[Returnanalytics-commits] r2957 - in pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm: R vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Sat Aug 31 23:38:47 CEST 2013
Author: shubhanm
Date: 2013-08-31 23:38:47 +0200 (Sat, 31 Aug 2013)
New Revision: 2957
Added:
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.pdf
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf
Modified:
pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R
Log:
./ Further Addition of clean build vignettes
Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R 2013-08-31 21:27:27 UTC (rev 2956)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/AcarSim.R 2013-08-31 21:38:47 UTC (rev 2957)
@@ -40,7 +40,7 @@
T= 36
j=1
dt=1/T
-nsim=30;
+nsim=3;
thres=4;
r=matrix(0,nsim,T+1)
monthly = 0
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.pdf
===================================================================
(Binary files differ)
Property changes on: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.pdf
___________________________________________________________________
Added: svn:mime-type
+ application/octet-stream
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/NormCalmar.rnw 2013-08-31 21:38:47 UTC (rev 2957)
@@ -0,0 +1,111 @@
+%% no need for \DeclareGraphicsExtensions{.pdf,.eps}
+
+\documentclass[12pt,letterpaper,english]{article}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+\IfFileExists{url.sty}{\usepackage{url}}
+ {\newcommand{\url}{\texttt}}
+
+\usepackage{babel}
+%\usepackage{noweb}
+\usepackage{Rd}
+
+\usepackage{Sweave}
+\SweaveOpts{engine=R,eps=FALSE}
+%\VignetteIndexEntry{Performance Attribution from Bacon}
+%\VignetteDepends{PerformanceAnalytics}
+%\VignetteKeywords{returns, performance, risk, benchmark, portfolio}
+%\VignettePackage{PerformanceAnalytics}
+
+%\documentclass[a4paper]{article}
+%\usepackage[noae]{Sweave}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage[top=3cm, bottom=3cm, left=2.5cm]{geometry}
+%\usepackage{graphicx}
+%\usepackage{graphicx, verbatim}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage{graphicx}
+
+\title{Normalized Calmar and Sterling Ratio}
+\author{R Project for Statistical Computing}
+
+\begin{document}
+\SweaveOpts{concordance=TRUE}
+
+\maketitle
+
+
+\begin{abstract}
+ Both the Calmar and the Sterling ratio are the ratio of annualized returnmover the absolute value of the maximum drawdown of an investment. The Sterling ratio adds an excess risk measure to the maximum drawdown, traditionally and defaulting to 10\%.It is also traditional to use a three year return series for these
+ calculations, although the functions included here make no effort to
+ determine the length of your series. However, Malik Magdon-Ismail devised a scaling law in which can be used to compare Calmar/Sterling ratio's with different
+$\mu$ ,$\sigma$ and T.
+\end{abstract}
+
+<<echo=FALSE >>=
+library(PerformanceAnalytics)
+data(edhec)
+@
+
+<<echo=FALSE>>=
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/CalmarRatio.Norm.R")
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/SterlingRatio.Norm.R")
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/QP.Norm.R")
+@
+
+\section{Background}
+Given a sample of historical returns \((R_1,R_2, . . .,R_T)\),the Calmar and Sterling Ratio's are defined as :
+
+%Let $X \sim N(0,1)$ and $Y \sim \textrm{Exponential}(\mu)$. Let
+%$Z = \sin(X)$. $\sqrt{X}$.
+
+%$\hat{\mu}$ = $\displaystyle\frac{22}{7}$
+%e^{2 \mu} = 1
+%\begin{equation}
+%\left(\sum_{t=1}^{T} R_t/T\right) = \hat{\mu} \\
+%\end{equation}
+\begin{equation}
+ Calmar Ratio = \frac{Return [0,T]}{max Drawdown [0,T]} \\
+\end{equation}
+
+\begin{equation}
+ Sterling Ratio = \frac{Return [0,T]}{max Drawdown [0,T] - 10\%} \\
+\end{equation}
+
+\section{Scaling Law}
+Malik Magdon-Ismail impmemented a sclaing law for different $\mu$ ,$\sigma$ and T.Defined as :
+
+
+\begin{equation}
+Calmar_{\tau} = \gamma(_{\tau , Sharpe_{1}})Calmar_{T_{1}} \\
+\end{equation}
+
+Where :
+ \begin{equation}
+\gamma(_{\tau , Sharpe_{1}}) = \frac{\frac{Q_p(T_1/2Sharpe^2_{1})}{T_1}}{\frac{Q_p(T_2/2Sharpe^2_{1})}{\tau}} \\
+\end{equation}
+
+ And , when T tends to Infinity
+\begin{equation}
+Q_p(T/2Sharpe^2) = .63519 + log (Sharpe) + 0.5 log T\\
+\end{equation}
+
+Same methodolgy goes to Sterling Ratio.
