[Returnanalytics-commits] r2957 - in pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm: R vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Sat Aug 31 23:38:47 CEST 2013
Author: shubhanm
Date: 2013-08-31 23:38:47 +0200 (Sat, 31 Aug 2013)
New Revision: 2957
Added:
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.pdf
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf
Modified:
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R
Log:
./ Further Addition of clean build vignettes
Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R 2013-08-31 21:27:27 UTC (rev 2956)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R 2013-08-31 21:38:47 UTC (rev 2957)
@@ -40,7 +40,7 @@
T= 36
j=1
dt=1/T
-nsim=30;
+nsim=3;
thres=4;
r=matrix(0,nsim,T+1)
monthly = 0
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.pdf
===================================================================
(Binary files differ)
Property changes on: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.pdf
___________________________________________________________________
Added: svn:mime-type
+ application/octet-stream
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw 2013-08-31 21:38:47 UTC (rev 2957)
@@ -0,0 +1,111 @@
+%% no need for \DeclareGraphicsExtensions{.pdf,.eps}
+
+\documentclass[12pt,letterpaper,english]{article}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+\IfFileExists{url.sty}{\usepackage{url}}
+ {\newcommand{\url}{\texttt}}
+
+\usepackage{babel}
+%\usepackage{noweb}
+\usepackage{Rd}
+
+\usepackage{Sweave}
+\SweaveOpts{engine=R,eps=FALSE}
+%\VignetteIndexEntry{Performance Attribution from Bacon}
+%\VignetteDepends{PerformanceAnalytics}
+%\VignetteKeywords{returns, performance, risk, benchmark, portfolio}
+%\VignettePackage{PerformanceAnalytics}
+
+%\documentclass[a4paper]{article}
+%\usepackage[noae]{Sweave}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage[top=3cm, bottom=3cm, left=2.5cm]{geometry}
+%\usepackage{graphicx}
+%\usepackage{graphicx, verbatim}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage{graphicx}
+
+\title{Normalized Calmar and Sterling Ratio}
+\author{R Project for Statistical Computing}
+
+\begin{document}
+\SweaveOpts{concordance=TRUE}
+
+\maketitle
+
+
+\begin{abstract}
+ Both the Calmar and the Sterling ratio are the ratio of annualized returnmover the absolute value of the maximum drawdown of an investment. The Sterling ratio adds an excess risk measure to the maximum drawdown, traditionally and defaulting to 10\%.It is also traditional to use a three year return series for these
+ calculations, although the functions included here make no effort to
+ determine the length of your series. However, Malik Magdon-Ismail devised a scaling law in which can be used to compare Calmar/Sterling ratio's with different
+$\mu$ ,$\sigma$ and T.
+\end{abstract}
+
+<<echo=FALSE >>=
+library(PerformanceAnalytics)
+data(edhec)
+@
+
+<<echo=FALSE>>=
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/CalmarRatio.Norm.R")
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/SterlingRatio.Norm.R")
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/QP.Norm.R")
+@
+
+\section{Background}
+Given a sample of historical returns \((R_1,R_2, . . .,R_T)\),the Calmar and Sterling Ratio's are defined as :
+
+%Let $X \sim N(0,1)$ and $Y \sim \textrm{Exponential}(\mu)$. Let
+%$Z = \sin(X)$. $\sqrt{X}$.
+
+%$\hat{\mu}$ = $\displaystyle\frac{22}{7}$
+%e^{2 \mu} = 1
+%\begin{equation}
+%\left(\sum_{t=1}^{T} R_t/T\right) = \hat{\mu} \\
+%\end{equation}
+\begin{equation}
+ Calmar Ratio = \frac{Return [0,T]}{max Drawdown [0,T]} \\
+\end{equation}
+
+\begin{equation}
+ Sterling Ratio = \frac{Return [0,T]}{max Drawdown [0,T] - 10\%} \\
+\end{equation}
+
+\section{Scaling Law}
+Malik Magdon-Ismail impmemented a sclaing law for different $\mu$ ,$\sigma$ and T.Defined as :
+
+
+\begin{equation}
+Calmar_{\tau} = \gamma(_{\tau , Sharpe_{1}})Calmar_{T_{1}} \\
+\end{equation}
+
+Where :
+ \begin{equation}
+\gamma(_{\tau , Sharpe_{1}}) = \frac{\frac{Q_p(T_1/2Sharpe^2_{1})}{T_1}}{\frac{Q_p(T_2/2Sharpe^2_{1})}{\tau}} \\
+\end{equation}
+
+ And , when T tends to Infinity
+\begin{equation}
+Q_p(T/2Sharpe^2) = .63519 + log (Sharpe) + 0.5 log T\\
+\end{equation}
+
+Same methodolgy goes to Sterling Ratio.
+\section{Usage}
+
+In this example we use edhec database, to compute Calmar and Sterling Ratio.
+
+<<echo=T>>=
+library(PerformanceAnalytics)
+data(edhec)
+CalmarRatio.Norm(edhec,1)
+SterlingRatio.Norm(edhec,1)
+@
+
+We can see as we shrunk the period the Ratio's decrease because the Max Drawdown does not change much over reduction of time period, but returns are approximately scaled according to the time length.
+
+\end{document}
\ No newline at end of file
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw 2013-08-31 21:38:47 UTC (rev 2957)
@@ -0,0 +1,135 @@
+%% no need for \DeclareGraphicsExtensions{.pdf,.eps}
+
+\documentclass[12pt,letterpaper,english]{article}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+\IfFileExists{url.sty}{\usepackage{url}}
+ {\newcommand{\url}{\texttt}}
+
+\usepackage{babel}
+%\usepackage{noweb}
+\usepackage{Rd}
+
+\usepackage{Sweave}
+\SweaveOpts{engine=R,eps=FALSE}
+%\VignetteIndexEntry{Performance Attribution from Bacon}
+%\VignetteDepends{PerformanceAnalytics}
+%\VignetteKeywords{returns, performance, risk, benchmark, portfolio}
+%\VignettePackage{PerformanceAnalytics}
+
+%\documentclass[a4paper]{article}
+%\usepackage[noae]{Sweave}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage[top=3cm, bottom=3cm, left=2.5cm]{geometry}
+%\usepackage{graphicx}
+%\usepackage{graphicx, verbatim}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage{graphicx}
+
+\title{Okunev White Return Model}
+\author{R Project for Statistical Computing}
+
+\begin{document}
+\SweaveOpts{concordance=TRUE}
+
+\maketitle
+
+
+\begin{abstract}
+The fact that many hedge fund returns exhibit extraordinary levels of serial correlation is now well-known and generally accepted as fact.Because hedge fund strategies have exceptionally high autocorrelations in reported returns and this is taken as evidence of return smoothing, we first develop a method to completely eliminate any order of serial correlation across a wide array of time series processes.Once this is complete, we can determine the underlying risk factors to the "true" hedge fund returns and examine the incremental benefit attained from using nonlinear payoffs relative to the more traditional linear factors.
+\end{abstract}
+
+<<echo=FALSE >>=
+library(PerformanceAnalytics)
+data(edhec)
+@
+
+<<echo=FALSE,eval=TRUE,results=verbatim >>=
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/Return.Okunev.R")
+@
+
+\section{Methodology}
+Given a sample of historical returns \((R_1,R_2, . . .,R_T)\),the method assumes the fund manager smooths returns in the following manner:
+
+%Let $X \sim N(0,1)$ and $Y \sim \textrm{Exponential}(\mu)$. Let
+%$Z = \sin(X)$. $\sqrt{X}$.
