[Returnanalytics-commits] r3004 - in pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Sep 5 23:29:27 CEST 2013


Author: shubhanm
Date: 2013-09-05 23:29:26 +0200 (Thu, 05 Sep 2013)
New Revision: 3004

Added:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/inst/
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/man/
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/table.Sharpe.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/inst/
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/table.Sharpe.Rd
Modified:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/NAMESPACE
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/LoSharpe.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/se.LoSharpe.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/LoSharpe.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/se.LoSharpe.Rd
Log:
Lo Sharpe final documentation + additon of table summary of all Sharpe Ratio functions



Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION	2013-09-05 19:33:22 UTC (rev 3003)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION	2013-09-05 21:29:26 UTC (rev 3004)
@@ -1,38 +1,39 @@
-Package: noniid.sm
-Type: Package
-Title: Non-i.i.d. GSoC 2013 Shubhankit
-Version: 0.1
-Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
-Author: Shubhankit Mohan <shubhankit1 at gmail.com>
-Contributors: Peter Carl, Brian G. Peterson
-Depends:
-    xts,
-    PerformanceAnalytics,
-    tseries,
-    stats
-Maintainer: Brian G. Peterson <brian at braverock.com>
-Description: GSoC 2013 project to replicate literature on drawdowns and
-    non-i.i.d assumptions in finance.
-License: GPL-3
-ByteCompile: TRUE
-Collate:
-    'AcarSim.R'
-    'ACStdDev.annualized.R'
-    'CalmarRatio.Norm.R'
-    'CDrawdown.R'
-    'chart.AcarSim.R'
-    'chart.Autocorrelation.R'
-    'EmaxDDGBM.R'
-    'GLMSmoothIndex.R'
-    'LoSharpe.R'
-    'na.skip.R'
-    'noniid.sm-internal.R'
-    'QP.Norm.R'
-    'Return.GLM.R'
-    'Return.Okunev.R'
-    'se.LoSharpe.R'
-    'SterlingRatio.Norm.R'
-    'table.ComparitiveReturn.GLM.R'
-    'table.EMaxDDGBM.R'
-    'table.UnsmoothReturn.R'
-    'UnsmoothReturn.R'
+Package: noniid.sm
+Type: Package
+Title: Non-i.i.d. GSoC 2013 Shubhankit
+Version: 0.1
+Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
+Author: Shubhankit Mohan <shubhankit1 at gmail.com>
+Contributors: Peter Carl, Brian G. Peterson
+Depends:
+    xts,
+    PerformanceAnalytics,
+    tseries,
+    stats
+Maintainer: Brian G. Peterson <brian at braverock.com>
+Description: GSoC 2013 project to replicate literature on drawdowns and
+    non-i.i.d assumptions in finance.
+License: GPL-3
+ByteCompile: TRUE
+Collate:
+    'AcarSim.R'
+    'ACStdDev.annualized.R'
+    'CalmarRatio.Norm.R'
+    'CDrawdown.R'
+    'chart.AcarSim.R'
+    'chart.Autocorrelation.R'
+    'EmaxDDGBM.R'
+    'GLMSmoothIndex.R'
+    'LoSharpe.R'
+    'na.skip.R'
+    'noniid.sm-internal.R'
+    'QP.Norm.R'
+    'Return.GLM.R'
+    'Return.Okunev.R'
+    'se.LoSharpe.R'
+    'SterlingRatio.Norm.R'
+    'table.ComparitiveReturn.GLM.R'
+    'table.EMaxDDGBM.R'
+    'table.UnsmoothReturn.R'
+    'UnsmoothReturn.R'
+    'table.Sharpe.R'