+\section{Usage}
+
+In this example we use edhec database, to compute Calmar and Sterling Ratio.
+
+<<echo=T>>=
+library(PerformanceAnalytics)
+data(edhec)
+CalmarRatio.Norm(edhec,1)
+SterlingRatio.Norm(edhec,1)
+@
+
+We can see as we shrunk the period the Ratio's decrease because the Max Drawdown does not change much over reduction of time period, but returns are approximately scaled according to the time length.
+
+\end{document}
\ No newline at end of file
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.Rnw 2013-08-31 21:38:47 UTC (rev 2957)
@@ -0,0 +1,135 @@
+%% no need for \DeclareGraphicsExtensions{.pdf,.eps}
+
+\documentclass[12pt,letterpaper,english]{article}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+\IfFileExists{url.sty}{\usepackage{url}}
+ {\newcommand{\url}{\texttt}}
+
+\usepackage{babel}
+%\usepackage{noweb}
+\usepackage{Rd}
+
+\usepackage{Sweave}
+\SweaveOpts{engine=R,eps=FALSE}
+%\VignetteIndexEntry{Performance Attribution from Bacon}
+%\VignetteDepends{PerformanceAnalytics}
+%\VignetteKeywords{returns, performance, risk, benchmark, portfolio}
+%\VignettePackage{PerformanceAnalytics}
+
+%\documentclass[a4paper]{article}
+%\usepackage[noae]{Sweave}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage[top=3cm, bottom=3cm, left=2.5cm]{geometry}
+%\usepackage{graphicx}
+%\usepackage{graphicx, verbatim}
+%\usepackage{ucs}
+%\usepackage[utf8x]{inputenc}
+%\usepackage{amsmath, amsthm, latexsym}
+%\usepackage{graphicx}
+
+\title{Okunev White Return Model}
+\author{R Project for Statistical Computing}
+
+\begin{document}
+\SweaveOpts{concordance=TRUE}
+
+\maketitle
+
+
+\begin{abstract}
+The fact that many hedge fund returns exhibit extraordinary levels of serial correlation is now well-known and generally accepted as fact.Because hedge fund strategies have exceptionally high autocorrelations in reported returns and this is taken as evidence of return smoothing, we first develop a method to completely eliminate any order of serial correlation across a wide array of time series processes.Once this is complete, we can determine the underlying risk factors to the "true" hedge fund returns and examine the incremental benefit attained from using nonlinear payoffs relative to the more traditional linear factors.
+\end{abstract}
+
+<<echo=FALSE >>=
+library(PerformanceAnalytics)
+data(edhec)
+@
+
+<<echo=FALSE,eval=TRUE,results=verbatim >>=
+source("C:/Users/shubhankit/Desktop/Again/pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/R/Return.Okunev.R")
+@
+
+\section{Methodology}
+Given a sample of historical returns \((R_1,R_2, . . .,R_T)\),the method assumes the fund manager smooths returns in the following manner:
+
+%Let $X \sim N(0,1)$ and $Y \sim \textrm{Exponential}(\mu)$. Let
+%$Z = \sin(X)$. $\sqrt{X}$.
+
+%$\hat{\mu}$ = $\displaystyle\frac{22}{7}$
+%e^{2 \mu} = 1
+%\begin{equation}
+%\left(\sum_{t=1}^{T} R_t/T\right) = \hat{\mu} \\
+%\end{equation}
+\begin{equation}
+ r_{0,t} = \sum_{i}^{} \beta_{i}r_{0,t-i} + (1- \alpha)r_{m,t} \\
+\end{equation}
+
+
+\begin{equation}
+where : \sum_{i}^{} \beta_{i} = (1- \alpha) \\
+\end{equation}
+
+\(r_{0,t}\) : is the observed (reported) return at time t (with 0 adjustments' to reported returns), \\
+\(r_{m,t}\) : is the true underlying (unreported) return at time t (determined by making m adjustments to reported returns). \\
+
+The objective is to determine the true underlying return by removing the
+autocorrelation structure in the original return series without making any assumptions regarding the actual time series properties of the underlying process. We are implicitly assuming by this approach that the autocorrelations that arise in reported returns are entirely due to the smoothing behavior funds engage in when reporting results. In fact, the method may be adopted to produce any desired level of autocorrelation at any lag and is not limited to simply eliminating all autocorrelations.