+
+%$\hat{\mu}$ = $\displaystyle\frac{22}{7}$
+%e^{2 \mu} = 1
+%\begin{equation}
+%\left(\sum_{t=1}^{T} R_t/T\right) = \hat{\mu} \\
+%\end{equation}
+\begin{equation}
+ r_{0,t} = \sum_{i}^{} \beta_{i}r_{0,t-i} + (1- \alpha)r_{m,t} \\
+\end{equation}
+
+
+\begin{equation}
+where : \sum_{i}^{} \beta_{i} = (1- \alpha) \\
+\end{equation}
+
+\(r_{0,t}\) : is the observed (reported) return at time t (with 0 adjustments' to reported returns), \\
+\(r_{m,t}\) : is the true underlying (unreported) return at time t (determined by making m adjustments to reported returns). \\
+
+The objective is to determine the true underlying return by removing the
+autocorrelation structure in the original return series without making any assumptions regarding the actual time series properties of the underlying process. We are implicitly assuming by this approach that the autocorrelations that arise in reported returns are entirely due to the smoothing behavior funds engage in when reporting results. In fact, the method may be adopted to produce any desired level of autocorrelation at any lag and is not limited to simply eliminating all autocorrelations.
+
+\section{To Remove Up to m Orders of Autocorrelation}
+To remove the first m orders of autocorrelation from a given return series we would proceed in a manner very similar to that detailed in \textbf{Geltner Return}. We would initially remove the first order autocorrelation, then proceed to eliminate the second order autocorrelation through the iteration process. In general, to remove any order, m, autocorrelations from a given return series we would make the following transformation to returns:
+
+\begin{equation}
+r_{m,t}=\frac{r_{m-1,t}-c_{m}r_{m-1,t-m}}{1-c_{m}}
+\end{equation}
+
+Where \(r_{m-1,t}\) is the series return with the first (m-1) order autocorrelation coefficient's removed.The general form for all the autocorrelations given by the process is :
+\begin{equation}
+a_{m,n}=\frac{a_{m-1,n}(1+c_{m}^2)-c_{m}(1+a_{m-1,2m})}{1+c_{m}^2 -2c_{m}a_{m-1,n}}
+\end{equation}
+
+Once a solution is found for \(c_{m}\) to create \(r_{m,t}\) , one will need to iterate back to remove the first m ??? 1 autocorrelations again. One will then need to once again remove the mth autocorrelation using the adjustment in equation (3). It would continue the process until the first m autocorrelations are sufficiently close to zero.
+
+\section{Usage}
+
+In this example we use edhec database, to compute true Hedge Fund Returns.
+
+<<Graph10,echo=T,fig=T>>=
+library(PerformanceAnalytics)
+data(edhec)
+Returns = Return.Okunev(edhec[,1])
+skewness(edhec[,1])
+skewness(Returns)
+# Right Shift of Returns Ditribution for a negative skewed distribution
+kurtosis(edhec[,1])
+kurtosis(Returns)
+# Reduction in "peakedness" around the mean
+layout(rbind(c(1, 2), c(3, 4)))
+ chart.Histogram(Returns, main = "Plain", methods = NULL)
+ chart.Histogram(Returns, main = "Density", breaks = 40,
+ methods = c("add.density", "add.normal"))
+ chart.Histogram(Returns, main = "Skew and Kurt",
+ methods = c("add.centered", "add.rug"))
+chart.Histogram(Returns, main = "Risk Measures",
+ methods = c("add.risk"))
+@
+
+The above figure shows the behaviour of the distribution tending to a normal IID distribution.For comparitive purpose, one can observe the change in the charateristics of return as compared to the orignal.
+<<echo=T,fig=T>>=
+library(PerformanceAnalytics)
+data(edhec)
