[Returnanalytics-commits] r2449 - pkg/FactorAnalytics/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Jun 26 21:45:48 CEST 2013
Author: chenyian
Date: 2013-06-26 21:45:48 +0200 (Wed, 26 Jun 2013)
New Revision: 2449
Removed:
pkg/FactorAnalytics/man/fitMacroeconomicFactorModel.Rd
Log:
Deleted: pkg/FactorAnalytics/man/fitMacroeconomicFactorModel.Rd
===================================================================
--- pkg/FactorAnalytics/man/fitMacroeconomicFactorModel.Rd 2013-06-26 18:38:19 UTC (rev 2448)
+++ pkg/FactorAnalytics/man/fitMacroeconomicFactorModel.Rd 2013-06-26 19:45:48 UTC (rev 2449)
@@ -1,111 +0,0 @@
-\name{fitMacroeconomicFactorModel}
-\alias{fitMacroeconomicFactorModel}
-\title{Fit macroeconomic factor model by time series regression techniques.}
-\usage{
- fitMacroeconomicFactorModel(assets.names, factors.names,
- data = data, factor.set = 3,
- fit.method = c("OLS", "DLS", "Robust"),
- variable.selection = c("stepwise", "all subsets", "lar", "lasso"),
- decay.factor = 0.95, nvmax = 8, force.in = NULL,
- subsets.method = c("exhaustive", "backward", "forward", "seqrep"),
- lars.criteria = c("Cp", "cv"))
-}
-\arguments{
- \item{assets.names}{names of assets returns.}
-
- \item{factors.names}{names of factors returns.}
-
- \item{factor.set}{scalar, number of factors}
-
- \item{data}{a vector, matrix, data.frame, xts, timeSeries
- or zoo object with asset returns and factors retunrs
- rownames}
-
- \item{fit.method}{"OLS" is ordinary least squares method,
- "DLS" is discounted least squares method. Discounted
- least squares (DLS) estimation is weighted least squares
- estimation with exponentially declining weights that sum
- to unity. "Robust"}
-
- \item{variable.selection}{"stepwise" is traditional
- forward/backward stepwise OLS regression, starting from
- the initial set of factors, that adds factors only if the
- regression fit as measured by the Bayesian Information
- Criteria (BIC) or Akaike Information Criteria (AIC) can
- be done using the R function step() from the stats
- package. If \code{Robust} is chosen, the function
- step.lmRob in Robust package will be used. "all subsets"
- is Traditional all subsets regression can be done using
- the R function regsubsets() from the package leaps. "lar"
- , "lasso" is based on package "lars", linear angle
- regression.}
-
- \item{decay.factor}{for DLS. Default is 0.95.}
-
- \item{nvmax}{control option for all subsets. maximum size
- of subsets to examine}
-
- \item{force.in}{control option for all subsets. The
- factors that should be in all models.}
-
- \item{subsets.method}{control option for all subsets. se
- exhaustive search, forward selection, backward selection
- or sequential replacement to search.}
-
- \item{lars.criteria}{either choose minimum "Cp": unbiased
- estimator of the true rist or "cv" 10 folds
- cross-validation. See detail.}
-}
-\value{
- an S3 object containing \item{asset.fit}{Fit objects for
- each asset. This is the class "lm" for each object.}
- \item{alpha.vec}{N x 1 Vector of estimated alphas.}
- \item{beta.mat}{N x K Matrix of estimated betas.}
- \item{r2.vec}{N x 1 Vector of R-square values.}
- \item{residVars.vec}{N x 1 Vector of residual variances.}
- \item{call}{function call.} \item{ret.assets}{Assets
- returns of input data.} \item{factors Factors of input
- data.} \item{variable.selection variables selected by the
- user.}
-}
-\description{
- Fit macroeconomic factor model by time series regression
- techniques. It creates the class of "MacroFactorModel".
-}
-\details{
- If \code{Robust} is chosen, there is no subsets but all
- factors will be used. Cp is defined in
- http://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf.
- p17.
-}
-\examples{
-\dontrun{
-# load data from the database
-data(managers.df)
-ret.assets = managers.df[,(1:6)]
-factors = managers.df[,(7:9)]
-# fit the factor model with OLS
-fit <- fitMacroeconomicFactorModel(ret.assets,factors,fit.method="OLS",
- variable.selection="all subsets")
-# summary of HAM1
-summary(fit$asset.fit$HAM1)
-# plot actual vs. fitted over time for HAM1
-# use chart.TimeSeries() function from PerformanceAnalytics package
-dataToPlot = cbind(fitted(fit$asset.fit$HAM1), na.omit(managers.df$HAM1))
-colnames(dataToPlot) = c("Fitted","Actual")
-chart.TimeSeries(dataToPlot, main="FM fit for HAM1",
- colorset=c("black","blue"), legend.loc="bottomleft")
- }
-}
-\author{
- Eric Zivot and Yi-An Chen.
-}
-\references{
- 1. Efron, Hastie, Johnstone and Tibshirani (2002) "Least
- Angle Regression" (with discussion) Annals of Statistics;
- see also
- http://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf.
- 2. Hastie, Tibshirani and Friedman (2008) Elements of
- Statistical Learning 2nd edition, Springer, NY.
-}
-
More information about the Returnanalytics-commits
mailing list