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/NAMESPACE
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/NAMESPACE	2013-09-05 19:33:22 UTC (rev 3003)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/NAMESPACE	2013-09-05 21:29:26 UTC (rev 3004)
@@ -1,17 +1,18 @@
-export(AcarSim)
-export(ACStdDev.annualized)
-export(CalmarRatio.Norm)
-export(CDrawdown)
-export(chart.AcarSim)
-export(chart.Autocorrelation)
-export(EMaxDDGBM)
-export(GLMSmoothIndex)
-export(LoSharpe)
-export(QP.Norm)
-export(Return.GLM)
-export(Return.Okunev)
-export(se.LoSharpe)
-export(SterlingRatio.Norm)
-export(table.ComparitiveReturn.GLM)
-export(table.EMaxDDGBM)
-export(table.UnsmoothReturn)
+export(AcarSim)
+export(ACStdDev.annualized)
+export(CalmarRatio.Norm)
+export(CDrawdown)
+export(chart.AcarSim)
+export(chart.Autocorrelation)
+export(EMaxDDGBM)
+export(GLMSmoothIndex)
+export(LoSharpe)
+export(QP.Norm)
+export(Return.GLM)
+export(Return.Okunev)
+export(se.LoSharpe)
+export(SterlingRatio.Norm)
+export(table.ComparitiveReturn.GLM)
+export(table.EMaxDDGBM)
+export(table.Sharpe)
+export(table.UnsmoothReturn)

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/LoSharpe.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/LoSharpe.R	2013-09-05 19:33:22 UTC (rev 3003)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/LoSharpe.R	2013-09-05 21:29:26 UTC (rev 3004)
@@ -20,21 +20,27 @@
 #'\deqn{SR(q)  =  \eta(q) }
 #'Where :
 #' \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2 \sum(q-k)\rho(k)] }
-#' Where k belongs to 0 to q-1
+#' Where, k belongs to 0 to q-1
+#' SR(q) :  Estimated Lo Sharpe Ratio
+#' SR : Theoretical William Sharpe Ratio
 #' @param Ra an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' daily asset returns
 #' @param Rf an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' annualized Risk Free Rate
 #' @param q Number of autocorrelated lag periods. Taken as 3 (Default)
 #' @param \dots any other pass thru parameters
-#' @author Brian G. Peterson, Peter Carl, Shubhankit Mohan
-#' @references Getmansky, Mila, Lo, Andrew W. and Makarov, Igor,\emph{ An Econometric Model of Serial Correlation and Illiquidity in Hedge Fund Returns} (March 1, 2003). MIT Sloan Working Paper No. 4288-03; MIT Laboratory for Financial Engineering Working Paper No. LFE-1041A-03; EFMA 2003 Helsinki Meetings.
-#' \url{http://ssrn.com/abstract=384700}
+#' @author Shubhankit Mohan
+#' @references Andrew Lo,\emph{ The Statistics of Sharpe Ratio.}2002, AIMR.
+#'\code{\link[stats]{}} \cr
+#' \url{http://papers.ssrn.com/sol3/papers.cfm?abstract_id=377260}
+#' 
+#' Andrew Lo,\emph{Sharpe Ratio may be Overstated}
+#'  \url{http://www.risk.net/risk-magazine/feature/1506463/lo-sharpe-ratios-overstated}
 #' @keywords ts multivariate distribution models non-iid 
 #' @examples
 #' 
 #' data(edhec)
-#' head(LoSharpe(edhec,0,3))
+#' LoSharpe(edhec,0,3)
 #' @rdname LoSharpe
 #' @export
 LoSharpe <-
@@ -48,7 +54,7 @@
     columns.a = ncol(R)
     columnnames.a = colnames(R)
     # Time used for daily Return manipulations
-    Time= 252*nyears(R)
+    Time= 252*nyears(edhec)
     clean.lo <- function(column.R,q) {
       # compute the lagged return series
       gamma.k =matrix(0,q)
@@ -71,12 +77,13 @@
     }
     for(column.a in 1:columns.a) { # for each asset passed in as R
       # clean the data and get rid of NAs
-      mu = sum(R[,column.a])/(Time)
-      sig=sqrt(((R[,column.a]-mu)^2/(Time)))
-      pho.k = clean.lo(R[,column.a],q)/(as.numeric(sig[1]))
+      clean.ret=na.omit(R[,column.a])
+      mu = sum(clean.ret)/(Time)
+      sig=sqrt(((clean.ret-mu)^2/(Time)))
+      pho.k = clean.lo(clean.ret,q)/(as.numeric(sig[1]))
       netaq=neta.lo(pho.k,q)
-      column.lo = (netaq*((mu-Rf)/as.numeric(sig[1])))
-      
+      #column.lo = (netaq*((mu-Rf)/as.numeric(sig[1])))
+      column.lo = as.numeric(SharpeRatio.annualized(R[,column.a]))[1]*netaq
       if(column.a == 1)  { lo = column.lo }
       else { lo = cbind (lo, column.lo) }
       
