[Returnanalytics-commits] r3007 - in pkg/Meucci: R demo man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Sep 6 09:15:20 CEST 2013


Author: xavierv
Date: 2013-09-06 09:15:20 +0200 (Fri, 06 Sep 2013)
New Revision: 3007

Added:
   pkg/Meucci/demo/00Index
Modified:
   pkg/Meucci/R/FitMultivariateGarch.R
   pkg/Meucci/R/InterExtrapolate.R
   pkg/Meucci/R/PerformIidAnalysis.R
   pkg/Meucci/R/PlotVolVsCompositionEfficientFrontier.R
   pkg/Meucci/man/InterExtrapolate.Rd
   pkg/Meucci/man/PerformIidAnalysis.Rd
   pkg/Meucci/man/PlotVolVsCompositionEfficientFrontier.Rd
   pkg/Meucci/man/garch1f4.Rd
   pkg/Meucci/man/garch2f8.Rd
Log:
 -Function documentation errors fixed

Modified: pkg/Meucci/R/FitMultivariateGarch.R
===================================================================
--- pkg/Meucci/R/FitMultivariateGarch.R	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/R/FitMultivariateGarch.R	2013-09-06 07:15:20 UTC (rev 3007)
@@ -113,6 +113,8 @@
 #' Fit a GARCH(1,1) model with student-t errors
 #'
 #'  @param    x     : [vector] (T x 1) data generated by a GARCH(1,1) process
+#'  @param    eps   : [scalar] used in enforcing a_ii + b_ii <= 1 - eps; the default value is zero
+#'  @param    df    : [scalar] degree of freedom for the t-distribution; the default value is 500 to make it, basically, normal
 #'  
 #'  @return   q     : [vector] (4 x 1) parameters of the GARCH(1,1) process
 #'  @return   qerr  : [vector] (4 x 1) standard error of parameter estimates
@@ -364,7 +366,18 @@
 
 #' Off-diagonal parameter estimation in bivariate GARCH(1,1) when diagonal parameters are given.
 #'
-#'  @param    x     : [vector] (T x 1) data generated by a GARCH(1,1) process
+#'  @param    y     : [vector] (T x 1) data generated by a GARCH(1,1) process
+#'  @param    c1    : [scalar] diagonal parameter of the GARCH(1,1) process taken from matrix C
+#'  @param    a1    : [scalar] diagonal parameter of the GARCH(1,1) process taken from matrix A
+#'  @param    b1    : [scalar] diagonal parameter of the GARCH(1,1) process taken from matrix B
+#'  @param    y1    : [vector] (T x 1) data generated by a GARCH(1,1) process
+#'  @param    h1    : [vector] (T x 1) data generated by a GARCH(1,1) process
+#'  @param    c2    : [scalar] diagonal parameter of the GARCH(1,1) process taken from matrix C
+#'  @param    a2    : [scalar] diagonal parameter of the GARCH(1,1) process taken from matrix A
+#'  @param    b2    : [scalar] diagonal parameter of the GARCH(1,1) process taken from matrix B
+#'  @param    y2    : [vector] (T x 1) data generated by a GARCH(1,1) process
+#'  @param    h2    : [vector] (T x 1) generated by a GARCH(1,1) process
+#'  @param    df    : [scalar] degree of freedom for the t-distribution; the default value is 500 to make it, basically, normal
 #'  
 #'  @return   q     : [vector] (4 x 1) parameters of the GARCH(1,1) process
 #'  @return   qerr  : [vector] (4 x 1) standard error of parameter estimates

Modified: pkg/Meucci/R/InterExtrapolate.R
===================================================================
--- pkg/Meucci/R/InterExtrapolate.R	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/R/InterExtrapolate.R	2013-09-06 07:15:20 UTC (rev 3007)
@@ -21,16 +21,6 @@
 #'  Vpred = interpne(V,Xi,nodelist,method)
 #'  Extrapolating long distances outside the support of V is rarely advisable.
 #'
-#'  @examples
-#'
-#'  [x1,x2] = meshgrid(0:.2:1);
-#'  z = exp(x1+x2);
-#'  Xi = rand(100,2)*2-.5;
-#'  Zi = interpne(z,Xi,{0:.2:1, 0:.2:1},'linear');
-#'  surf(0:.2:1,0:.2:1,z)
-#'  hold on
-#'  plot3(Xi(:,1),Xi(:,2),Zi,'ro')
-#'
 #' @references
 #' \url{http://symmys.com/node/170}
 #' See Meucci's script for "InterExtrapolate.R"
@@ -38,7 +28,18 @@
 #' @author Xavier Valls \email{flamejat@@gmail.com}
 #' @export
 
-InterExtrapolate = function( V, Xi, nodelist, method, ...)
+#  examples
+#
+#  [x1,x2] = meshgrid(0:.2:1);
+#  z = exp(x1+x2);
+#  Xi = rand(100,2)*2-.5;
+#  Zi = interpne(z,Xi,{0:.2:1, 0:.2:1},'linear');
+#  surf(0:.2:1,0:.2:1,z)
+#  hold on
+#  plot3(Xi(:,1),Xi(:,2),Zi,'ro')
+#
+
+InterExtrapolate = function( V, Xi, nodelist, method )
 {
     # get some sizes
 