+Returns = Return.Okunev(edhec[,1])
+layout(rbind(c(1, 2), c(3, 4)))
+ chart.Histogram(edhec[,1], main = "Plain", methods = NULL)
+ chart.Histogram(edhec[,1], main = "Density", breaks = 40,
+ methods = c("add.density", "add.normal"))
+ chart.Histogram(edhec[,1], main = "Skew and Kurt",
+ methods = c("add.centered", "add.rug"))
+chart.Histogram(edhec[,1], main = "Risk Measures",
+ methods = c("add.risk"))
+
+@
+
+\end{document}
\ No newline at end of file
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf 2013-08-31 21:38:47 UTC (rev 2957)
@@ -0,0 +1,1441 @@
+%PDF-1.5
+%ÐÔÅØ
+1 0 obj <<
+/Length 191
+>>
+stream
+concordance:OkunevWhite.tex:OkunevWhite.Rnw:1 44 1 1 5 1 4 44 1 1 2 1 0 3 1 5 0 1 1 5 0 1 2 6 0 1 1 5 0 1 2 1 0 1 1 1 2 1 0 1 2 1 0 1 2 5 0 1 2 1 1 1 2 1 0 4 1 1 2 1 0 1 2 1 0 1 2 6 0 1 3 1 1
+endstream
+endobj
+4 0 obj <<
+/Length 2121
+/Filter /FlateDecode
+>>
+stream
+xÚµX[oëÆ~?¿BÈK(4b¸WòÐMAÔ@
+äähKÇiP´Oοï\É¥D§i<ØZîÎÎõÛÙýæöÝß¿²E£
+«Û{Ƽ,Â*:{ïW·»ÕOÙ÷k=¾À¿'økáïu½q
É~áþÍÓܸ> qÿ3Eö]·ÞØídïqýóí?¿üÖ+ãsç£E±¤Ùjµq!÷UÍRí6dÿêa°>ûû·Ïßw=þá¯Áßü;ë`³G¦úr9Á¿gø{-±éuZ×u½ÚØ2¯CÉJ óöYÈÛÓÚVÙÓtó_ðÐ0ÆoÇ&F³2E^µAͽÏåþ×;UlÀ4ÞÓª<+rëo½ÝÏËî-iH¨è¾¡'Tù/íÑ»Ý
@ëwü*´¸û¥·y¡ýY¢¯îÄgC²;Hû®ß©K¡GdûZPô
gwÏ¿h|ÛË>Ln;ÙPP6&æ.zøuyl;i|
+bX³eqøiøÔm}ä8&ù¸mó(2ìmÄ8~hT±æH %{}½0!;{/4YßbÄÛ¹e=oÐÉĽ,át=JüÙ
+;ÀËÙx at C[ôeíc¼²4Ù¦èe?¥æèæÃÃ?=xdK÷E2ö--<]?ÈYß%k²d³úÇ",a,áyTð<-¹ï\cívDºã+5ø½P'ϧÑÜnØ+ðH»
+qS1*{_/î8¼y7Çv÷ÌÓ
+ÿè4íGþ;ÿ"Ë-%%ÐQuk56hÒQô9i¢bH,ºa<èxöäZÃYÊâ![p ³+oÇwÜûî,Áþù(¾&.Mß+?Í%*¿PÇÓNð
ç~ªw¦pÆãó½½m'f£ó7¥ÃرÕZiå50MóÄÝH
ÖBFbeLu§É¥ axÄ)5cLÎ7F{÷gkeji?§ø:MÛ@¤íÄifd¯9¼ (g7# ZöÓø@ïŧ5hz;UË2t.¶Ð34#syO:ñåÂÉ_õx$·MÏóÏ¢@ĸÅ_cwÌÎN§ÍMaéS×kpS Û.s%VÕÉyd1ÝSí.¡è¹5ÐVaí¶un#nWçXÍQ_³Þów«=*Wd»
t§±A2ÐjÀfØü1V/èþ97ÚãÙ>ijhC;E2U(Ú@DsM ®½/BÁÚ¹*ÕÎTºÅZJçÆ4qTYPS¡ýµS7,0òyéì*¡ú
+ËEÐ>¢Sö-nçÍÍ
+âȽN¸CàLp3î·Kyv9¡/Ö&=Û躺UëA¤z+
+å<ôöIÎxûìO¨"5ÕÐ:XÊHÔ1Á"¼aTH±ÎA}VÆàûãVx;OV°rß ÈÜHU\¸¦
+£c/u³ ã
+i«¼ªêëÜbøºXÙ+¿bgÒÖi̾f*+u´´²p#4!DÿYò!hM^NKÐpÃBfÌÔM\3D8U3ù¹ÜU³sòûËÛoà}QjªTÃò9)ÐI¿ ¥"© ¤$¬Ï+ëäÎKÃʸ%áe¬Â¹ÅÜõ
?ã̧e|Päþ2)Ðåð-ÙPP]^ùnÀ.Êõ./P²z)¸¢|ÔùæÅÀåÿbÿAü;Q|²pósV¿ |(ÿ,Ll$ÝR_óV¬"Ø+.îî$¬øG$,ð<èzêf½Oýnp³ôlÖݵÝç>{±@V=_©HÊôVÊ@ýô#E &¹ý;uö*Ôé ýãa,4]óáE_>´èqSOü;滤°Þ/QÓécnê8¯}WµÄw
ð²7ü¦Dà= ȤñSÜJ;ÆÍÇYÜäs¼ ðÔT÷å~2»uH½õAÝ®ä©ÓBì{=×(ûpeR17]z!µÿÞÃ}An¦^zÇkÝOàÝôöcm^Q"IÉÈT¥ñv"
+¢Æ·0½
jå)x¡·%Ó«[AH«ÀóC»Õ'ÇW}0(ê1È@«ZÁP£8̯úZOw1#ÍËô=ÂxM} DQ
ù1JsÒ'°×äÄØF_M¹
Üê1ì[Q¢Ñç:ñÚåùß^¸^ø=W4mùÍR[NcçJXâAºÝñIäÈL¯ÓJ¿6 $)B/úiøÐ}áXJQÞ'´]ÖÀwé©$ÏF´Ù]ó(ë}6ñV:³grm$³CÅ7æ^tyÖWjÒÏýHk÷ÌCãe`ÍÕFºI½×cÏ9$5Sg?®+á3µ\Øwémz«ÐÇÕêò.t![ñKº/¾%y»i¤p'±Ý"رÅ×D«Öb=
+WÏd³w {NÍÈ·=q7`SØËÒ6&)][º)[a7ÏCªä'æ²Kª¨Ø͵eZg ZYÜÒßýýöÝà"'
+endstream
+endobj
+20 0 obj <<
+/Length 2157
+/Filter /FlateDecode
+>>
+stream
+xÚÅËÛ¸ñ>_Á[¨Ê
+K¼H0©k·*NË&ÎlíÁöA¨Å#ÑKJ8_îF)fÆe'J Ðhô»Í®¯¾©LJQ[«²ëm&BhSfeUʺìz½ÉûýBæíb©Ê¼=Âð<xnKmêü=6¸²Z(b¶óëÛÃoàéý\ã÷Ãüi`ÒÖïoizxïðõ£'ÇÇs2¤Ç³î ¥-lþjij]Áxßá6<1 Èmæ<Û¿sïÙ«òÏ®ï®ÿÙRaõ2[1¯íG&¤AUEã.Ç¥.:CæHùºñ««
+ò³ßµ!Æv¼!àB&OÖÜùf¶¼ÿÄ'{ôkí¾#6F¶¿ÙÏùÍ$®p¾ËÃxYæLÇ
++8ÛGòpiÏÿ1´©liü#«WÖ£:ÌX6 ®xëßz&B×0ÜjãÒ¾YÉLVBIkÐ3R]ZzBÕb)%`¿^ÔÆ«Óæ¯ã¾]hæ?þ
Ø¡á
+pA¯?#ÜÕõ~aPÍDs
+EÐQ<píÉ%J§>ªR¨ÊSz½pwã¼ö½3¢áø#Û?ßÒ°ú#NUH0®Ù5v^é4¿õÿ+6áãeM¶¿ï:òÁ<?Ó¿<1ZFÐw,$s<nCTØxl±óUètd O©0HX²gã;ðÓt~ù"æ³èc
+.Ôy$!cü þSææ¸vï Úݨy´ÑQóJÚp@ÿ
ÄØD¢ùká©{ÈvêBT¥ vÐã¯hB'ìylY ,Î&öó3sy1À°ùUÁüPâK- &± ʪ>·ÊÚÑIul0ÁQµ>
+Ícßn¡0ðù$P¨àÞªj¶¶ã¦a»©øg]JLö²Õu{ø8±CÑÏu¢D
+}8ËÞ¢¨i²Óc\îîð ?é)©J¿bÊßÓIÙµKÇ\äÀØNÂcÚá3ONpÊÖëÚÊ'iàÁTàÁù£ÀÓûÜ¢Ï=EqôøÆW$²
+Cºd8]úm0}Jj4;Á `øÚM*A[KÖà
°
ñ"ê²Î*QW
D@©Æ$EUkµÿã1[d)*Ep?$ÏÕ¢T2s¢pîYz(£"¨JHØÌÞEÁʦÖ
+S&2Bi gfw°¥9Î2GÃld¬- Ʀ`«ã¿½ÊçIM12uLýÐ1DëÕ¯¯~»Â}`Jª-kêZhཿzó®È6°Þ,tí²{ÝÓE¦*PÔwÙ?¯þqõÓù]G«Z°Å8'Ôµ3í¦ÿrÅ2fNâ*`ÍePj¸·
-ÀM5üK.