@@ -85,7 +92,7 @@
     rownames(lo)= paste("Lo Sharpe Ratio")
     return(lo)
     
-    edhec=NULL
+    
     # RESULTS:
     
   }

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/se.LoSharpe.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/se.LoSharpe.R	2013-09-05 19:33:22 UTC (rev 3003)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/se.LoSharpe.R	2013-09-05 21:29:26 UTC (rev 3004)
@@ -21,15 +21,23 @@
 #'Where :
 #' \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2 \sum(q-k)\rho(k)] }
 #' Where k belongs to 0 to q-1
+#' Under the assumption of assumption of asymptotic variance of SR(q), the standard error for the Sharpe Ratio Esitmator can be computed as:
+#' \deqn{SE(SR(q)) = \sqrt((1+SR^2/2)/T)}
+#' SR(q) :  Estimated Lo Sharpe Ratio
+#' SR : Theoretical William Sharpe Ratio
 #' @param Ra an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' daily asset returns
 #' @param Rf an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' annualized Risk Free Rate
 #' @param q Number of autocorrelated lag periods. Taken as 3 (Default)
 #' @param \dots any other pass thru parameters
-#' @author Brian G. Peterson, Peter Carl, Shubhankit Mohan
-#' @references Getmansky, Mila, Lo, Andrew W. and Makarov, Igor,\emph{ An Econometric Model of Serial Correlation and Illiquidity in Hedge Fund Returns} (March 1, 2003). MIT Sloan Working Paper No. 4288-03; MIT Laboratory for Financial Engineering Working Paper No. LFE-1041A-03; EFMA 2003 Helsinki Meetings.
-#' \url{http://ssrn.com/abstract=384700}
+#' @author Shubhankit Mohan
+#' @references Andrew Lo,\emph{ The Statistics of Sharpe Ratio.}2002, AIMR.
+#'\code{\link[stats]{}} \cr
+#' \url{http://papers.ssrn.com/sol3/papers.cfm?abstract_id=377260}
+#' 
+#' Andrew Lo,\emph{Sharpe Ratio may be Overstated} 
+#' \url{http://www.risk.net/risk-magazine/feature/1506463/lo-sharpe-ratios-overstated}
 #' @keywords ts multivariate distribution models non-iid 
 #' @examples
 #' 
@@ -48,7 +56,7 @@
     columns.a = ncol(R)
     columnnames.a = colnames(R)
     # Time used for daily Return manipulations
-    Time= 252*nyears(R)
+    Time= 252*nyears(edhec)
     clean.lo <- function(column.R,q) {
       # compute the lagged return series
       gamma.k =matrix(0,q)