Modified: pkg/Meucci/R/PerformIidAnalysis.R
===================================================================
--- pkg/Meucci/R/PerformIidAnalysis.R	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/R/PerformIidAnalysis.R	2013-09-06 07:15:20 UTC (rev 3007)
@@ -3,7 +3,7 @@
 #'
 #'  @param	Dates : [vector] (T x 1) dates
 #'	@param	Data  : [matrix] (T x N) data
-#'  @param	Starting_Prices : [vector] (N x 1) 
+#'  @param	Str   : [string]  title for the plot 
 #'  
 #'  @note it checks the evolution over time
 #   it checks that the variables are identically distributed by looking at the histogram of two subsamples

Modified: pkg/Meucci/R/PlotVolVsCompositionEfficientFrontier.R
===================================================================
--- pkg/Meucci/R/PlotVolVsCompositionEfficientFrontier.R	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/R/PlotVolVsCompositionEfficientFrontier.R	2013-09-06 07:15:20 UTC (rev 3007)
@@ -1,8 +1,8 @@
 #' Plot the efficient frontier in the plane of portfolio weights versus standard deviation,
 #' as described in  A. Meucci, "Risk and Asset Allocation", Springer, 2005.
 #'  
-#'	@param   Portfolios: [matrix] (M x N) of portfolios weights
-#'	@param   vol       : [vector] (M x 1) of volatilities
+#'	@param   Portfolios : [matrix] (M x N) of portfolios weights
+#'	@param   vol        : [vector] (M x 1) of volatilities
 #'
 #' @references
 #' \url{http://symmys.com/node/170}

Added: pkg/Meucci/demo/00Index
===================================================================
--- pkg/Meucci/demo/00Index	                        (rev 0)
+++ pkg/Meucci/demo/00Index	2013-09-06 07:15:20 UTC (rev 3007)
@@ -0,0 +1,20 @@
+AnalyticalvsNumerical       This example script compares the numerical and the analytical solution of entropy-pooling
+ButterflyTrading            This example script performs the butterfly-trading case study for the Entropy-Pooling approach by Attilio Meucci
+DetectOutliersviaMVE        This example script detects outliers in two-asset and multi-asset case
+FullyFlexibleBayesNets       This case study uses Entropy Pooling to compute Fully Flexible Bayesian networks for risk management
+HermiteGrid_CaseStudy       This script estimates the prior of a hedge fund return and processes extreme views on CVaR according to Entropy Pooling
+HermiteGrid_CVaR_Recursion  This script illustrates the discrete Newton recursion  to process views on CVaR according to Entropy Pooling
+HermiteGrid_demo            This script compares the performance of plain Monte Carlo versus grid in applying Entropy Pooling to process extreme views
+InvariantProjection         This script projects summary statistics to arbitrary horizons under i.i.d. assumption
+logToArithmeticCovariance   This example script generates arithmetric returns and arithmetric covariance matrix given a distribution of log returns
+Prior2Posterior             This example script compares the numerical and the analytical solution of entropy-pooling
+RankingInformation          This script performs ranking allocation using the Entropy-Pooling approach by Attilio Meucci
+RobustBayesianAllocation    This script replicates the example from Meucci's MATLAB script S_SimulationsCaseStudy.M
+S_plotGaussHermite          This example script displays mesh points based on Gaussian-Hermite quadrature
+S_SnPCaseStudy              This script replicates the example from Meucci's MATLAB script S_SnPCaseStudy.M
+S_ToyExample                This toy example illustrates the use of Entropy Pooling to compute Fully Flexible Bayesian networks
+S_FitProjectRates           This script fits the swap rates dynamics to a multivariate Ornstein-Uhlenbeck process and computes and plots the estimated future distribution
+S_CheckDiagonalization      This script verifies the correctness of the eigenvalue-eigenvector representation in terms of real matrices for the transition matrix of an OU process
+S_CovarianceEvolution       This script represents the evolution of the covariance of an OU process in terms of the dispersion ellipsoid
+S_DeterministicEvolution    This script animates the evolution of the determinstic component of an OU process
+MeanDiversificationFrontier This script computes the mean-diversification efficient frontier
\ No newline at end of file

Modified: pkg/Meucci/man/InterExtrapolate.Rd
===================================================================
--- pkg/Meucci/man/InterExtrapolate.Rd	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/man/InterExtrapolate.Rd	2013-09-06 07:15:20 UTC (rev 3007)
@@ -2,7 +2,7 @@
 \alias{InterExtrapolate}
 \title{Interpolate and extrapolate using n-linear interpolation (tensor product linear).}
 \usage{
-  InterExtrapolate(V, Xi, nodelist, method, ...)
+  InterExtrapolate(V, Xi, nodelist, method)
 }
 \arguments{
   \item{V}{: [array] p-dimensional array to be
@@ -34,15 +34,6 @@
   interpne(V,Xi,nodelist,method) Extrapolating long
   distances outside the support of V is rarely advisable.
 }
-\examples{
-[x1,x2] = meshgrid(0:.2:1);
- z = exp(x1+x2);
- Xi = rand(100,2)*2-.5;
- Zi = interpne(z,Xi,{0:.2:1, 0:.2:1},'linear');
- surf(0:.2:1,0:.2:1,z)
- hold on
- plot3(Xi(:,1),Xi(:,2),Zi,'ro')
-}
 \author{
   Xavier Valls \email{flamejat at gmail.com}
 }

