[Returnanalytics-commits] r2986 - in pkg/PerformanceAnalytics/sandbox/Shubhankit: man noniid.sm noniid.sm/R noniid.sm/man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Sep 4 14:57:34 CEST 2013


Author: shubhanm
Date: 2013-09-04 14:57:34 +0200 (Wed, 04 Sep 2013)
New Revision: 2986

Modified:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/AcarSim.Rd
Log:
Documentation update and parameter change in AcarSim

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd	2013-09-04 10:49:08 UTC (rev 2985)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd	2013-09-04 12:57:34 UTC (rev 2986)
@@ -1,48 +1,50 @@
-\name{GLMSmoothIndex}
-\alias{GLMSmoothIndex}
-\alias{Return.Geltner}
-\title{GLM Index}
-\usage{
-  GLMSmoothIndex(R = NULL, ...)
-}
-\arguments{
-  \item{R}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of asset returns}
-}
-\description{
-  Getmansky Lo Markov Smoothing Index is a useful summary
-  statistic for measuring the concentration of weights is a
-  sum of square of Moving Average lag coefficient. This
-  measure is well known in the industrial organization
-  literature as the \bold{ Herfindahl index}, a measure of
-  the concentration of firms in a given industry. The index
-  is maximized when one coefficient is 1 and the rest are
-  0. In the context of smoothed returns, a lower value
-  implies more smoothing, and the upper bound of 1 implies
-  no smoothing, hence \eqn{\xi} is reffered as a
-  '\bold{smoothingindex}'. \deqn{ \xi = \sum\theta(j)^2}
-  Where j belongs to 0 to k,which is the number of lag
-  factors input.
-}
-\examples{
-data(edhec)
-head(GLMSmoothIndex(edhec))
-}
-\author{
-  Peter Carl, Brian Peterson, Shubhankit Mohan
-}
-\references{
-  \emph{Getmansky, Mila, Lo, Andrew W. and Makarov, Igor}
-  An Econometric Model of Serial Correlation and
-  Illiquidity in Hedge Fund Returns (March 1, 2003). MIT
-  Sloan Working Paper No. 4288-03; MIT Laboratory for
-  Financial Engineering Working Paper No. LFE-1041A-03;
-  EFMA 2003 Helsinki Meetings. Available at SSRN:
-  \url{http://ssrn.com/abstract=384700}
-}
-\keyword{distribution}
-\keyword{models}
-\keyword{multivariate}
-\keyword{non-iid}
-\keyword{ts}
-
+\name{GLMSmoothIndex}
+\alias{GLMSmoothIndex}
+\alias{Return.Geltner}
+\title{GLM Index}
+\usage{
+  GLMSmoothIndex(R = NULL, ...)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+}
+\description{
+  Getmansky Lo Markov Smoothing Index is a useful summary
+  statistic for measuring the concentration of weights is a
+  sum of square of Moving Average lag coefficient. This
+  measure is well known in the industrial organization
+  literature as the \bold{ Herfindahl index}, a measure of
+  the concentration of firms in a given industry. The index
+  is maximized when one coefficient is 1 and the rest are
+  0. In the context of smoothed returns, a lower value
+  implies more smoothing, and the upper bound of 1 implies
+  no smoothing, hence \eqn{\xi} is reffered as a
+  '\bold{smoothingindex}'. \deqn{ \xi = \sum\theta(j)^2}
+  Where j belongs to 0 to k,which is the number of lag
+  factors input.
+}
+\examples{
+require(PerformanceAnalytics)
+ library(PerformanceAnalytics)
+ data(edhec)
+GLMSmoothIndex(edhec)
+}
+\author{
+  Peter Carl, Brian Peterson, Shubhankit Mohan
+}
+\references{
+  \emph{Getmansky, Mila, Lo, Andrew W. and Makarov, Igor}
+  An Econometric Model of Serial Correlation and
+  Illiquidity in Hedge Fund Returns (March 1, 2003). MIT
+  Sloan Working Paper No. 4288-03; MIT Laboratory for
+  Financial Engineering Working Paper No. LFE-1041A-03;
+  EFMA 2003 Helsinki Meetings. Available at SSRN:
+  \url{http://ssrn.com/abstract=384700}
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{non-iid}
+\keyword{ts}
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd	2013-09-04 10:49:08 UTC (rev 2985)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd	2013-09-04 12:57:34 UTC (rev 2986)
@@ -1,71 +1,78 @@
-\name{Return.Okunev}
-\alias{Return.Okunev}
-\title{OW Return Model}
-\usage{
-  Return.Okunev(R, q = 3)
-}
-\description{
-  The objective is to determine the true underlying return
-  by removing the autocorrelation structure in the original
-  return series without making any assumptions regarding
-  the actual time series properties of the underlying
-  process. We are implicitly assuming by this approach that
-  the autocorrelations that arise in reported returns are
-  entirely due to the smoothing behavior funds engage in
-  when reporting results. In fact, the method may be
-  adopted to produce any desired level of autocorrelation
-  at any lag and is not limited to simply eliminating all
-  autocorrelations.It can be be said as the general form of
-  Geltner Return Model
-}
-\details{
-  Given a sample of historical returns \eqn{R(1),R(2), . .
-  .,R(T)},the method assumes the fund manager smooths
-  returns in the following manner: \deqn{ r(0,t) = \sum
-  \beta (i) r(0,t-i) + (1- \alpha)r(m,t) } Where :\deqn{
-  \sum \beta (i) = (1- \alpha) } \bold{r(0,t)} : is the
-  observed (reported) return at time t (with 0 adjustments
-  to reported returns), \bold{r(m,t)} : is the true
-  underlying (unreported) return at time t (determined by
-  making m adjustments to reported returns).
-
-  To remove the \bold{first m orders} of autocorrelation
-  from a given return series we would proceed in a manner
-  very similar to that detailed in \bold{
-  \code{\link{Return.Geltner}} \cr}. We would initially
-  remove the first order autocorrelation, then proceed to
-  eliminate the second order autocorrelation through the
-  iteration process. In general, to remove any order, m,
-  autocorrelations from a given return series we would make
-  the following transformation to returns: autocorrelation
-  structure in the original return series without making
-  any assumptions regarding the actual time series
-  properties of the underlying process. We are implicitly
