[Returnanalytics-commits] r3063 - in pkg/FactorAnalytics: R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Sep 11 21:36:06 CEST 2013


Author: chenyian
Date: 2013-09-11 21:36:06 +0200 (Wed, 11 Sep 2013)
New Revision: 3063

Modified:
   pkg/FactorAnalytics/R/factorModelCovariance.r
   pkg/FactorAnalytics/R/factorModelEsDecomposition.R
   pkg/FactorAnalytics/R/factorModelMonteCarlo.R
   pkg/FactorAnalytics/R/factorModelPerformanceAttribution.r
   pkg/FactorAnalytics/R/factorModelSdDecomposition.R
   pkg/FactorAnalytics/man/factorModelCovariance.Rd
   pkg/FactorAnalytics/man/factorModelEsDecomposition.Rd
   pkg/FactorAnalytics/man/factorModelMonteCarlo.Rd
   pkg/FactorAnalytics/man/factorModelPerformanceAttribution.Rd
   pkg/FactorAnalytics/man/factorModelSdDecomposition.Rd
Log:
modifying several Rd files to improve documentary. 

Modified: pkg/FactorAnalytics/R/factorModelCovariance.r
===================================================================
--- pkg/FactorAnalytics/R/factorModelCovariance.r	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/R/factorModelCovariance.r	2013-09-11 19:36:06 UTC (rev 3063)
@@ -1,10 +1,11 @@
 #' Compute Factor Model Covariance Matrix.
 #' 
-#' Compute asset return covariance matrix from factor model parameters.
+#' Compute asset return covariance matrix from factor model.
 #' 
-#' The return on asset \code{i} (\code{i = 1,...,N}) is assumed to follow the
-#' factor model \cr \code{R(i,t) = alpha + t(beta)*F(t) + e(i,t), e(i,t) ~ iid
-#' (0, sig(i)^2)} \cr where \code{beta} is a \code{K x 1} vector of factor
+#' The return on asset \code{i} is assumed to follow the
+#' factor model 
+#' \cr \code{R(i,t) = alpha + t(beta)*F(t) + e(i,t), e(i,t) ~ iid(0, sig(i)^2)} \cr
+#' where \code{beta} is a \code{K x 1} vector of factor
 #' exposures. The return variance is then \cr \code{var(R(i,t) =
 #' t(beta)*var(F(t))*beta + sig(i)^2}, \cr and the \code{N x N} covariance
 #' matrix of the return vector \code{R} is \cr \code{var(R) = B*var(F(t))*t(B)

Modified: pkg/FactorAnalytics/R/factorModelEsDecomposition.R
===================================================================
--- pkg/FactorAnalytics/R/factorModelEsDecomposition.R	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/R/factorModelEsDecomposition.R	2013-09-11 19:36:06 UTC (rev 3063)
@@ -1,4 +1,4 @@
-#' Compute Factor Model Factor ES Decomposition
+#' Compute Factor Model ES Decomposition
 #' 
 #' Compute the factor model factor expected shortfall (ES) decomposition for an
 #' asset based on Euler's theorem given historic or simulated data and factor
@@ -30,11 +30,11 @@
 #' \item{VaR} {Scalar, nonparametric VaR value for fund reported as a
 #' positive number.}
 #' \item{n.exceed} Scalar, number of observations beyond VaR.
-#' \item{idx.exceed} \code{n.exceed x 1} vector giving index values of exceedences.
+#' \item{idx.exceed} n.exceed x 1 vector giving index values of exceedences.
 #' \item{ES.fm}  Scalar. nonparametric ES value for fund reported as a positive number.
-#' \item{mES.fm} \code{(K+1) x 1} vector of factor marginal contributions to ES.
-#' \item{cES.fm} \code{(K+1) x 1} vector of factor component contributions to ES.
-#' \item{pcES.fm} \code{(K+1) x 1} vector of factor percentage component contributions to ES.
+#' \item{mES.fm} (K+1) x 1 vector of factor marginal contributions to ES.
+#' \item{cES.fm} (K+1) x 1 vector of factor component contributions to ES.
+#' \item{pcES.fm} (K+1) x 1 vector of factor percentage component contributions to ES.
 #' }
 #' @author Eric Zviot and Yi-An Chen.
 #' @references 1. Hallerback (2003), "Decomposing Portfolio Value-at-Risk: A