+
+\section{To Remove Up to m Orders of Autocorrelation}
+To remove the first m orders of autocorrelation from a given return series we would proceed in a manner very similar to that detailed in \textbf{Geltner Return}. We would initially remove the first order autocorrelation, then proceed to eliminate the second order autocorrelation through the iteration process. In general, to remove any order, m, autocorrelations from a given return series we would make the following transformation to returns:
+
+\begin{equation}
+r_{m,t}=\frac{r_{m-1,t}-c_{m}r_{m-1,t-m}}{1-c_{m}}
+\end{equation}
+
+Where \(r_{m-1,t}\) is the series return with the first (m-1) order autocorrelation coefficient's removed.The general form for all the autocorrelations given by the process is :
+\begin{equation}
+a_{m,n}=\frac{a_{m-1,n}(1+c_{m}^2)-c_{m}(1+a_{m-1,2m})}{1+c_{m}^2 -2c_{m}a_{m-1,n}}
+\end{equation}
+
+Once a solution is found for \(c_{m}\) to create \(r_{m,t}\) , one will need to iterate back to remove the first m ??? 1 autocorrelations again. One will then need to once again remove the mth autocorrelation using the adjustment in equation (3). It would continue the process until the first m autocorrelations are sufficiently close to zero.
+
+\section{Usage}
+
+In this example we use edhec database, to compute true Hedge Fund Returns.
+
+<<Graph10,echo=T,fig=T>>=
+library(PerformanceAnalytics)
+data(edhec)
+Returns = Return.Okunev(edhec[,1])
+skewness(edhec[,1])
+skewness(Returns)
+# Right Shift of Returns Ditribution for a negative skewed distribution
+kurtosis(edhec[,1])
+kurtosis(Returns)
+# Reduction in "peakedness" around the mean
+layout(rbind(c(1, 2), c(3, 4)))
+ chart.Histogram(Returns, main = "Plain", methods = NULL)
+ chart.Histogram(Returns, main = "Density", breaks = 40,
+ methods = c("add.density", "add.normal"))
+ chart.Histogram(Returns, main = "Skew and Kurt",
+ methods = c("add.centered", "add.rug"))