+äùªó´d7ùõ6Ë&E¡.Ádá>d.eÂ3sù&.5+DÑ>X±ÃÚ®¶Ójfag(Uã2&ïCurïzÅ×&ãêRÂ)VÎ+óÌûR°ö9µ!Ô²ÄÊ`ç3©ò
ÃïgR9
-Í4a¥Séð\GIe¡ùn´
+¥Ñß[®OñÞÝ¡fê5Vt« 9K°ïCæ??+Y~ø¥Ý5Áu)!)á´I>v¤g°CÚ9
ûöÈÿSgKò5f(ä ©+ÿ>Å#ħô<ÜgáÎ]¸1\°/ÆC$Íe H[¤%£4 *ê'
éò+iOÖs%6¨á!0O²¯\Ò$0(Ex PaØ?Õ¦d"¥R¸JgFY USzUW«K)îOõUf LÅÔ/¨¥¤'7d-5
+¹ìo¢79í¬<^Q0ÓÞ,ÊLj "Û
+gõ·(#ÿ¡JZ-
+8ø¼>2ú"¥8püÌú«ÒÒuþú¯Z§yGT!ÅHΧ¨ï ËÛ¶KFejõUªAIý,\æ¢5%Û±ß Ä8aùfièË[%d9xx¥¿_³HïwQïäCKM×xeÉ©z&ó5flº@WÊ}}¡ääY
ç
+j9Âß/K#
+'¿¸À {oVQCHxÔÁüXTHÂ@ëÁ¿{ÑmÆÅÖÛ`ÂøBNVÜ Ä¼NÎe±%æmºòÌ>®l¸¡t*ƶ2WXþ1÷G.¬C±K »[óC¦Ü¼¢O<(ÑñÅ]kïØÌø.tNÄzZ{Ö³ï3ëÆ£@çîRÙõùNÐÃ_(Òi-½êFô=+}>¥¬©Ô;£öÐÐ {Â'Í@~!Øð$JN¯ÓJ?ªã3¢øPÜOãñÏä×fd½öHpøOA
z¯ßñÙ-K£;EÓ
+Öaó¿Ò17üöráÔ$(ütÖ[cA:=\ókþDó§ÅÒ*=|.{ÏûWüÿÙ_=Ñâÿ>\9¥¿¼Å¿ßæǨ!}Çh!Y~CÊÙ.S4#S.¡c¾~Óëð=c.¿üÃe(¼Íbüü¥à.izCú9ÆwÓØó ¸ý>:¥
õÜ@ñöâq|½t/3Z:mèÄêéöóDúVÅãt»Ýé5üH·K¾.¡Ö0øm2®¥ñBð_ÁIsà
+endstream
+endobj
+26 0 obj <<
+/Length 567
+/Filter /FlateDecode
+>>
+stream
+xÚÕUKoÛ0¾çWÙÅÅU²,;>l¡+½0´Þ©Ë!6Hj¶»aÿ¾DËtç¶ÆmèEñýQòlr|ºPLJj²lˤ\E1'zÁ²]¯æ:TÁ·É`tt
+Ô8ñ9nÍѶvë
+7öD·@PT»ã4nðÈð¨Úྴ&V}ÛÊmWn)0InEX¹U©Ý£ÚO\sw£v=*eö 6"ÝëÔTØ ~M|ZøÈ®m_] Í$ÐÒ©J Ò(&\¥1K.U cØp#Hà³0Rt¡\$ûÃ`>s2³Àu
+¥à<óÙöôû909»ûVd.r¬f¶æ-1HÑOã±´Ûâø±i9 Î/âµé:]á î|0´îXiçÆú[¼è©Nuzt¡Æ>Q)¢Äú¹ÆlÛù0 ½»woJ¼êÞY×·/Ø^up}:ô4¤ÏúMo±(±cuÏÑg|úô
+?A¹
+
+iÀ%ú¦#Ý/Þà.¬Á@Å/±âq}$5Åx9ÇuDÊC¦
Þ¥ïËÍÑ´÷~6þ!Æ{ïíô7dô_ at fMi¯Èã÷:&}56§ÿ
+ȵwâOä¶ÔÄïÆ?üÿâ®T½ÄÛz|
+ú3CÍU¬Ù\éOÚ¢2ª·Ùä%E
+endstream
+endobj
+29 0 obj <<
+/Length 755
+/Filter /FlateDecode
+>>
+stream
+xÚÕVKs0¾ó+`c$àC;Óiúnêlð#cR ÉøßwWZÛ=´gXíãÓ·+fûðc6ó}/#;à±nBiaLå#?R/·ÌÖ7øé¥90¾XÃËÌ Áíɦ±7ò
nÄìIf_;˹;ÅÈÎÜÂåóÔG¾s㳬 ¿@Jò
+½¥ýc¥bÔF<n©É;tPQ¤MÓ
+VÃÔðÎȺª)'¾ÌC-ãäýrxh¯\nÖ
+Ú¡p±À[ 9¥¿À1<3vo'ïÙØbcè
@°dì0.½ELá\¸ @a¿´ ´÷Z»k7Íz bi 龧Â@Öù9,GmiëtªÈÀªæåÅÛ]1Z¸ku\btIKI~úÒ$'i¥ìU}L¿K£ì¢ÚØ#æã¢#GlÀbCn»LQIÑÎÄGi0˼)/@/À<&?Q^¹Ái®ZÙw 7¾ðaø*3*õZÑl(ÌÍkz×HvFÁѦRaYK(3¸¶(æÔð+§Ç#]iy!_¶Âþ²&}Nv1]0Ûã7´Ë«e(©4úgíRÚNÌ)ãq²ÑvA«
+[;sèÊü0qVFÔÄÑ;}HWÐõ©»iûg|>Ý\t:zQKn:Lê
+g]ÒAÊö
+ÿ4?@>ì /c
+S^}±îºDÌ¿0l½Gö/zJÿv~F£Q¾Ä£ñÈ}®yϳ!·ÿ°{¿S%0È£ROó-_?wQÝðó·+ªK_oüHJ½<¹2Ós)ÌsÔÓSu>
+Õû¿©LÙÖKïÓ/`Î
D?½$¨-·ë7òÎ
+endstream
+endobj
+23 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./OkunevWhite-Graph10.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 30 0 R
+/BBox [0 0 432 432]
+/Resources <<
+/ProcSet [ /PDF /Text ]
+/Font << /F2 31 0 R/F3 32 0 R>>
+/ExtGState <<
+>>/ColorSpace <<
+/sRGB 33 0 R
+>>>>
+/Length 8958
+/Filter /FlateDecode
+>>
+stream
+x½]Ë®%¹qÜ÷W
¯$¹Û2 CØÁAï!CofFdÉ{NwßvËééè¬+*È|<n¿¸
Ûn|÷¯·?ÞûqÜb×ÿûÓw·¿ýðîëoßýìÇ_ýã×·ßþøN>nó?þöw?ûyüö?oÁ.výøgÓÿå#Ýû8ìûÛûyùÍïøêöíÞý÷výÇ_ ÞS¼Åî%ë~ýþWßýù/úêöÓXnïøñ«ÿ¸}ûýZÓ~KV¹¥CîI¬1?ÿÓwüËw?üö¯Þ e%w#¢Ê½Ë-äpïzæ %;-'-ÖÛü§qbæ¿ûæ]0æ?¿ù»'Õrûw¿þÛqûÝ»pûÅøïïÐÌ_¾+éÇÝÛ¸\»å{K·x/Mïüõ»Òî1-¶/ëëwîG}f«úm5Þë³kÖz/Ï®ÙâÞÎÉV·³Ç½×óuyÞÎp½¡×úz¶4°7µÜCu£ìm1¼jl»çèÖ²77Éunï9/ÖVîñ´½Á´VhÍÇÞâï=¹u\g½rWó§-ÇÞæÅ÷6O,¾79Ä{÷Çü¥ãÑøÁÓµ?nh6n<nîè«WW;î"zæõçÇ»»:ú÷7¿ðËíý ǽ7³SçnwxÚ]yç_GPç¯#øRÎ#_G,íã<âSqm
+{qü/Ûüþ§Ç==Â<^oÊÛÉñSOÃo°>ùìÑåì?ùäÑSB[Oþô;×vOe=ù|húhú{º4Æö!