Modified: pkg/FactorAnalytics/R/factorModelMonteCarlo.R
===================================================================
--- pkg/FactorAnalytics/R/factorModelMonteCarlo.R	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/R/factorModelMonteCarlo.R	2013-09-11 19:36:06 UTC (rev 3063)
@@ -2,7 +2,7 @@
 #' 
 #' Simulate returns using factor model Monte Carlo method. Parametric method
 #' like normal distribution, Cornish-Fisher and skew-t distribution for
-#' residuals can be selected. Resampling method like non-parametric bootstrap
+#' residuals can be selected. Resampling method such as non-parametric bootstrap
 #' or stationary bootstrap can be selected.
 #' 
 #' The factor model Monte Carlo method is described in Jiang (2009).
@@ -37,11 +37,11 @@
 #' residuals in output list object.
 #' @return A list with the following components:
 #' \itemize{
-#' \item returns \code{n.boot x n.funds} matrix of simulated fund
+#' \item{returns} \code{n.boot x n.funds} matrix of simulated fund
 #' returns.
-#' \item factors \code{n.boot x n.factors} matrix of resampled factor
+#' \item{factors} \code{n.boot x n.factors} matrix of resampled factor
 #' returns. Returned only if \code{return.factors = TRUE}.
-#' \item residuals \code{n.boot x n.funds} matrix of simulated fund
+#' \item{residuals} \code{n.boot x n.funds} matrix of simulated fund
 #' residuals. Returned only if \code{return.residuals = TRUE}.
 #' }
 #' @author Eric Zivot and Yi-An Chen.

Modified: pkg/FactorAnalytics/R/factorModelPerformanceAttribution.r
===================================================================
--- pkg/FactorAnalytics/R/factorModelPerformanceAttribution.r	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/R/factorModelPerformanceAttribution.r	2013-09-11 19:36:06 UTC (rev 3063)
@@ -1,14 +1,13 @@
 #' Compute performance attribution
 #' 
-#' Decompose total returns or active returns into returns attributed to factors
-#' and specific returns. Class of FM.attribution is generated and generic
-#' function \code{plot()} and \code{summary()},\code{print()} can be used.
+#' Decompose total returns into returns attributed to factors and specific returns. 
+#' Class of FM.attribution is generated and generic function \code{plot()} and \code{summary()},\code{print()} can be applied.
 #' 
-#' total returns can be decomposed into returns attributed to factors and
-#' specific returns. \eqn{R_t = \sum_j b_{j} * f_{jt} +
-#' u_t},t=1..T,\eqn{b_{j}} is exposure to factor j and \eqn{f_{jt}} is factor
-#' j. The returns attributed to factor j is \eqn{b_{j} * f_{jt}} and specific 
-#' returns is \eqn{u_t}. 
+#' Total returns can be decomposed into returns attributed to factors and
+#' specific returns. \cr \eqn{R_t = \sum  b_j * f_jt + u_t,t=1...T} \cr
+#' \code{b_j} is exposure to factor j and \code{f_jt} is factor j. 
+#' The returns attributed to factor j is \code{b_j * f_jt} and specific 
+#' returns is \code{u_t}. 
 #' 
 #' @param fit Class of "TimeSeriesFactorModel", "FundamentalFactorModel" or
 #' "statFactorModel".

Modified: pkg/FactorAnalytics/R/factorModelSdDecomposition.R
===================================================================
--- pkg/FactorAnalytics/R/factorModelSdDecomposition.R	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/R/factorModelSdDecomposition.R	2013-09-11 19:36:06 UTC (rev 3063)
@@ -1,6 +1,7 @@
-#' Compute factor model factor risk (sd) decomposition for individual fund.
+#' Compute factor model standard deviation decomposition
 #' 
-#' Compute factor model factor risk (sd) decomposition for individual fund.
+#' Compute the factor model factor standard deviation decomposition for an
+#' asset based on Euler's theorem given factor model parameters. 
 #' 
 #' 
 #' @param beta.vec k x 1 vector of factor betas with factor names in the