+chart.Histogram(Returns, main = "Risk Measures",
+ methods = c("add.risk"))
+@
+
+The above figure shows the behaviour of the distribution tending to a normal IID distribution.For comparitive purpose, one can observe the change in the charateristics of return as compared to the orignal.
+<<echo=T,fig=T>>=
+library(PerformanceAnalytics)
+data(edhec)
+Returns = Return.Okunev(edhec[,1])
+layout(rbind(c(1, 2), c(3, 4)))
+ chart.Histogram(edhec[,1], main = "Plain", methods = NULL)
+ chart.Histogram(edhec[,1], main = "Density", breaks = 40,
+ methods = c("add.density", "add.normal"))
+ chart.Histogram(edhec[,1], main = "Skew and Kurt",
+ methods = c("add.centered", "add.rug"))
+chart.Histogram(edhec[,1], main = "Risk Measures",
+ methods = c("add.risk"))
+
+@
+
+\end{document}
\ No newline at end of file
Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/noniid.sm/vignettes/OkunevWhite.pdf 2013-08-31 21:38:47 UTC (rev 2957)
@@ -0,0 +1,1441 @@
+%PDF-1.5
+%ÐÔÅØ
+1 0 obj <<
+/Length 191
+>>
+stream
+concordance:OkunevWhite.tex:OkunevWhite.Rnw:1 44 1 1 5 1 4 44 1 1 2 1 0 3 1 5 0 1 1 5 0 1 2 6 0 1 1 5 0 1 2 1 0 1 1 1 2 1 0 1 2 1 0 1 2 5 0 1 2 1 1 1 2 1 0 4 1 1 2 1 0 1 2 1 0 1 2 6 0 1 3 1 1
+endstream
+endobj
+4 0 obj <<
+/Length 2121
+/Filter /FlateDecode
+>>
+stream
+xÚµX[oëÆ~?¿BÈK(4b¸W’òÐMAŠÔ@
+ää–hKÇ’iP´Oοï\É¥D§i<ØZîÎÎõÛ™ÙýæöÝ—ß¿²E£
+«Û{Ƽ,Â*:“{ïW·»ÕOÙ÷k“=¾À¿'økáïu½q…É~„áþÍÓܸ> qÿ„3Eö]·Þؘídïqýóí?¿üÖ+ãsç£E±¤Ùjµq!÷UÍR€í6dÿêa°>û€û·Ïßw=þá¯Áßü;ë`‹³G¦úr9Á¿gø{‘-±éuZ—×u½ÚØ2¯CÉJ óöYÈÛÓÚVÙ™ÓŠtó_ðÐ0ÆoÇ&F³2E^µA̓½Ïåþ×;UlÀ4ÞÓª<–+rëo½Ý‹ÏËî›-iH¨è¾¡›š'Tù/íѻ݅Ž@ëwü*´¸û¥·œy¡ýY¢¯îÄgC²€;Hû®ß©Kœ¡GdûŠZPô…gwÏ¿h|ÛË>ŠLn;œÙPP6&æ.zøuyl;iŠ|
+bX³e‘qøiøÔm™}ä8&ù¸mó(2‰ìmÄ8~hŸT±æH %{ˆ}½0!;{/4YßbÄÛ¹e‚=oÐÉĽž,át=JüÙ
+;ÀËÙx at C[ôeí‰cƒ–¼²•4‰‚Ù¦èe?¥æèæÃÞ?=xdK‰Ã’·E2Ÿö--<]?ÈYß%k²d³úǃ",a,áyTð<-¹ï\‰cívDº•ã+„5ø½Pƒ'ϧÑÜnØ+€ðH»
+qS1›*{_/î8¼y7Çv÷ÌÓ