+}[»}¨î .»z±O;ádO£§Èeì¸ái¿îÿÊÚ#ýôzÎGújú?{¸G¼|àÔ4ú õÔðæsÇJÄ7;k/vn:¶×ÁÞó.ôÃFHÓèTã°go
çÑßX¥|,°ÃE^_8 Ka¸>`ÿÝ?þþÏýô,
öåB°Åb°îéa{>¿¿egÕá'ýyXý
Åxù«¨.=5Ê]ÊSãìwc~£=5¦É¥¿2½»'Æ6
T»±{xÚÚ¦X౨ãyfl;·1úÓsnÓQs4 yÖÚ4ÞúÆíõ²Æ?O[;⪧Üj¿{ÊmÇÎítÏsb~ÎmõÜƾs[µÀ8¼ÃÆíÔ <¶6ÕÛ8Þ¸uô¤¾XÃü\tìÅZÔßÓwzSÓ±VbU³æxìÖ¾¬Á·ß·áqµÝ:úS~®ìÏü¾ãïÉ#ð ?IâàWÏ;ÂËæéì4XR[Û+'k=> â^±|½ÜZvgcÛ9füósäq£x6ç£oÒ,éis«Þø.;Ïç#IJ½îìÎÆ>e([þÏ{íýnW²qâ3ø÷qó¼ãëç¯#ØcÎ#_GP*ç¯#¶OÏò¥Òõ̧¨×úüD%aíóÌ>;QÑîýÙJêùy¢âag"ÄIª¦¾ý®ÉstºÏ#ç#Æà>ïëàùÜ÷:âjÇGãÿXÏÎYxn:*ãß÷åÍçú[?u;¹ìïÆÓ|ȶys¸á·'.Óx6÷Ð"ÁƳ ¥¦DÖ#¶Á <.üýÀI95¬Uù^T?AûZY¢áájãÔ
+WëvW<UÓûÇá_\ñåW{ñÌ^ãÑ
¼Úõ]xÇ,ÝÄ÷¹æõ¬ßX{ø «±ý¡ÛóT+ZÿÀõGûÂÛ\ø{Aà¿à¨>á¤ÑÔGw®3.Zê°l¸Z÷¿p³AðÂ]ºðð°W´ðbIB
+3íÛ?8·¿[d5aQb'\7Ü4¶p¿Ç©ý@Ä<ã0ŵã/ÞG:FûÂGûÐþ
+öcÃÕpï×k6«>p~7ÔÌ]¾X² 'ÓC
+L²¢^æÅò
+bÓ§¦É!_úMa# úÎË= ?ÔbX´8b÷ÃùÕqÆù£}a9íoªWMLö»¾ÀmæÅrCf[ÿÔôä@ÿ _±hC}ö|#û?п»ÝDGÄõãötsCæÕ®00gÇHfÒ£¢ÝîÅòâUôÅ)îö¾¨²ÏÖ¾T´@¤2/ÀãÀÑþп5Û1\ÜÞtàR6ܯë«,ÅøÈÖñMÖ>¨*;è%GàbŹ
+OeÔÿ
+¡ª¢é%{«VÆ×ÖÄFê`í˸ÏÜtRÁ28{þµ|Ófâý£Ó:Y{F\7Âk½
+ôR¢;ì²8>ï
+ûhÖMv}ÑmüÖl©6;÷«z¢Þï0~F¾¤xÐÎã-,Pa±øØi;~dP#ªÔn}Í^i·nÖáO4ëÃúÓð'5ÚûBþ¤{xÃTý¢óë]Æ°½Ã>Ø?ÕS×nõb©¨lîFq°0cèKìúIGaûkr¬½ÃH6|Øý?ýÚýµdízæÒð'ì~æß4#FþD 7²éÝ®§úôÚXkÈÔÏèhE¬¿5¿ÕÜÌüwR7¡X࿺ÅKÏÌ'ö§Ñ±Ì_ÇwàÈþ§-Æñ=À¯=Â[éQq¿¶DZqvþÙûoð3ü ýw°çÑTþ÷oî¿ÑÿFÇ%¶ñ?ÓäÑs¼Æç<Ã5>k5OñGþ$W|GGOý_4JKíoòð'©^ñOýuÇõúõzW6zæTßÔ8çòß.³ß¸Î~xèö(+^üx¥n&Üæ8aè<+^âíiÅm¹j »â¥¸/÷¿ü¶ã\W\ûÏyðWÔ²ñU6¾dãK6¾dãK6¾êÆWÝøª_uã«!ðÊWÛøjæ×.Ü7¾úÆ×<¸tá«+_:Τ/|µM_Úâ¾Ú¦/íaÅk»é«Íu[ÄÉ_mÓ×À²ÅÕ_mÓWËSÑxåkÓ¦þ¼òµéK=n+^ùu at K\¿òµéKD^ñÊצ/
+ÒW¾6}q>Ư|múê©ñ÷oú¸-yEXùêáURú¾ú¦/ÍcÚ¾ú¦¯áB]ñÂWßô5p_Ú<$öK_kq9ùrì|9f^}bçøÒcÏó;_Ûrÿ¼c©XòûÒÞvòå8§×cÅ}ioßø:õe~Qq-Ö¼||ØëÉñ©¯¯/äuÇ©/âè|||1ÏÎñ©¯{]Á1ù²8Aqú:1KÚS_ħ¾z!f~bç˱óeqÔqNW0O>õubç«7ñ©¯Þ'± CÞpP_yÞÑ<ïFxqòæú
+ÌCê+0qVdªç%ϧ¾¦Ï/׬Sâȸ.ÜyÐÀ
+íEÞgæú
+^ëóÀÀ7^P7Àýc!f87DçyaÎ×Ug@{S!&_©¯;Ú<%dç+7bÛqêhZ· _ÈÃBq¾$´yÉÀäu ÎWâĸ=¯ævò
þ¢uÖ!*qBððº°.swÄý×c':ÿÔ×1®È×]:ê(Èõ½NÓ½n<=tðõ2/¨ËàþÈËh/êT´·;n¨ ý1 ®X78!ocúJ¬Üªa¼¯ÁWb R_|,È»o|eöH}eòò°L}
+l|eæyúÊÈ´®du½Ì<`ã«°?Gê«è0÷ºóèØø*Ì#õU¼.E} ÇS¡nþ©/aÝ)R_bsêJlõU9Dꫲ
+l|y©¯êu8ê«qüÐe§Å0òðH}5öH}µ«nf|uúêþ>©¯Îº
ÖÕÕ90þ$èk`ÖÅ ¯~ð}¬Ó°Ýǯ}iݤ+_=°n4°Ö)FØý%è«GæÝ úÒ°Êëv7w[%¬|õD=$è«»¾R²:,Â&`åkàæv«ûöO6ì+B_#ÌÁø ¯.¬Û\«Õù }¡ l|U¿ô4lAÝc`㫱ÿ&èKÃ!Ö:¼-X´nx8_&,ÅâuÈ®HþmÆV1ÆÏT}ô£uKÔÉ ·d2«Czs<â³®9Ñ° þNëÍp6}YPK@Ó±Öõ¼XãtØümÖ$L±9Ö:¤.Üñºéº(ôÍQ©>_ãÇÀV7=d+hÄÊWðøB ZWõ:y6!*fÖô¥nãI¶y!ÅèïÙ
+Ô¶ª-wÔmQ'ÍY;¢¹É@¬|
ìubÓ¹EÔ
m`KX¹
+¬|
+ܽ¬|aÿÈVÐS¡ÊÝê¦x¿Ùô¥uÎluE[¯Æ:#
+¶K$ÎÁ0ƯÎñ"C_¡;V 67æXùR7V¯Ùþ¦/ÂÜÚg¹±XùÏiº^ÇV¾ÿ*ÐW¬#[¢¸6båk`7úÂôpÃÁëâÊ×À¨#è+º/Ð×ÀÕm)×A¬|)v»ò}ü+æ¹ô8Ëj¯¸?â¬Q²û¡=Ð×uèKÛ'ÄíÅ<R¾ôù'Üuùâ|Ao¥8_·
+ô=~+¾<>,ÐWôxµ@_Ñã÷RuàÒ÷Ëyè+þ|ÐW<¿w1ýàz¾±õÇîïßV6>+_ª_g°þØè/Õ¥MÿXùÒy³ô*OL¸Ö¿2±òýYïßÅ