Modified: pkg/FactorAnalytics/man/factorModelCovariance.Rd
===================================================================
--- pkg/FactorAnalytics/man/factorModelCovariance.Rd	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/man/factorModelCovariance.Rd	2013-09-11 19:36:06 UTC (rev 3063)
@@ -20,21 +20,20 @@
   model parameters.
 }
 \description{
-  Compute asset return covariance matrix from factor model
-  parameters.
+  Compute asset return covariance matrix from factor model.
 }
 \details{
-  The return on asset \code{i} (\code{i = 1,...,N}) is
-  assumed to follow the factor model \cr \code{R(i,t) =
-  alpha + t(beta)*F(t) + e(i,t), e(i,t) ~ iid (0,
-  sig(i)^2)} \cr where \code{beta} is a \code{K x 1} vector
-  of factor exposures. The return variance is then \cr
-  \code{var(R(i,t) = t(beta)*var(F(t))*beta + sig(i)^2},
-  \cr and the \code{N x N} covariance matrix of the return
-  vector \code{R} is \cr \code{var(R) = B*var(F(t))*t(B) +
-  D} \cr where B is the \code{N x K} matrix of asset betas
-  and \code{D} is a diagonal matrix with \code{sig(i)^2}
-  values along the diagonal.
+  The return on asset \code{i} is assumed to follow the
+  factor model \cr \code{R(i,t) = alpha + t(beta)*F(t) +
+  e(i,t), e(i,t) ~ iid(0, sig(i)^2)} \cr where \code{beta}
+  is a \code{K x 1} vector of factor exposures. The return
+  variance is then \cr \code{var(R(i,t) =
+  t(beta)*var(F(t))*beta + sig(i)^2}, \cr and the \code{N x
+  N} covariance matrix of the return vector \code{R} is \cr
+  \code{var(R) = B*var(F(t))*t(B) + D} \cr where B is the
+  \code{N x K} matrix of asset betas and \code{D} is a
+  diagonal matrix with \code{sig(i)^2} values along the
+  diagonal.
 }
 \examples{
 \dontrun{

Modified: pkg/FactorAnalytics/man/factorModelEsDecomposition.Rd
===================================================================
--- pkg/FactorAnalytics/man/factorModelEsDecomposition.Rd	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/man/factorModelEsDecomposition.Rd	2013-09-11 19:36:06 UTC (rev 3063)
@@ -1,6 +1,6 @@
 \name{factorModelEsDecomposition}
 \alias{factorModelEsDecomposition}
-\title{Compute Factor Model Factor ES Decomposition}
+\title{Compute Factor Model ES Decomposition}
 \usage{
   factorModelEsDecomposition(Data, beta.vec, sig2.e,
     tail.prob = 0.05,
@@ -33,14 +33,13 @@
   \item{VaR} {Scalar, nonparametric VaR value for fund
   reported as a positive number.} \item{n.exceed} Scalar,
   number of observations beyond VaR. \item{idx.exceed}
-  \code{n.exceed x 1} vector giving index values of
-  exceedences. \item{ES.fm} Scalar. nonparametric ES value
-  for fund reported as a positive number. \item{mES.fm}
-  \code{(K+1) x 1} vector of factor marginal contributions
-  to ES. \item{cES.fm} \code{(K+1) x 1} vector of factor
-  component contributions to ES. \item{pcES.fm} \code{(K+1)
-  x 1} vector of factor percentage component contributions
-  to ES. }
+  n.exceed x 1 vector giving index values of exceedences.
+  \item{ES.fm} Scalar. nonparametric ES value for fund
+  reported as a positive number. \item{mES.fm} (K+1) x 1
+  vector of factor marginal contributions to ES.
+  \item{cES.fm} (K+1) x 1 vector of factor component
+  contributions to ES. \item{pcES.fm} (K+1) x 1 vector of
+  factor percentage component contributions to ES. }
 }
 \description{
   Compute the factor model factor expected shortfall (ES)

