[Returnanalytics-commits] r3511 - pkg/PerformanceAnalytics/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Aug 20 01:29:56 CEST 2014
Author: kylebalkissoon
Date: 2014-08-20 01:29:55 +0200 (Wed, 20 Aug 2014)
New Revision: 3511
Modified:
pkg/PerformanceAnalytics/R/table.ProbOutperformance.R
Log:
Line endings switched to unix
Modified: pkg/PerformanceAnalytics/R/table.ProbOutperformance.R
===================================================================
--- pkg/PerformanceAnalytics/R/table.ProbOutperformance.R 2014-08-19 23:29:27 UTC (rev 3510)
+++ pkg/PerformanceAnalytics/R/table.ProbOutperformance.R 2014-08-19 23:29:55 UTC (rev 3511)
@@ -1,52 +1,52 @@
-#' Calculates Count of trailing periods where a fund outperformed its benchmark and calculates the proportion of those periods, this is commonly used in marketing as the probability of outperformance on a N year basis
-#'
-#'
-#' @param R an xts, timeSeries or zoo object of asset returns
-#' @param Rb an xts, timeSeries or zoo object of the benchmark returns
-#' @param period_lengths a vector of periods the user wants to evaluate this over i.e. c(1,3,6,9,12,18,36)
-#' @author Kyle Balkissoon
-#' @keywords Performance Reporting Fund vs Benchmark
-#'
-#' @export table_ProbOutperformance
-
-table.ProbOutPerformance = function(R,Rb,period_lengths=c(1,3,6,9,12,18,36)){
- if(nrow(R)!=nrow(Rb)){
- stop("R and Rb must be the same length")
- }
-
-
- ###Create Trailing frequency analysis
- R_periods = xts(data.frame(matrix(ncol=length(period_lengths),nrow=nrow(R))),order.by=index(R))
- colnames(R_periods) = paste0("period_",period_lengths)
- Rb_periods = R_periods
- for(i in 1:nrow(R_periods)){
- for(p_len in period_lengths){
- #if there aren't enough occurences yet don't calculate anything
- if(p_len>i){}else{
- tdf = first(R,i)
- tdf_b = first(Rb,i)
- eval(parse(text=paste0("R_periods[",i,",]$period_",p_len," = Return.cumulative(last(tdf,",p_len,"))")))
- eval(parse(text=paste0("Rb_periods[",i,",]$period_",p_len," = Return.cumulative(last(tdf_b,",p_len,"))")))
- }}}
-
-
- ##Calculate periods ahead
- #Differences
- diff_mat = R_periods-Rb_periods
-
- ##Result
- result = data.frame(period_lengths)
- result[,2] = NA
- result[,3]=NA
- for(p_len in 1:length(period_lengths)){
- result[p_len,2] = eval(parse(text=paste0("sum(ifelse(as.numeric(diff_mat$period_",period_lengths[p_len],")>0,1,0),na.rm=T)")))
- result[p_len,3] = eval(parse(text=paste0("sum(ifelse(as.numeric(diff_mat$period_",period_lengths[p_len],")<0,1,0),na.rm=T)")))
- }
- result[,4] = result[,2]+result[,3]
- result[,5] = result[,2]/result[,4]
- result[,6] = result[,3]/result[,4]
-
- colnames(result) = c("period_lengths",colnames(R),colnames(Rb),"total periods",paste0("prob_",colnames(R),"_outperformance"),paste0("prob_",colnames(Rb),"_outperformance"))
- return(result)
-
+#' Calculates Count of trailing periods where a fund outperformed its benchmark and calculates the proportion of those periods, this is commonly used in marketing as the probability of outperformance on a N year basis
+#'
+#'
+#' @param R an xts, timeSeries or zoo object of asset returns
+#' @param Rb an xts, timeSeries or zoo object of the benchmark returns
+#' @param period_lengths a vector of periods the user wants to evaluate this over i.e. c(1,3,6,9,12,18,36)
+#' @author Kyle Balkissoon
+#' @keywords Performance Reporting Fund vs Benchmark
+#'
+#' @export table_ProbOutperformance
+
+table.ProbOutPerformance = function(R,Rb,period_lengths=c(1,3,6,9,12,18,36)){
+ if(nrow(R)!=nrow(Rb)){
+ stop("R and Rb must be the same length")
+ }
+
+
+ ###Create Trailing frequency analysis
+ R_periods = xts(data.frame(matrix(ncol=length(period_lengths),nrow=nrow(R))),order.by=index(R))
+ colnames(R_periods) = paste0("period_",period_lengths)
+ Rb_periods = R_periods
+ for(i in 1:nrow(R_periods)){
+ for(p_len in period_lengths){
+ #if there aren't enough occurences yet don't calculate anything
+ if(p_len>i){}else{
+ tdf = first(R,i)
+ tdf_b = first(Rb,i)
+ eval(parse(text=paste0("R_periods[",i,",]$period_",p_len," = Return.cumulative(last(tdf,",p_len,"))")))
+ eval(parse(text=paste0("Rb_periods[",i,",]$period_",p_len," = Return.cumulative(last(tdf_b,",p_len,"))")))
+ }}}
+
+
+ ##Calculate periods ahead
+ #Differences
+ diff_mat = R_periods-Rb_periods
+
+ ##Result
+ result = data.frame(period_lengths)
+ result[,2] = NA
+ result[,3]=NA
+ for(p_len in 1:length(period_lengths)){
+ result[p_len,2] = eval(parse(text=paste0("sum(ifelse(as.numeric(diff_mat$period_",period_lengths[p_len],")>0,1,0),na.rm=T)")))
+ result[p_len,3] = eval(parse(text=paste0("sum(ifelse(as.numeric(diff_mat$period_",period_lengths[p_len],")<0,1,0),na.rm=T)")))
+ }
+ result[,4] = result[,2]+result[,3]
+ result[,5] = result[,2]/result[,4]
+ result[,6] = result[,3]/result[,4]
+
+ colnames(result) = c("period_lengths",colnames(R),colnames(Rb),"total periods",paste0("prob_",colnames(R),"_outperformance"),paste0("prob_",colnames(Rb),"_outperformance"))
+ return(result)
+
}
\ No newline at end of file
More information about the Returnanalytics-commits
mailing list