+ÐÆ:V¾×ùúBX¬ó@c|à<
M°Ùô[Lìïb86Oävå+x¼(Ц8c¼çMö' __JÖÛZÉL¬|ññ@_÷]GP0Õ¯ÃçÙúҴͱÎKéøûñu¸¿èKýc?9í6oæã¥@_Ï+
+áÏc?;íÊú?<oSáLÄÊ×áýWÏ;¡¿×äû<¯c·²A#6¾×ê6O60ôVm`´yC!Öz²Æ±Öû´,µ>ªÓá2}]óZ¿G¼x±Z` ñL÷y*'k|y,Kl¬,Ô3æÍØÓ2qg|
ûÙ¥Å_µ¬ñãyTÄË5cÍëµ¾4þü|Å:±ÖG»Ï3×¾|^¹b)®Æn/GÿÔ¾|¼©'ïÇ5Ïf|ª Ü9^TîLëÞúhçøV+êÉý¥bQãóDÜ¿ãyêÉþ¹6Ôßmu#°ÕG+õT¹'¤2¾¨õ÷êï«£>*·kG=ÙçQô¥eäNæyÅvø¼ òá}i~Põø®A_º¼¤sÞzm\ÙëãgËß
+qF~|R_Ìã?¾3?4¾ôÕ<~jÌ/ô¥ù'æ5¡/ýçNÏBÏ-û<%ús¾0-ðbóç=âyÌpÎ"ÿ:¡Êüë0\Ï
+úÒ|Þ± ^yâF}E_ÔWt>ªÏCB¯úrÿÞ¨/O°"êÈ[;×9âûCë,¼þ¡Â®S}¤u_
x@;Æ\_Ñú½Lõ_'äñBç<t ¿ÒDõدSAý£¯÷!ßX8Oû1Õzôz_>çÓTêÔÇ'=z½úí\äõ¯kýMϹ~Ö3øâ:0ÅäùvÏ^ïC½£gçúíÅù41e½Ïç±ÉÞW/ÎòSMTYoÄ>ÉÞ¯ü¬âyëYÄäñïÀ^ÍÄ^Åó4çý»·³>ê¸ÎõÙÞ/økul¬'wb¯'7b¯'cÞýXêɽ,Ä^OvìõdÌ«³ìØëïX¦ú÷7ÓFp9>¸kÚÚô7ÙÀ¥#O¹
V¹ë×ï¿ù¯ï¾º
+Y¼ÿÛo~øÝí¾qÄí=öc¿üùáv¬î®åm®×ãé¾®ú·ßX/¶ Êw§y_ýdºÖ÷cíícÍ>4aSýc¹ô&l©lªO[
+õûéÅíôOãnúÇç!ElV÷Ò?¶a%á|¿ªwÒOÆTtü7ÒOÆÎ>Ü/=§-øØF?GzîÇ.úɨsaÙDÿÌ·ÖNÔawö|¢eþóúǼbÏácî°þñyØïñØàú
6Ï£/{ίón*yÝ8ïV ËêókNv¾t·Nv¾·Nö¹±gÛ/ûÙ.úçï_Î}ëfùåä·î¿N~ÃnÏ}ëNùùÜm£<äëûäC)¾éc3[ªtY#Àp+ÐeÕ(ì²]Ö¬úîfÂɨqÚ'»?p²ãQNûõd¸]âçnÀN¨âÌêúÀÝ*Þzf~ãA=ÍN·-ÏÒSÛ[OÕݲí¼ãsÇ?Ç.AX{âËZ¡üâ«M3ërÍo)V¡Î
+PçFÞz"«L(
TjB-_ȪmJuFfÔ¦ûYmB9ÎHÚút?«~L(×Õé~S7t2ahf¢ÏLÈ13jí&&ä@vBf&P¡=Õ7&41ÚìúÔ²43ªìêÔ²<3!yf»¦&43±hB¬1¡Eb ÍL,)Ê|ѨxfbÑV×OhfbÑX½bB3&Ä*X4QF1¡ºh¢ZuâDaf¢.¨VÐÄD]4Q"1¡ºh¢Z-bBuÑDµ*Ä&&ê¢ÚÔ²²0±h¢ZåaBdBÓôzj(µ "2aȪ
+"Dd¨Ë
3AÛêÔ²îLÅ:£gÔ®µSD)ͨô [ðÂËÀ#0á18P$À£zÌLXÁ¹& G`È5áLXYËk&&\V at m
L8ÈJ8DdL 2aÈ5a~´¹&¬¼Óª3AD&TÍ5á(£eH(ðÔ¨i
+§UéM³PÍ.&êÈý
+¦v°õG¸AuLá²nU&á¤}&
+¦PÁTÄZfÓ=((æ¡v©H²µÌ
+ó`YUKá"§nûø
S2ݶÜHÁ
+êÂmOZ´Ùd»Ö*e6J¥¢
+Ô¬e6
+_En¦CR¸5¬ÛR*á[/dÂʳ¨N»JÖ2+ív!VøE]»²ªúÔL4ÚÀD£[ËL»½ Ój"|ö!ðfucBPfEr 0h£DPòí6õ#&
+
+á`O¸E¡ÁÙßê£î-úÚE0÷¡0YûºC%¤Bn
+Ç3Á*´ÆF¨ToYs
ÊJ·?ô0 ÍXzxÜ0Ó ¨Ä47ÐH
+t¤ù²qÓ°A¡Ó0ûëÚ£PÉé¨=+Tr:´¨pdÒI1r:&B*9 BMW8-§p£®\^à»sQØá §@L
+½þ0éxÒÊ°
+95Àí)äÔèoÁ~p rõ¦Âñ,Zäs8È© CÂANMZдq4 r¦^áh@Í|ÝÁ3 ÍË)äÔÌ+SNå ¢pV©6{Ræð*9\r)§
+ŬñµbäR¨äTÌÇ+Tr*úSÐu£T¨äpñB%§cî#ÌÜÚ¦¦rtP äè~ °ÅÏ{,xòíq
+9:k%(Ì=iKþ¦ßª¨phµej#Ø7zS
Ý~È'ã\Û·Ýã¿ÂAÏ*ähYê Kó~L9:Û9Á)¬£º
+¦~²aÊé.Q]ö;rêà²hêØ. GÓ%B8ZÛ3ÂANç2-·çâû^f«w ïGS6y Ï®{íaµÝ轺hÊé\z§p´ÇW&(ät.$ÕL}\DGÀrp³!0z¬ú[xl\KÄ ¥,è4ÚÔppá§âA@ Ç[ÑF1FÓé_¨XeãæO®¸ÛÏ}Àù@B¥ÚÏLܵ½Ü ¢ I±Tâñ.Väö
+£GGÓöUè±é¡bòѯýŬ»âø®nÍ:h!V¾|!båK
+¹]Ð7Ì7Ú#)V¾Bá 4°DÃ6ñ¯Xù
+\½Hël8ÃØ·þ/_8 V,Øør¯"øjðÐ{7Ìö%ðÕüy ¯Ðȯ.ômáR_Ñbã«d%yën7¾:b%-_½.ÙjîÄÆW§£LÐ~åL1ô¥¸_î
+ô¸DqÇý¡¯TÁ/úâBLÅäKÜN¾
+ÎoÎWrL¾0ÆèBßfüózÔWåШ¯êçwðUU+6¾¸á]Æ/]è+¡·|êËÆ(6¾
+õmÆÛÜD&6¾¸°H±ñÈG¶ºæ¡p<õÅ
/.|V\að©/ròþÈómEö_~úâBÄ¡/]ø&Ä)ØxÁ3C_GCT©XùÒØíµtÁ"B¬|écåë(ßt¡o¿1ÄR,Æ×é$2ôupa¼bi6~²}öK :ÞÂeèëà(ÎyûCÏù<Ð×qÐ gûA]·]Û¶t<N¶åÚ½ÒGeëd¾¦^á ª{
+~ªBWèµJTgV¦pð¤ëÍáÐSOÈtS¦RLTeæxÃPÀAQçR
+
¡~PÅáÏ-·PͽÃ]Sk~_ûu%läø".