Modified: pkg/FactorAnalytics/man/factorModelMonteCarlo.Rd
===================================================================
--- pkg/FactorAnalytics/man/factorModelMonteCarlo.Rd	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/man/factorModelMonteCarlo.Rd	2013-09-11 19:36:06 UTC (rev 3063)
@@ -56,11 +56,11 @@
   return simulated residuals in output list object.}
 }
 \value{
-  A list with the following components: \itemize{ \item
-  returns \code{n.boot x n.funds} matrix of simulated fund
-  returns. \item factors \code{n.boot x n.factors} matrix
-  of resampled factor returns. Returned only if
-  \code{return.factors = TRUE}. \item residuals
+  A list with the following components: \itemize{
+  \item{returns} \code{n.boot x n.funds} matrix of
+  simulated fund returns. \item{factors} \code{n.boot x
+  n.factors} matrix of resampled factor returns. Returned
+  only if \code{return.factors = TRUE}. \item{residuals}
   \code{n.boot x n.funds} matrix of simulated fund
   residuals. Returned only if \code{return.residuals =
   TRUE}. }
@@ -69,7 +69,7 @@
   Simulate returns using factor model Monte Carlo method.
   Parametric method like normal distribution,
   Cornish-Fisher and skew-t distribution for residuals can
-  be selected. Resampling method like non-parametric
+  be selected. Resampling method such as non-parametric
   bootstrap or stationary bootstrap can be selected.
 }
 \details{

Modified: pkg/FactorAnalytics/man/factorModelPerformanceAttribution.Rd
===================================================================
--- pkg/FactorAnalytics/man/factorModelPerformanceAttribution.Rd	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/man/factorModelPerformanceAttribution.Rd	2013-09-11 19:36:06 UTC (rev 3063)
@@ -19,19 +19,18 @@
   attributed returns for every portfolio. }
 }
 \description{
-  Decompose total returns or active returns into returns
-  attributed to factors and specific returns. Class of
-  FM.attribution is generated and generic function
-  \code{plot()} and \code{summary()},\code{print()} can be
-  used.
+  Decompose total returns into returns attributed to
+  factors and specific returns. Class of FM.attribution is
+  generated and generic function \code{plot()} and
+  \code{summary()},\code{print()} can be applied.
 }
 \details{
-  total returns can be decomposed into returns attributed
-  to factors and specific returns. \eqn{R_t = \sum_j b_{j}
-  * f_{jt} + u_t},t=1..T,\eqn{b_{j}} is exposure to factor
-  j and \eqn{f_{jt}} is factor j. The returns attributed to
-  factor j is \eqn{b_{j} * f_{jt}} and specific returns is
-  \eqn{u_t}.
+  Total returns can be decomposed into returns attributed
+  to factors and specific returns. \cr \eqn{R_t = \sum b_j
+  * f_jt + u_t,t=1...T} \cr \code{b_j} is exposure to
+  factor j and \code{f_jt} is factor j. The returns
+  attributed to factor j is \code{b_j * f_jt} and specific
+  returns is \code{u_t}.
 }
 \examples{
 \dontrun{

Modified: pkg/FactorAnalytics/man/factorModelSdDecomposition.Rd
===================================================================
--- pkg/FactorAnalytics/man/factorModelSdDecomposition.Rd	2013-09-11 19:30:24 UTC (rev 3062)
+++ pkg/FactorAnalytics/man/factorModelSdDecomposition.Rd	2013-09-11 19:36:06 UTC (rev 3063)
@@ -1,6 +1,6 @@
 \name{factorModelSdDecomposition}
 \alias{factorModelSdDecomposition}
-\title{Compute factor model factor risk (sd) decomposition for individual fund.}
+\title{Compute factor model standard deviation decomposition}
 \usage{
   factorModelSdDecomposition(beta.vec, factor.cov, sig2.e)
 }
@@ -24,8 +24,9 @@
   }
 }
 \description{
-  Compute factor model factor risk (sd) decomposition for
-  individual fund.
+  Compute the factor model factor standard deviation
+  decomposition for an asset based on Euler's theorem given
+  factor model parameters.
 }
 \examples{
 # load data from the database



More information about the Returnanalytics-commits mailing list