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/table.Sharpe.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/table.Sharpe.R	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/table.Sharpe.R	2013-09-05 21:29:26 UTC (rev 3004)
@@ -0,0 +1,98 @@
+#'@title Sharpe Ratio Statistics Summary 
+#'@description
+#' The Sharpe ratio is simply the return per unit of risk (represented by
+#' variability).  In the classic case, the unit of risk is the standard
+#' deviation of the returns.
+#' 
+#' \deqn{\frac{\overline{(R_{a}-R_{f})}}{\sqrt{\sigma_{(R_{a}-R_{f})}}}}
+#' 
+#' William Sharpe now recommends \code{\link{InformationRatio}} preferentially
+#' to the original Sharpe Ratio.
+#' 
+#' The higher the Sharpe ratio, the better the combined performance of "risk"
+#' and return.
+#' 
+#' As noted, the traditional Sharpe Ratio is a risk-adjusted measure of return
+#' that uses standard deviation to represent risk.
+
+#' Although the Sharpe ratio has become part of the canon of modern financial 
+#' analysis, its applications typically do not account for the fact that it is an
+#' estimated quantity, subject to estimation errors that can be substantial in 
+#' some cases.
+#' 
+#' Many studies have documented various violations of the assumption of 
+#' IID returns for financial securities.
+#' 
+#' Under the assumption of stationarity,a version of the Central Limit Theorem can 
+#' still be  applied to the estimator .
+#' @details
+#' The relationship between SR and SR(q) is somewhat more involved for non-
+#'IID returns because the variance of Rt(q) is not just the sum of the variances of component returns but also includes all the covariances. Specifically, under
+#' the assumption that returns \eqn{R_t}  are stationary,
+#' \deqn{ Var[(R_t)] =   \sum \sum Cov(R(t-i),R(t-j)) = q{\sigma^2} + 2{\sigma^2} \sum (q-k)\rho(k) }
+#' Where  \eqn{ \rho(k) = Cov(R(t),R(t-k))/Var[(R_t)]} is the \eqn{k^{th}} order autocorrelation coefficient of the series of returns.This yields the following relationship between SR and SR(q):
+#' and i,j belongs to 0 to q-1
+#'\deqn{SR(q)  =  \eta(q) }
+#'Where :
+#' \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2 \sum(q-k)\rho(k)] }
+#' Where, k belongs to 0 to q-1
+#' SR(q) :  Estimated Lo Sharpe Ratio
+#' SR : Theoretical William Sharpe Ratio
+#' @param Ra an xts, vector, matrix, data frame, timeSeries or zoo object of
+#' daily asset returns
+#' @param Rf an xts, vector, matrix, data frame, timeSeries or zoo object of
+#' annualized Risk Free Rate
+#' @param q Number of autocorrelated lag periods. Taken as 3 (Default)
+#' @param \dots any other pass thru parameters
+#' @author Shubhankit Mohan
+#' @references Andrew Lo,\emph{ The Statistics of Sharpe Ratio.}2002, AIMR.
+#'\code{\link[stats]{}} \cr
+#' \url{http://papers.ssrn.com/sol3/papers.cfm?abstract_id=377260}
+#' 
+#' Andrew Lo,\emph{Sharpe Ratio may be Overstated}
+#'  \url{http://www.risk.net/risk-magazine/feature/1506463/lo-sharpe-ratios-overstated}
+#' @keywords ts multivariate distribution models non-iid 
+#' @examples
+#' 
+#' data(edhec)
+#' table.Sharpe(edhec,0,3)
+#' @rdname table.Sharpe
+#' @export
+table.Sharpe <-
+  function (Ra,Rf = 0,q = 3, ...)
+  { y = checkData(Ra, method = "xts")
+    columns = ncol(y)
+    rows = nrow(y)
+    columnnames = colnames(y)
+    rownames = rownames(y)
+    
+    # for each column, do the following:
+    for(column in 1:columns) {
+      x = y[,column]
+      
+      z = c(SharpeRatio.annualized(x),
+            SharpeRatio.modified(x),
+            LoSharpe(x),
+            Return.annualized(x),StdDev.annualized(x),se.Losharpe(x))
+            
+      znames = c(
+        "William Sharpe Ratio",
+        "Modified Sharpe Ratio",
+        "Andrew Lo Sharpe Ratio",
+        "Annualized Return",
+        "Annualized Standard Deviation","Sharpe Ratio Standard Error(95%)"        
+      )
+      if(column == 1) {
+        resultingtable = data.frame(Value = z, row.names = znames)
+      }
+      else {
+        nextcolumn = data.frame(Value = z, row.names = znames)
+        resultingtable = cbind(resultingtable, nextcolumn)
+      }
+    }
+    colnames(resultingtable) = columnnames
+    ans = base::round(resultingtable, digits)
+    ans
+    
+    
+  }

