[Returnanalytics-commits] r2457 - in pkg/FactorAnalytics: R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Jun 28 01:09:58 CEST 2013


Author: chenyian
Date: 2013-06-28 01:09:58 +0200 (Fri, 28 Jun 2013)
New Revision: 2457

Modified:
   pkg/FactorAnalytics/R/factorModelCovariance.r
   pkg/FactorAnalytics/man/factorModelCovariance.Rd
Log:
modify factorModelCovariance.Rd

Modified: pkg/FactorAnalytics/R/factorModelCovariance.r
===================================================================
--- pkg/FactorAnalytics/R/factorModelCovariance.r	2013-06-27 22:39:32 UTC (rev 2456)
+++ pkg/FactorAnalytics/R/factorModelCovariance.r	2013-06-27 23:09:58 UTC (rev 2457)
@@ -47,14 +47,8 @@
 #'
 factorModelCovariance <-
 function(beta.mat, factor.cov, residVars.vec) {
-## Inputs:
-## beta.mat		   	n x k matrix of factor betas
-## factor.cov		  k x k factor return covariance matrix
-## residVars.vec  n x 1 vector of residual variances from factor model
-## Output:
-## cov.fm			    n x n return covariance matrix based on
-##				        estimated factor model.
-	beta.mat = as.matrix(beta.mat)
+
+  beta.mat = as.matrix(beta.mat)
 	factor.cov = as.matrix(factor.cov)
 	sig.e = as.vector(residVars.vec)
 	if (length(sig.e) > 1) {

Modified: pkg/FactorAnalytics/man/factorModelCovariance.Rd
===================================================================
--- pkg/FactorAnalytics/man/factorModelCovariance.Rd	2013-06-27 22:39:32 UTC (rev 2456)
+++ pkg/FactorAnalytics/man/factorModelCovariance.Rd	2013-06-27 23:09:58 UTC (rev 2457)
@@ -1,57 +1,71 @@
-\name{factorModelCovariance}
-\alias{factorModelCovariance}
-\title{Compute Factor Model Covariance Matrix.}
-\usage{
-  factorModelCovariance(beta.mat, factor.cov,
-    residVars.vec)
-}
-\arguments{
-  \item{beta.mat}{\code{N x K} matrix of factor betas,
-  where \code{N} is the number of assets and \code{K} is
-  the number of factors.}
-
-  \item{factor.cov}{\code{K x K} factor return covariance
-  matrix.}
-
-  \item{residVars.vec}{\code{N x 1} vector of asset
-  specific residual variances from the factor model.}
-}
-\value{
-  \code{N x N} return covariance matrix based on factor
-  model parameters.
-}
-\description{
-  Compute asset return covariance matrix from factor model
-  parameters.
-}
-\details{
-  The return on asset \code{i} (\code{i = 1,...,N}) is
-  assumed to follow the factor model \cr \code{R(i,t) =
-  alpha + t(beta)*F(t) + e(i,t), e(i,t) ~ iid (0,
-  sig(i)^2)} \cr where \code{beta} is a \code{K x 1} vector
-  of factor exposures. The return variance is then \cr
-  \code{var(R(i,t) = t(beta)*var(F(t))*beta + sig(i)^2},
-  \cr and the \code{N x N} covariance matrix of the return
-  vector \code{R} is \cr \code{var(R) = B*var(F(t))*t(B) +
-  D} \cr where B is the \code{N x K} matrix of asset betas
-  and \code{D} is a diagonal matrix with \code{sig(i)^2}
-  values along the diagonal.
-}
-\examples{
-# factorModelCovariance
-data(managers.df)
-factors    = managers.df[,(7:9)]
-ret.assets = managers.df[,(1:6)]
-fit <-fitMacroeconomicFactorModel(ret.assets,factors,fit.method="OLS",
-                                  variable.selection="all subsets", factor.set = 3)
-factorModelCovariance(fit$beta.mat,var(factors),fit$residVars.vec)
-}
-\author{
-  Eric Zivot and Yi-An Chen.
-}
-\references{
-  Zivot, E. and J. Wang (2006), \emph{Modeling Financial
-  Time Series with S-PLUS, Second Edition},
-  Springer-Verlag.
-}
-
+\name{factorModelCovariance}
+\alias{factorModelCovariance}
+\title{Compute Factor Model Covariance Matrix.}
+\usage{
+  factorModelCovariance(beta.mat, factor.cov,
+    residVars.vec)
+}
+\arguments{
+  \item{beta}{\code{N x K} matrix of factor betas, where
+  \code{N} is the number of assets and \code{K} is the
+  number of factors.}
+
+  \item{factor.cov}{\code{K x K} factor return covariance
+  matrix.}
+
+  \item{resid.variance}{\code{N x 1} vector of asset
+  specific residual variances from the factor model.}
+}
+\value{
+  \code{N x N} return covariance matrix based on factor
+  model parameters.
+}
+\description{
+  Compute asset return covariance matrix from factor model
+  parameters.
+}
+\details{
+  The return on asset \code{i} (\code{i = 1,...,N}) is
+  assumed to follow the factor model \cr \code{R(i,t) =
+  alpha + t(beta)*F(t) + e(i,t), e(i,t) ~ iid (0,
+  sig(i)^2)} \cr where \code{beta} is a \code{K x 1} vector
+  of factor exposures. The return variance is then \cr
+  \code{var(R(i,t) = t(beta)*var(F(t))*beta + sig(i)^2},
+  \cr and the \code{N x N} covariance matrix of the return
+  vector \code{R} is \cr \code{var(R) = B*var(F(t))*t(B) +
+  D} \cr where B is the \code{N x K} matrix of asset betas
+  and \code{D} is a diagonal matrix with \code{sig(i)^2}
+  values along the diagonal.
+}
+\examples{
+# Time Series model
+
+data(managers.df)
+factors    = managers.df[,(7:9)]
+fit <- fitTimeseriesFactorModel(assets.names=colnames(managers.df[,(1:6)]),
+                                factors.names=c("EDHEC.LS.EQ","SP500.TR"),
+                                data=managers.df,fit.method="OLS")
+factorModelCovariance(fit$beta,var(factors),fit$resid.variance)
+
+# Statistical Model
+data(stat.fm.data)
+fit <- fitStatisticalFactorModel(sfm.dat,k=2,
+                                  ckeckData.method="data.frame")
+
+factorModelCovariance(t(sfm.pca.fit$loadings),var(sfm.pca.fit$factors),sfm.pca.fit$resid.variance)
+
+sfm.apca.fit <- fitStatisticalFactorModel(sfm.apca.dat,k=2
+,ckeckData.method="data.frame")
+
+factorModelCovariance(t(sfm.apca.fit$loadings),
+                       var(sfm.apca.fit$factors),sfm.apca.fit$resid.variance)
+}
+\author{
+  Eric Zivot and Yi-An Chen.
+}
+\references{
+  Zivot, E. and J. Wang (2006), \emph{Modeling Financial
+  Time Series with S-PLUS, Second Edition},
+  Springer-Verlag.
+}
+



More information about the Returnanalytics-commits mailing list