the legend labels.
-#' @param cex.legend The magnification to be used for sizing the legend relative to the current setting of 'cex', similar to \code{\link{plot}}.
-#' @param xlim set the x-axis limit, same as in \code{\link{plot}}.
-#' @param ylim set the y-axis limit, same as in \code{\link{plot}}.
-#' @param \dots passthrough parameters to \code{\link{plot}}.
-#' @param chart.assets TRUE/FALSE to include the assets.
-#' @param labels.assets TRUE/FALSE to include the asset names in the plot.
-#' @param pch.assets plotting character of the assets, same as in \code{\link{plot}}.
-#' @param cex.assets A numerical value giving the amount by which the asset points and labels should be magnified relative to the default.
-#' @param col vector of colors with length equal to the number of portfolios in \code{portfolio_list}.
-#' @param lty vector of line types with length equal to the number of portfolios in \code{portfolio_list}.
-#' @param lwd vector of line widths with length equal to the number of portfolios in \code{portfolio_list}.
-#' @author Ross Bennett
-#' @export
-chart.EfficientFrontierOverlay <- function(R, portfolio_list, type, n.portfolios=25, match.col="ES", search_size=2000, main="Efficient Frontiers", cex.axis=0.8, element.color="darkgray", legend.loc=NULL, legend.labels=NULL, cex.legend=0.8, xlim=NULL, ylim=NULL, ..., chart.assets=TRUE, labels.assets=TRUE, pch.assets=21, cex.assets=0.8, col=NULL, lty=NULL, lwd=NULL){
-  # create multiple efficient frontier objects (one per portfolio in portfolio_list)
-  if(!is.list(portfolio_list)) stop("portfolio_list must be passed in as a list")
-  if(length(portfolio_list) == 1) warning("Only one portfolio object in portfolio_list")
-  # store in out
-  out <- list()
-  for(i in 1:length(portfolio_list)){
-    if(!is.portfolio(portfolio_list[[i]])) stop("portfolio in portfolio_list must be of class 'portfolio'")
-    out[[i]] <- create.EfficientFrontier(R=R, portfolio=portfolio_list[[i]], type=type, n.portfolios=n.portfolios, match.col=match.col, search_size=search_size)
-  }
-  # get the data to plot scatter of asset returns
-  asset_ret <- scatterFUN(R=R, FUN="mean")
-  asset_risk <- scatterFUN(R=R, FUN=match.col)
-  rnames <- colnames(R)
-  
-  # set the x and y limits
-  if(is.null(xlim)){
-    xlim <- range(asset_risk)
-    # xlim[1] <- xlim[1] * 0.8
-    xlim[1] <- 0
-    xlim[2] <- xlim[2] * 1.15
-  }
-  if(is.null(ylim)){
-    ylim <- range(asset_ret)
-    # ylim[1] <- ylim[1] * 0.9
-    ylim[1] <- 0
-    ylim[2] <- ylim[2] * 1.1
-  }
-  
-  # plot the assets
-  plot(x=asset_risk, y=asset_ret, xlab=match.col, ylab="Mean", main=main, xlim=xlim, ylim=ylim, axes=FALSE, type="n", ...)
-  axis(1, cex.axis = cex.axis, col = element.color)
-  axis(2, cex.axis = cex.axis, col = element.color)
-  box(col = element.color)
-  
-  if(chart.assets){
-    # risk-return scatter of the assets
-    points(x=asset_risk, y=asset_ret, pch=pch.assets, cex=cex.assets)
-    if(labels.assets) text(x=asset_risk, y=asset_ret, labels=rnames, pos=4, cex=cex.assets)
-  }
-  
-  # set some basic plot parameters
-  if(is.null(col)) col <- 1:length(out)
-  if(is.null(lty)) lty <- 1:length(out)
-  if(is.null(lwd)) lwd <- rep(1, length(out))
-  
-  for(i in 1:length(out)){
-    tmp <- out[[i]]
-    tmpfrontier <- tmp$frontier
-    cnames <- colnames(tmpfrontier)
-    
-    # get the "mean" column
-    mean.mtc <- pmatch("mean", cnames)
-    if(is.na(mean.mtc)) {
-      mean.mtc <- pmatch("mean.mean", cnames)
-    }
-    if(is.na(mean.mtc)) stop("could not match 'mean' with column name of extractStats output")
-    
-    # get the match.col column
-    mtc <- pmatch(match.col, cnames)
-    if(is.na(mtc)) {
-      mtc <- pmatch(paste(match.col, match.col, sep='.'),cnames)
-    }
-    if(is.na(mtc)) stop("could not match match.col with column name of extractStats output")
-    # Add the efficient frontier lines to the plot
-    lines(x=tmpfrontier[, mtc], y=tmpfrontier[, mean.mtc], col=col[i], lty=lty[i], lwd=lwd[i])
-  }
-  if(!is.null(legend.loc)){
-    if(is.null(legend.labels)){
-      legend.labels <- paste("Portfolio", 1:length(out), sep=".")