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/LoSharpe.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/LoSharpe.Rd	2013-09-05 19:33:22 UTC (rev 3003)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/LoSharpe.Rd	2013-09-05 21:29:26 UTC (rev 3004)
@@ -1,70 +1,71 @@
-\name{LoSharpe}
-\alias{LoSharpe}
-\title{Andrew Lo Sharpe Ratio}
-\usage{
-  LoSharpe(Ra, Rf = 0, q = 3, ...)
-}
-\arguments{
-  \item{Ra}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of daily asset returns}
-
-  \item{Rf}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of annualized Risk Free Rate}
-
-  \item{q}{Number of autocorrelated lag periods. Taken as 3
-  (Default)}
-
-  \item{\dots}{any other pass thru parameters}
-}
-\description{
-  Although the Sharpe ratio has become part of the canon of
-  modern financial analysis, its applications typically do
-  not account for the fact that it is an estimated
-  quantity, subject to estimation errors that can be
-  substantial in some cases.
-
-  Many studies have documented various violations of the
-  assumption of IID returns for financial securities.
-
-  Under the assumption of stationarity,a version of the
-  Central Limit Theorem can still be applied to the
-  estimator .
-}
-\details{
-  The relationship between SR and SR(q) is somewhat more
-  involved for non- IID returns because the variance of
-  Rt(q) is not just the sum of the variances of component
-  returns but also includes all the covariances.
-  Specifically, under the assumption that returns \eqn{R_t}
-  are stationary, \deqn{ Var[(R_t)] = \sum \sum
-  Cov(R(t-i),R(t-j)) = q{\sigma^2} + 2{\sigma^2} \sum
-  (q-k)\rho(k) } Where \eqn{ \rho(k) =
-  Cov(R(t),R(t-k))/Var[(R_t)]} is the \eqn{k^{th}} order
-  autocorrelation coefficient of the series of returns.This
-  yields the following relationship between SR and SR(q):
-  and i,j belongs to 0 to q-1 \deqn{SR(q) = \eta(q) } Where
-  : \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2
-  \sum(q-k)\rho(k)] } Where k belongs to 0 to q-1
-}
-\examples{
-data(edhec)
-head(LoSharpe(edhec,0,3))
-}
-\author{
-  Brian G. Peterson, Peter Carl, Shubhankit Mohan
-}
-\references{
-  Getmansky, Mila, Lo, Andrew W. and Makarov, Igor,\emph{
-  An Econometric Model of Serial Correlation and
-  Illiquidity in Hedge Fund Returns} (March 1, 2003). MIT
-  Sloan Working Paper No. 4288-03; MIT Laboratory for
-  Financial Engineering Working Paper No. LFE-1041A-03;
-  EFMA 2003 Helsinki Meetings.
-  \url{http://ssrn.com/abstract=384700}
-}
-\keyword{distribution}
-\keyword{models}
-\keyword{multivariate}
-\keyword{non-iid}
-\keyword{ts}
-
+\name{LoSharpe}
+\alias{LoSharpe}
+\title{Andrew Lo Sharpe Ratio}
+\usage{
+  LoSharpe(Ra, Rf = 0, q = 3, ...)
+}
+\arguments{
+  \item{Ra}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of daily asset returns}
+
+  \item{Rf}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of annualized Risk Free Rate}
+
+  \item{q}{Number of autocorrelated lag periods. Taken as 3
+  (Default)}
+
+  \item{\dots}{any other pass thru parameters}
+}
+\description{
+  Although the Sharpe ratio has become part of the canon of
+  modern financial analysis, its applications typically do
+  not account for the fact that it is an estimated
+  quantity, subject to estimation errors that can be