-  assuming by this approach that the autocorrelations that
-  arise in reported returns are entirely due to the
-  smoothing behavior funds engage in when reporting
-  results. In fact, the method may be adopted to produce
-  any desired level of autocorrelation at any lag and is
-  not limited to simply eliminating all autocorrelations.
-}
-\examples{
-data(managers)
-head(Return.Okunev(managers[,1:3]),n=3)
-}
-\author{
-  Peter Carl, Brian Peterson, Shubhankit Mohan
-}
-\references{
-  Okunev, John and White, Derek R., \emph{ Hedge Fund Risk
-  Factors and Value at Risk of Credit Trading Strategies}
-  (October 2003). Available at SSRN:
-  \url{http://ssrn.com/abstract=460641}
-}
-\seealso{
-  \code{\link{Return.Geltner}} \cr
-}
-\keyword{distribution}
-\keyword{models}
-\keyword{multivariate}
-\keyword{ts}
-
+\name{Return.Okunev}
+\alias{Return.Okunev}
+\title{OW Return Model}
+\usage{
+  Return.Okunev(R, q = 3)
+}
+\arguments{
+  \item{R}{: an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+
+  \item{q}{: order of autocorrelation coefficient lag
+  factors}
+}
+\description{
+  The objective is to determine the true underlying return
+  by removing the autocorrelation structure in the original
+  return series without making any assumptions regarding
+  the actual time series properties of the underlying
+  process. We are implicitly assuming by this approach that
+  the autocorrelations that arise in reported returns are
+  entirely due to the smoothing behavior funds engage in
+  when reporting results. In fact, the method may be
+  adopted to produce any desired level of autocorrelation
+  at any lag and is not limited to simply eliminating all
+  autocorrelations.It can be be said as the general form of
+  Geltner Return Model
+}
+\details{
+  Given a sample of historical returns \eqn{R(1),R(2), . .
+  .,R(T)},the method assumes the fund manager smooths
+  returns in the following manner: \deqn{ r(0,t) = \sum
+  \beta (i) r(0,t-i) + (1- \alpha)r(m,t) } Where :\deqn{
+  \sum \beta (i) = (1- \alpha) } \bold{r(0,t)} : is the
+  observed (reported) return at time t (with 0 adjustments
+  to reported returns), \bold{r(m,t)} : is the true
+  underlying (unreported) return at time t (determined by
+  making m adjustments to reported returns).
+
+  To remove the \bold{first m orders} of autocorrelation
+  from a given return series we would proceed in a manner
+  very similar to that detailed in \bold{
+  \code{\link{Return.Geltner}} \cr}. We would initially
+  remove the first order autocorrelation, then proceed to
+  eliminate the second order autocorrelation through the
+  iteration process. In general, to remove any order, m,
+  autocorrelations from a given return series we would make
+  the following transformation to returns: autocorrelation
+  structure in the original return series without making
+  any assumptions regarding the actual time series
+  properties of the underlying process. We are implicitly
+  assuming by this approach that the autocorrelations that
+  arise in reported returns are entirely due to the
+  smoothing behavior funds engage in when reporting
+  results. In fact, the method may be adopted to produce
+  any desired level of autocorrelation at any lag and is
+  not limited to simply eliminating all autocorrelations.
+}
+\examples{
+data(managers)
+head(Return.Okunev(managers[,1:3]),n=3)
+}
+\author{
+  Peter Carl, Brian Peterson, Shubhankit Mohan
+}
+\references{
+  Okunev, John and White, Derek R., \emph{ Hedge Fund Risk
+  Factors and Value at Risk of Credit Trading Strategies}
+  (October 2003). Available at SSRN:
+  \url{http://ssrn.com/abstract=460641}
+}
+\seealso{
+  \code{\link{Return.Geltner}} \cr
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{ts}
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION	2013-09-04 10:49:08 UTC (rev 2985)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/DESCRIPTION	2013-09-04 12:57:34 UTC (rev 2986)
@@ -1,38 +1,38 @@
-Package: noniid.sm
-Type: Package
-Title: Non-i.i.d. GSoC 2013 Shubhankit
-Version: 0.1
-Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
-Author: Shubhankit Mohan <shubhankit1 at gmail.com>
-Contributors: Peter Carl, Brian G. Peterson
-Depends:
-    xts,
-    PerformanceAnalytics,
-    tseries,
-    stats
-Maintainer: Brian G. Peterson <brian at braverock.com>
-Description: GSoC 2013 project to replicate literature on drawdowns and
-    non-i.i.d assumptions in finance.
-License: GPL-3
-ByteCompile: TRUE
-Collate:
-    'AcarSim.R'
-    'ACStdDev.annualized.R'
-    'CalmarRatio.Norm.R'
-    'CDrawdown.R'
-    'chart.AcarSim.R'
-    'chart.Autocorrelation.R'
-    'EmaxDDGBM.R'
-    'GLMSmoothIndex.R'
-    'LoSharpe.R'
-    'na.skip.R'
-    'noniid.sm-internal.R'
-    'QP.Norm.R'
-    'Return.GLM.R'
-    'Return.Okunev.R'
-    'se.LoSharpe.R'
-    'SterlingRatio.Norm.R'
-    'table.ComparitiveReturn.GLM.R'
-    'table.EMaxDDGBM.R'
-    'table.UnsmoothReturn.R'
-    'UnsmoothReturn.R'
+Package: noniid.sm
+Type: Package
+Title: Non-i.i.d. GSoC 2013 Shubhankit
+Version: 0.1
+Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
+Author: Shubhankit Mohan <shubhankit1 at gmail.com>
+Contributors: Peter Carl, Brian G. Peterson
+Depends:
+    xts,
+    PerformanceAnalytics,
+    tseries,
+    stats
+Maintainer: Brian G. Peterson <brian at braverock.com>
+Description: GSoC 2013 project to replicate literature on drawdowns and
+    non-i.i.d assumptions in finance.
+License: GPL-3
+ByteCompile: TRUE
+Collate:
+    'AcarSim.R'
+    'ACStdDev.annualized.R'
+    'CalmarRatio.Norm.R'
+    'CDrawdown.R'
+    'chart.AcarSim.R'
+    'chart.Autocorrelation.R'
+    'EmaxDDGBM.R'
+    'GLMSmoothIndex.R'
+    'LoSharpe.R'
+    'na.skip.R'
+    'noniid.sm-internal.R'
+    'QP.Norm.R'
+    'Return.GLM.R'
+    'Return.Okunev.R'
+    'se.LoSharpe.R'
+    'SterlingRatio.Norm.R'
+    'table.ComparitiveReturn.GLM.R'
+    'table.EMaxDDGBM.R'
+    'table.UnsmoothReturn.R'
+    'UnsmoothReturn.R'