ÿí
ÕbÅBÂV°Lá §y¿(6ëz©N8È£r1é¼èA,PB at Z¬³5®]T8ÈÑ¥>¸hk}%ÂlÚápÓ¬CRØ-CÜTªS;Óbâ0Õ¢HÁ}1ÃÅ.Q}&p$1º>rª0 -¦*ÞȮݩ2©S8È©ÜÌ¡pS½È¡UV&±¡X1å`ý!àºþ¼]JëÁbÓÆPÑ#P[¾9àøK|^1åÔèÍ0åT®UX-ÿSN
+ÄnQ¹¼]¡ÃÕ0
+þèN+÷@Þb¿Y½)§tbÊN¡@!ÞQÎn%¦qç$¦ïTrFÚ¡ZL9Â-I
+Å2H>)G³aÊî7P-®Ä#ÙrÄÇLMRæÂbinöµè[é´µb t&LH¯#a±ôjcE<TSxlSM9Â=
+Åj V×øM- Ø#TSrR³Õ 0nTSV:a·ûF\ÊíÐ'hÞie
+¸¤jÊþ¤QмÓJ(rU¨ÅJ#xG5±Ò
hSÓP+ÛØjÊÑîV»0\k
+<>Ã_.Rz¿9
¬PNq6%¯ ³51U
r
+ß ~N
+G1DD³Âl÷E<]«¾pn#9Ûk#9Ðsm¬}Á÷ÕFrzÖNrø:Ë_ruгFBHµHí`^XËí,*9Èq°Ü ½©ä k Wö:¦BcÁçQmÑ+ÅhUòRq#m,WBVX¬¼!ëÅ
cMΪphe.,"öê²B)'üæÓVª|lþ«=ÎÙÔì¶
ÊD§ÕÉk¥ÃËì÷®¥*³C=¯ö¼Úë5÷üýÍád·ç½³Þíöh;®O;ád·¿=rÆv²Ç¾Øcßì%/vb²·¶ØÛz§/;àbï²Ø»,vûÁÅ˸Øk[ìu½?j§p±·°ØÛòþ#¦¼N»ÏMöåùe~«Ü^öÊ>6ÙkZìuÑ6ö^vÀÉnùÚe\ìaµÝÓbi³gYìY6»¬×ýúíXìíx«}m_[ÚeZòu{½ÅÞý$¸éÓ8g;Ùc]ì±nvé]úf¯e±×õþÑÆàÓ9$Oö"½Èf´Ø%möz,özlöÖ{[Ûo¿ pÙ×GLö{N]iLv¬ÙíëùåÕù²Úe³ËÚ>ÙÛ7ëp±×õþkÿKyÕGÞõa¿`0ÛSÛìËóåýù,ívûz¾ìç׸ØkÜíyµçݾ>_ݯ×oûõûÚþ¾¶¿¬ú.»¾-DZì}³Ç¸ØcÜìóøöñ=Y9Ûó~þ¢²ëGVþdçOÖñEöñÅ~xd±¯üÖÅ?.ö¥Õ½ÕÅ?®öºÚëfõú²_¿®í«{ûj_í}³·õü¶ß×óûz~[üáb«=ìö
߶óÛøðMö9~ \ì=.öw{Zíi·Ëj_õc;/;àjÕþêüØçøp±/ãëîÿýîb/½÷oûý?f_øí;¿±£^}Ú ûÌ/áb/«½¼²ËjÝ^W{ÝìsÿÉ{ümÚo±¯çۮ˸Êg²Ïã#áj﫽oöy|$\ìKûÂÞ¾¸ô_ÂÅd±'ÙìKûãÞ~,íûõk]ìuo_[í¯Ú?ÇOy²Í^öÄ=¥ÅÒnÕ.}Þ*}ÓìþÒ®¿´¾ß´¿ß´ø6ÿÓÊoÚùÍKüó¿ãOÂÅ>Çy?ðC(]öþ-Küeßr]ûwÝû÷Çìëø÷ñ³`¡²Û¯[ìiµ§Ý>¿¿²øáË8ÙÓÿ.ö9?+iËÏJ^üád¯K|KxÙed$.ïp²¯ú]ßãæñp²ÛÒe¼ìõXúg=¶þYã⫯Út;«Yn?[´OÝÀ1ûXàßp§©þ
Î
+[Mßÿê÷?þ×íßýæÇ¿üé»ßüÁÀ/²«ßìÇ?Ùüq
+ÿ¾(Ë>»ósùéÎÍø½{üªß[{º½_æ{bkO7ò«POlíõÓõyÏõõÓõ+wÏÃ÷§&Ûõ-a~©îîí¼¾ÖÌO/LÆécÍüÜd¾ÕÌ]ÍÆëSÍüÜd¾Ô̾MÆéSÌü¤Û#gROkÍ'^_iæw×óC|̾öø<®~lë¯÷~áÏùèé÷2¨£çf'¼6rº¨ý|ÀÉN¡¹p²óÍ»p²óM¸p²Ï
+>ÛÿÅ6òg·Óß;û¼¦üÜÙçm5å×Î>k«)?vöY[Mù³[MÝdl&%ø@Úv >A8Ùõ¦ONv]e_eæÄó¸çuÄÕOý`Øçìå©M>ãÃÌ<ªÞøef?9Õ×f^Üúù3öçÎL'pÃ~ø§[8bqNAn ÇcþÄjoÓØbЧÃZZ#xÃèðx,~ôÕÖÖÃÃ?¹ýò¿÷o_Ýêq{ÿ_=Å^]-Ù§¸¾¨Ä«ýäöúJÿúîëqä
+endstream
+endobj
+35 0 obj
+<<
+/Alternate /DeviceRGB
+/N 3
+/Length 2596
+/Filter /FlateDecode
+>>
+stream
+xwTSÙϽ7½PÐkhRH
+½H.*1 JÀ "6DTpDQ¦2(à£C±"
Q±ëDÔqpIdß¼yïÍß÷~k½ÏÝgï}Öº üÂLX ¡XáçÅg`ð l àp³³BøF|Ølø½º ùû*Ó?Á ÿ¹Y"1 PçòøÙ\É8=W%·Oɶ4MÎ0JÎ"Y2Vsò,[|öe9ó2<ËsÎâeðäÜ'ã9¾`çø¹2¾&ctI@Æoä±|N6 (Ü.æsSdl-c(2-ãy àHÉ_ðÒ/XÌÏËÅÎÌZ.$§&\SáÏÏMçÅÌ07#â1ØYár fÏüYym²";Ø8980m-m¾(Ô]ü÷v^îDøÃöW~
+ °¦eµÙúmi ]ëP»ýÍ`/ ²¾u}qº|^RÄâ,g+«ÜÜ\Kk)/èïúC_|ÏR¾Ýïåaxó8t1C^7nfz¦DÄÈÎâpùæøþuü$¾/ED˦L Lµ[ÈB@øøÃþ¤Ù¹ÚøÐX¥!@~ (* {d+Ðï}ÆGùÍÑûÏþ}W¸LþÈ$cGD2¸QÎìüZ4 E@ê@èÀ¶À¸ àA(q`1àD µ `'¨u 46ptcà48.Ë`ÜR0)ð
+Ì@
ÈRt CȲ
XäCP%CBH@ë R¨ªê¡fè[è(tº
+C· Qhúz#0 ¦ÁZ°l³`O8ÁÉð28.·Àp|îOÃàX
+?§:¢0ÂFBx$ !«¤i@Ú¤¹H§È[EE1PLÊ
⢡V¡6£ªQP¨>ÔUÔ(j
+õMFk¢ÍÑÎè t,:.FW Ðè³èô8ú¡c1L&³³³Ó9
Æa¦±X¬:Öë
+År°bl1¶