+  substantial in some cases.
+
+  Many studies have documented various violations of the
+  assumption of IID returns for financial securities.
+
+  Under the assumption of stationarity,a version of the
+  Central Limit Theorem can still be applied to the
+  estimator .
+}
+\details{
+  The relationship between SR and SR(q) is somewhat more
+  involved for non- IID returns because the variance of
+  Rt(q) is not just the sum of the variances of component
+  returns but also includes all the covariances.
+  Specifically, under the assumption that returns \eqn{R_t}
+  are stationary, \deqn{ Var[(R_t)] = \sum \sum
+  Cov(R(t-i),R(t-j)) = q{\sigma^2} + 2{\sigma^2} \sum
+  (q-k)\rho(k) } Where \eqn{ \rho(k) =
+  Cov(R(t),R(t-k))/Var[(R_t)]} is the \eqn{k^{th}} order
+  autocorrelation coefficient of the series of returns.This
+  yields the following relationship between SR and SR(q):
+  and i,j belongs to 0 to q-1 \deqn{SR(q) = \eta(q) } Where
+  : \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2
+  \sum(q-k)\rho(k)] } Where, k belongs to 0 to q-1 SR(q) :
+  Estimated Lo Sharpe Ratio SR : Theoretical William Sharpe
+  Ratio
+}
+\examples{
+data(edhec)
+LoSharpe(edhec,0,3)
+}
+\author{
+  Shubhankit Mohan
+}
+\references{
+  Andrew Lo,\emph{ The Statistics of Sharpe Ratio.}2002,
+  AIMR. \code{\link[stats]{}} \cr
+  \url{http://papers.ssrn.com/sol3/papers.cfm?abstract_id=377260}
+
+  Andrew Lo,\emph{Sharpe Ratio may be Overstated}
+  \url{http://www.risk.net/risk-magazine/feature/1506463/lo-sharpe-ratios-overstated}
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{non-iid}
+\keyword{ts}
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/se.LoSharpe.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/se.LoSharpe.Rd	2013-09-05 19:33:22 UTC (rev 3003)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/se.LoSharpe.Rd	2013-09-05 21:29:26 UTC (rev 3004)
@@ -44,23 +44,27 @@
   yields the following relationship between SR and SR(q):
   and i,j belongs to 0 to q-1 \deqn{SR(q) = \eta(q) } Where
   : \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2
-  \sum(q-k)\rho(k)] } Where k belongs to 0 to q-1
+  \sum(q-k)\rho(k)] } Where k belongs to 0 to q-1 Under the
+  assumption of assumption of asymptotic variance of SR(q),
+  the standard error for the Sharpe Ratio Esitmator can be
+  computed as: \deqn{SE(SR(q)) = \sqrt((1+SR^2/2)/T)} SR(q)
+  : Estimated Lo Sharpe Ratio SR : Theoretical William
+  Sharpe Ratio
 }
 \examples{
 data(edhec)
 se.LoSharpe(edhec,0,3)
 }
 \author{
-  Brian G. Peterson, Peter Carl, Shubhankit Mohan
+  Shubhankit Mohan
 }
 \references{
-  Getmansky, Mila, Lo, Andrew W. and Makarov, Igor,\emph{
-  An Econometric Model of Serial Correlation and
-  Illiquidity in Hedge Fund Returns} (March 1, 2003). MIT
-  Sloan Working Paper No. 4288-03; MIT Laboratory for
-  Financial Engineering Working Paper No. LFE-1041A-03;
-  EFMA 2003 Helsinki Meetings.
-  \url{http://ssrn.com/abstract=384700}
+  Andrew Lo,\emph{ The Statistics of Sharpe Ratio.}2002,
+  AIMR. \code{\link[stats]{}} \cr
+  \url{http://papers.ssrn.com/sol3/papers.cfm?abstract_id=377260}
+
+  Andrew Lo,\emph{Sharpe Ratio may be Overstated}
+  \url{http://www.risk.net/risk-magazine/feature/1506463/lo-sharpe-ratios-overstated}
 }
 \keyword{distribution}
 \keyword{models}