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R	2013-09-04 10:49:08 UTC (rev 2985)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R	2013-09-04 12:57:34 UTC (rev 2986)
@@ -12,6 +12,7 @@
 #' Where j varies from 1 to n ,which is the number of drawdown's in simulation 
 #' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' asset returns
+#' @param nsim number of simulations input
 #' @author Shubhankit Mohan
 #' @references Maximum Loss and Maximum Drawdown in Financial Markets,\emph{International Conference Sponsored by BNP and Imperial College on: 
 #' Forecasting Financial Markets, London, United Kingdom, May 1997} \url{http://www.intelligenthedgefundinvesting.com/pubs/easj.pdf}
@@ -22,7 +23,7 @@
 #' @rdname AcarSim
 #' @export 
 AcarSim <-
-  function(R)
+  function(R,nsim=1)
   {
        library(PerformanceAnalytics)
 
@@ -40,7 +41,6 @@
 T= 36
 j=1
 dt=1/T
-nsim=30;
 thres=4;
 r=matrix(0,nsim,T+1)
 monthly = 0

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/AcarSim.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/AcarSim.Rd	2013-09-04 10:49:08 UTC (rev 2985)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/man/AcarSim.Rd	2013-09-04 12:57:34 UTC (rev 2986)
@@ -2,11 +2,13 @@
 \alias{AcarSim}
 \title{Acar-Shane Maximum Loss Plot}
 \usage{
-  AcarSim(R)
+  AcarSim(R, nsim = 1)
 }
 \arguments{
   \item{R}{an xts, vector, matrix, data frame, timeSeries
   or zoo object of asset returns}
+
+  \item{nsim}{number of simulations input}
 }
 \description{
   To get some insight on the relationships between maximum



More information about the Returnanalytics-commits mailing list