Modified: pkg/Meucci/man/PerformIidAnalysis.Rd
===================================================================
--- pkg/Meucci/man/PerformIidAnalysis.Rd	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/man/PerformIidAnalysis.Rd	2013-09-06 07:15:20 UTC (rev 3007)
@@ -3,14 +3,14 @@
 \title{This function performs simple invariance (i.i.d.) tests on a time series, as described in
 A. Meucci "Risk and Asset Allocation", Springer, 2005}
 \usage{
-  PerformIidAnalysis(Dates = dim(Data, 1), Data, Str = "")
+  PerformIidAnalysis(Dates = dim(Data)[1], Data, Str = "")
 }
 \arguments{
   \item{Dates}{: [vector] (T x 1) dates}
 
   \item{Data}{: [matrix] (T x N) data}
 
-  \item{Starting_Prices}{: [vector] (N x 1)}
+  \item{Str}{: [string] title for the plot}
 }
 \description{
   This function performs simple invariance (i.i.d.) tests

Modified: pkg/Meucci/man/PlotVolVsCompositionEfficientFrontier.Rd
===================================================================
--- pkg/Meucci/man/PlotVolVsCompositionEfficientFrontier.Rd	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/man/PlotVolVsCompositionEfficientFrontier.Rd	2013-09-06 07:15:20 UTC (rev 3007)
@@ -6,7 +6,7 @@
   PlotVolVsCompositionEfficientFrontier(Portfolios, vol)
 }
 \arguments{
-  \item{Portfolios:}{[matrix] (M x N) of portfolios
+  \item{Portfolios}{: [matrix] (M x N) of portfolios
   weights}
 
   \item{vol}{: [vector] (M x 1) of volatilities}

Modified: pkg/Meucci/man/garch1f4.Rd
===================================================================
--- pkg/Meucci/man/garch1f4.Rd	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/man/garch1f4.Rd	2013-09-06 07:15:20 UTC (rev 3007)
@@ -7,6 +7,13 @@
 \arguments{
   \item{x}{: [vector] (T x 1) data generated by a
   GARCH(1,1) process}
+
+  \item{eps}{: [scalar] used in enforcing a_ii + b_ii <= 1
+  - eps; the default value is zero}
+
+  \item{df}{: [scalar] degree of freedom for the
+  t-distribution; the default value is 500 to make it,
+  basically, normal}
 }
 \value{
   q : [vector] (4 x 1) parameters of the GARCH(1,1) process

Modified: pkg/Meucci/man/garch2f8.Rd
===================================================================
--- pkg/Meucci/man/garch2f8.Rd	2013-09-06 00:00:33 UTC (rev 3006)
+++ pkg/Meucci/man/garch2f8.Rd	2013-09-06 07:15:20 UTC (rev 3007)
@@ -5,8 +5,42 @@
   garch2f8(y, c1, a1, b1, y1, h1, c2, a2, b2, y2, h2, df)
 }
 \arguments{
-  \item{x}{: [vector] (T x 1) data generated by a
+  \item{y}{: [vector] (T x 1) data generated by a
   GARCH(1,1) process}
+
+  \item{c1}{: [scalar] diagonal parameter of the GARCH(1,1)
+  process taken from matrix C}
+
+  \item{a1}{: [scalar] diagonal parameter of the GARCH(1,1)
+  process taken from matrix A}
+
+  \item{b1}{: [scalar] diagonal parameter of the GARCH(1,1)
+  process taken from matrix B}
+
+  \item{y1}{: [vector] (T x 1) data generated by a
+  GARCH(1,1) process}
+
+  \item{h1}{: [vector] (T x 1) data generated by a
+  GARCH(1,1) process}
+
+  \item{c2}{: [scalar] diagonal parameter of the GARCH(1,1)
+  process taken from matrix C}
+
+  \item{a2}{: [scalar] diagonal parameter of the GARCH(1,1)
+  process taken from matrix A}
+
+  \item{b2}{: [scalar] diagonal parameter of the GARCH(1,1)
+  process taken from matrix B}
+
+  \item{y2}{: [vector] (T x 1) data generated by a
+  GARCH(1,1) process}
+
+  \item{h2}{: [vector] (T x 1) generated by a GARCH(1,1)
+  process}
+
+  \item{df}{: [scalar] degree of freedom for the
+  t-distribution; the default value is 500 to make it,
+  basically, normal}
 }
 \value{
   q : [vector] (4 x 1) parameters of the GARCH(1,1) process



More information about the Returnanalytics-commits mailing list