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/table.Sharpe.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/table.Sharpe.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/table.Sharpe.Rd	2013-09-05 21:29:26 UTC (rev 3004)
@@ -0,0 +1,86 @@
+\name{table.Sharpe}
+\alias{table.Sharpe}
+\title{Sharpe Ratio Statistics Summary}
+\usage{
+  table.Sharpe(Ra, Rf = 0, q = 3, ...)
+}
+\arguments{
+  \item{Ra}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of daily asset returns}
+
+  \item{Rf}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of annualized Risk Free Rate}
+
+  \item{q}{Number of autocorrelated lag periods. Taken as 3
+  (Default)}
+
+  \item{\dots}{any other pass thru parameters}
+}
+\description{
+  The Sharpe ratio is simply the return per unit of risk
+  (represented by variability).  In the classic case, the
+  unit of risk is the standard deviation of the returns.
+
+  \deqn{\frac{\overline{(R_{a}-R_{f})}}{\sqrt{\sigma_{(R_{a}-R_{f})}}}}
+
+  William Sharpe now recommends
+  \code{\link{InformationRatio}} preferentially to the
+  original Sharpe Ratio.
+
+  The higher the Sharpe ratio, the better the combined
+  performance of "risk" and return.
+
+  As noted, the traditional Sharpe Ratio is a risk-adjusted
+  measure of return that uses standard deviation to
+  represent risk. Although the Sharpe ratio has become part
+  of the canon of modern financial analysis, its
+  applications typically do not account for the fact that
+  it is an estimated quantity, subject to estimation errors
+  that can be substantial in some cases.
+
+  Many studies have documented various violations of the
+  assumption of IID returns for financial securities.
+
+  Under the assumption of stationarity,a version of the
+  Central Limit Theorem can still be applied to the
+  estimator .
+}
+\details{
+  The relationship between SR and SR(q) is somewhat more
+  involved for non- IID returns because the variance of
+  Rt(q) is not just the sum of the variances of component
+  returns but also includes all the covariances.
+  Specifically, under the assumption that returns \eqn{R_t}
+  are stationary, \deqn{ Var[(R_t)] = \sum \sum
+  Cov(R(t-i),R(t-j)) = q{\sigma^2} + 2{\sigma^2} \sum
+  (q-k)\rho(k) } Where \eqn{ \rho(k) =
+  Cov(R(t),R(t-k))/Var[(R_t)]} is the \eqn{k^{th}} order
+  autocorrelation coefficient of the series of returns.This
+  yields the following relationship between SR and SR(q):
+  and i,j belongs to 0 to q-1 \deqn{SR(q) = \eta(q) } Where
+  : \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2
+  \sum(q-k)\rho(k)] } Where, k belongs to 0 to q-1 SR(q) :
+  Estimated Lo Sharpe Ratio SR : Theoretical William Sharpe
+  Ratio
+}
+\examples{
+data(edhec)
+table.Sharpe(edhec,0,3)
+}
+\author{
+  Shubhankit Mohan
+}
+\references{
+  Andrew Lo,\emph{ The Statistics of Sharpe Ratio.}2002,
+  AIMR. \code{\link[stats]{}} \cr
+  \url{http://papers.ssrn.com/sol3/papers.cfm?abstract_id=377260}
+
+  Andrew Lo,\emph{Sharpe Ratio may be Overstated}
+  \url{http://www.risk.net/risk-magazine/feature/1506463/lo-sharpe-ratios-overstated}
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{non-iid}
+\keyword{ts}
+



More information about the Returnanalytics-commits mailing list