+{{{;}#âtp¶8_\<N+ÄUàZp'pWp¸¼ÞïÅóðËñeøF|~?!( ®HB*a-¡ÐF8K¸KxA$õNÄp¢¸XI<D<O%¾%QHf$6)$!m!í'"Ý"½ ÉFdr<YLÞBn&!ß'¿Q *X*(ðV+Ô(t*\Qx¦W4TôT\¬¯X¡xDqHñ©^ÉHÄQZ¥T£tTéÒ´2UÙF9T9Cy³ròåG,ÅâCáQ(û(g(cTªOeS¹ÔuÔFêYê8
+C3¦ÐRi¥´oh´)J´JJÊq)¡Ñèéô2úaúuú;U-UOU¾ê&Õ6Õ+ª¯Õæ¨y¨ñÕJÔÚÕFÔÞ©3Ô}ÔÓÔ·©w©ßÓ@iikäjìÑ8«ñtmËî9çÜÖ5Í4#4WhîÓÐÖÒÖòÓÊÒªÒ:£õT®í¡ª½Cûö¤UÇMG ³Cç¤Îc
+ÃΨdô1¦t5uýu%ºõºº3zÆzQz
zíz÷ô ú,ý$ýú½úS:!·
+ñ,ÃÃ]ý¯b6u=2V30Î7n5¾kB6q7YfÒ`rÍcÊ2M3ÝmzÙ6³7K1«12ÍÌæ»Í-ÐNBLÓÃleZÒ---»,YXÅ[m³ê·úhmonÝh}ÇbhShÓcó«-׶ÆöÚ\ò\ß¹«çvÏ}ngnÇ·ÛcwÓjb¿Á¾×þ£È¡ÍaÒÑÀ1ѱÖñÆ
+cmfwB;y9v:æôÖÙÁYì|Øù¦KKË£yÆóøóç¹ê¹r\ë]¥n·D·½nRw]w{û}Gǧ©gªçAÏg^Ö^"¯¯×lgöJö)oÄÛÏ»Ä{ÐâåSísßWÏ7Ù·ÕwÊÏÞo
ß)´ÿ6ÿZÜæ©@ÇÀ}A¤ AÕAÍEÁ=!pH`Èö»ó
+ççw
ÐÐí¡÷ÂÃ
} ¯ aQÑ¿º`ɯ"½"Ë"ïDDI¢z££¢£_ÇxÇÇHcbWÆ^ÓÄuÇcã£ãâ§ú,ܹp<Á>¡8áú"ãEy.,ÖX¾øøÅ%%GÑ1-ï9¡ÎôÒ¥µK§¸lî.îooïÊ/çO$¹&'=JvMÞ<âRòTÀT§ú§Ö¥¾NMÛö)=&½=qTH¦ û2µ3ó2³Ì³³¤Ëí\6%
+5eCÙ²»Å4ÙÏÔÄD²^2ãSó&7:÷Hr0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵µik(´.,/|¹.f]OVÑ¢±õ~ë[EÅ76¸l¨ÛÚ(Ø8¸iMKx%KK+Jßoæn¾øÍW_}Ú´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉ;ì¼PaWQ·°K²KZ\Ù]ePµµê}uJõHWM{fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ}}9û6F7öÍúº¹I£©´éÃ~á~é}ÍÍÍ--ep«¤uò`ÂÁËßxÓÝÆl«o§·$øíõÃA{°´}gø]mµ£¤ê\Þ9ÕÒ%íë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠¢Næ>uêééäÓc½Kzï=s/¼oðlÐÙóç|Ïé÷ì?yÞõü±Î^d]ìºäp©sÀ~ ãû:;º/;]î7|âûÓW½¯»píÒÈüáëQ×oÞH¸!½É»ùèVúç·snÏÜYs}·äÒ½û÷~4ý±]ê =>ê=:ð`Á;cܱ'?eÿô~¼è!ùaÅÎDó#ÛGÇ&}'/?^øxüIÖ§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯_¨¿ØÿÒîeïtØôýW¯f^¼Qsà-ëmÿ»w3¹ï±ï+?~èùôñî§O~÷óû
+endstream
+endobj
+39 0 obj <<
+/Length 134
+/Filter /FlateDecode
+>>
+stream
+xÚM½Â0w?
Gêú§n¥CH°!eCL ¶ªâýJKPtËÉw>}cö
+E(¹+æ
+3Y×cxÛ
+û{¾À1 /ËØÈÕð1Á(vî¾6*»FåïwhÏâaë¢5e³©FÇ/ r
+hêD0
+§ÏßOm*\
+endstream
+endobj
+36 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./OkunevWhite-004.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 40 0 R
+/BBox [0 0 432 432]
+/Resources <<
+/ProcSet [ /PDF /Text ]
+/Font << /F2 41 0 R/F3 42 0 R>>
+/ExtGState <<
+>>/ColorSpace <<
+/sRGB 43 0 R
+>>>>
+/Length 8754
+/Filter /FlateDecode
+>>
+stream
+x½M¯%·q÷÷Wi¡ãæg[9q b,/{ؾR`
+Ãÿ>¬zßê&û;e¡Ñ<SýÁ~»HäépûÕ-Üþ|ûëÓon½m÷m»ÅP_þï··ÿ¾}ÿôõ7O?÷ÛûúöwOzðvÿ|÷ï~þË4.øÍÿÜ]ìø#ðϦÿË[º÷qØw·/þóùÛ?}ÿåí??ýë7vý_Æ÷_ ÞS¼Åî%ë~÷Åoßþíï?|yû*Ûß¿ûò÷·o~u¾Öt¯ÂrI©·´Õ{ªV_þðö¯ûýþéRUr7!¤Þ{½
î]ϲdeÒ¤E¹Í&fþŧ`2;ùŤÜþñô»ß߶ÛÂíWã¿??¡¿~*éÒ-¶q¹vK÷Rnñ^¢Þùë§Rï/¶/ë맺Ýs¾²e{¢Ç6±{<¼{çI¾×zek÷/l-ÜE®låüìé?>¶õxýì½Üûf½ý°
á²áJ4u˧ãUÆ+ÙBH×ϳOF{;0Æí¬Àñ¦BÌ÷|å6!ÊY鲨Y³1}í´³
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/returnanalytics -r 2957
More information about the Returnanalytics-commits
mailing list