-    }
-    legend(legend.loc, legend=legend.labels, col=col, lty=lty, lwd=lwd, cex=cex.legend, bty="n") 
-  }
-  return(invisible(out))
-}
-
-
-chart.Weights.GenSA <- function(object, ..., neighbors = NULL, main="Weights", las = 3, xlab=NULL, cex.lab = 1, element.color = "darkgray", cex.axis=0.8, colorset=NULL, legend.loc="topright", cex.legend=0.8, plot.type="line"){
-  
-  if(!inherits(object, "optimize.portfolio.GenSA")) stop("object must be of class 'optimize.portfolio.GenSA'")
-  
-  if(plot.type %in% c("bar", "barplot")){
-    barplotWeights(object=object, ..., main=main, las=las, xlab=xlab, cex.lab=cex.lab, element.color=element.color, cex.axis=cex.axis, legend.loc=legend.loc, cex.legend=cex.legend, colorset=colorset)
-  } else if(plot.type == "line"){
-    
-    columnnames = names(object$weights)
-    numassets = length(columnnames)
-    
-    constraints <- get_constraints(object$portfolio)
-    
-    if(is.null(xlab))
-      minmargin = 3
-    else
-      minmargin = 5
-    if(main=="") topmargin=1 else topmargin=4
-    if(las > 1) {# set the bottom border to accommodate labels
-      bottommargin = max(c(minmargin, (strwidth(columnnames,units="in"))/par("cin")[1])) * cex.lab
-      if(bottommargin > 10 ) {
-        bottommargin<-10
-        columnnames<-substr(columnnames,1,19)
-        # par(srt=45) #TODO figure out how to use text() and srt to rotate long labels
-      }
-    }
-    else {
-      bottommargin = minmargin
-    }
-    par(mar = c(bottommargin, 4, topmargin, 2) +.1)
-    if(any(is.infinite(constraints$max)) | any(is.infinite(constraints$min))){
-      # set ylim based on weights if box constraints contain Inf or -Inf
-      ylim <- range(object$weights)
-    } else {
-      # set ylim based on the range of box constraints min and max
-      ylim <- range(c(constraints$min, constraints$max))
-    }
-    plot(object$weights, type="b", col="blue", axes=FALSE, xlab='', ylim=ylim, ylab="Weights", main=main, pch=16, ...)
-    if(!any(is.infinite(constraints$min))){
-      points(constraints$min, type="b", col="darkgray", lty="solid", lwd=2, pch=24)
-    }
-    if(!any(is.infinite(constraints$max))){
-      points(constraints$max, type="b", col="darkgray", lty="solid", lwd=2, pch=25)
-    }
-    #     if(!is.null(neighbors)){ 
-    #         if(is.vector(neighbors)){
-    #             xtract=extractStats(ROI)
-    #             weightcols<-grep('w\\.',colnames(xtract)) #need \\. to get the dot 
-    #             if(length(neighbors)==1){
-    #                 # overplot nearby portfolios defined by 'out'
-    #                 orderx = order(xtract[,"out"])
-    #                 subsetx = head(xtract[orderx,], n=neighbors)
-    #                 for(i in 1:neighbors) points(subsetx[i,weightcols], type="b", col="lightblue")
-    #             } else{
-    #                 # assume we have a vector of portfolio numbers
-    #                 subsetx = xtract[neighbors,weightcols]
-    #                 for(i in 1:length(neighbors)) points(subsetx[i,], type="b", col="lightblue")
-    #             }      
-    #         }
-    #         if(is.matrix(neighbors) | is.data.frame(neighbors)){
-    #             # the user has likely passed in a matrix containing calculated values for risk.col and return.col
-    #             nbweights<-grep('w\\.',colnames(neighbors)) #need \\. to get the dot
-    #             for(i in 1:nrow(neighbors)) points(as.numeric(neighbors[i,nbweights]), type="b", col="lightblue")
-    #             # note that here we need to get weight cols separately from the matrix, not from xtract
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/returnanalytics -r 3303


More information about the Returnanalytics-commits mailing list