+ÿœè4íGþ;žÿ"Ë-%%ÐQuk56hÒQô9i¢bH,ºa<èxöäZÃYÊâ![p ³+oǘwÜûî,Áþù(¾&.Mß+?Í%*¿“PžÇÓNð…™ç~ªw¦œpÆã󽘽m'f£ó’7¥ÃرšÕZiå50MóăÝH…ÖžBFbeL‡u§Éƒ¥ aŠž”xÄ)5cLÎ7ŒF{„÷gke„jŠi?§ø:MÛ@”¤íÄifd¯9¼Œ (g7# ZžöÓø@ïŧ–€5hz‚;ŠUË2t.¶‡Ð34#s‘yO:ñåÂÉ_õ“x’$·MÏóÏ¢@ĸŘ_cw̃ÎN§ÍMa„éS×k‚pS Û.s%“VÕƒÉyd1ÝSí.¡è—¹5ÐVaí¶un#”nWçXÍQ_³ÞŒów«=*Wd»…t„§±A2ЈjÀf•Øü1V/èþ97ÚãÙ>œÄ³hC˜Ž;E2U(Ú@DsM ®½/BÁÚ¹*ÕÎTºÅZJçÆ4qTYPS¡ý“—µS7,0òyéì*¡ú
+œËEŽÐ>¢—Sžö-žnçÍÍ
+âȽN¸CàLp3î·K‰y„v9¡™/Ö&=Û躓ºUëA¤z+
+å<ôöIΜxû‚ìO€¨"5ÕІ:XÊHÔ1Á"™¼aTH±ÎA}VƘàûˆãšVx;OV°rß ÈŽÜHU\¸¦
+£‚c/u³ž ã
+i«¼ªê뀇ÜbœøºXœ‡Ù+¿–bgÒÖi̾f*+u´‘´²p#‰4!DÿYò!hM^•NKÐ’pÃB‘fÌÔM\3D8U3ù¹ÜU³sòûËÛo”à}Q‹j‡ªTšÃò9)ЄI—¿ ¥”"© ¤$¬Ï+ëäÎKÉʸ%áe¬ˆÂ¹ÅÜŸõ…?ãÌŸ§e|™Päþ2)Ðåð-ÙPP]^ù’nÀ.Êõ./P²z)¸¢€|ÔùæÅÀåÿbÿAü;Q|‰‰²pós†V¿‚ |(ÿ,Ll$ÝR_óV¬"Ø+.îî$¬øG$,ð<è–zêf½OŒýnp³ôlÖݵÝç>{±@V=_©HÊôVÊž@ýô’#E &¹ý;uö*ÔéŠ ýãa,ƒ4]óáE_>´èq›‰SŸOü;滤°Þ/QÓéžcnê8¯}WµŒÄw›…ð²7ü¦Dà= ȤŸñSÜJ;ÆÍÇYÜäs¼ ðÔT÷å~2»uH½õAÝ®ä©Ó–Bì{=š×(ûpeR17]z!›µÿÞÃ}An¦^z‚ÇkÝO“àÝôöcm^Q"I‚ÉÈT¥ñv"
+‹¢Æ†·0½…jå)x¡ž·%Ó«[AH„«ÀóC»Õ'ÇW}0(ê1È@«ZÁP£8̯šú‚ZOw1#ÍËô=ƒÂxM} D‹Q…ù1JsÒ'°×‹€ˆäÄØF_M¹…Üê1ì[Q¢Ñç:ñÚåùߌ™^¸^ø=W4mùÍR[NcçJXŽâAºÝñIäÈL¯ÓJš¿6 $)B/ú˜i™øÐ}áXJQ†Þ'´]ÖÀw雩$χF´Ù]ó”(ë}6ñV“:³•grm$³’CÅ7æ^tyÖWjÒÏ’ýHƒk÷ÌC†ãe`ÍÕFºI½×cÏ9$5Sg?®+á3µ\Øwémz«‘ÐÇÕêò.t![ñKº/¾%y»i¤p'±Ý"رŊ×D«Öb=
+WÏd³w {œNÍÈ·=q7`œSˆƒØËÒ6&)][º˜)[a7•ÏCªä'æ²Kª‰¨ØÍµeZ‹g ZY›ÜÒßýýöÝà"'
+endstream
+endobj
+20 0 obj <<
+/Length 2157
+/Filter /FlateDecode
+>>
+stream
+xÚÅË’Û¸ñ>_Á[¨Ê
+K¼H0©k·*NœË&ÎlíÁöA–¨Å#ÑKJž8_ŸîFƒ)ŒfÆe'J Ðhô»ÍŸ®¯¾©ŠLJQ[«²ëm&‹BhSfeU‹Êºìz“½ÉûýBæíb©Ê¼=Âðž<xnKmêü=6¸²Z(—b¶óëÛÃoàéý\ã÷Ãüi`ÒŒ—Öïoizxïðõ£'ÇÇs2¤Ç³î ‹¥-lþjij]Áx‹ßá™6<1 Èmæ<Û¿sïÙ«òÏ®ï®ÿ–ÙRaŒõ2[1¯íG&¤AUEã‡.Ç¥.:CæHùºñ««
+ò³ßµ!Æv¼!àB&›OÖÜù™f¶¼ÿÄ'{ôk’í¾#6F¶¿ÙÏùÍ$®p¾ËÖ›xYæLÇŽ•
++8ÛGòpiÏÿ1´©•liü#«WÖ“£:ÌX6 Œ®xëßz&–B×0Üjã“Ò¾YÉLVBIkÐ3€R]‹ZzBÕb)%`¿^ÔÆ«Óæ¯ã¾]hæ?Ÿþ…Ø¡á‘
+pA¯?#ÜÕõ~aPŸÍDs
+EÐQ<píÉ%J§>”ªR¨ÊSz½pžwã¼ö½3“¢áø•#Û?ŽßÒ°ú#NUH0®Ù‘5v^é4¿õÿ+6áãeM›¶¿ï:òÁ<‰?Ó¿<1ZFГw,ˆ$s<nCTØxl±óUètd› O©0Hš†X²gã;ðÓt~ù†"泟èc“
+.Ôy$!cü þSææ¸Šv“ï Úݨy´ÑQóJˆÚp@”ÿ…ÄŽØD¢•ùk’á©{ÈvêBT¥ vÐã¯hB'ìylY ,Α&öó3sy1À°ùUÁüPâK- &± ŠÊª>·ÊÚ“ÑIul0ÁQµ>
+Ícßn¡0ðù$P¨àÞªj¶¶ã¦a»©‡øg]ŒJLöŒ²Õu{ø8•±CÑÏu¢D
+‡’}Ÿ8ËÞ¢¨i²Óc\îî‰ð ?é)©J“¿bÊ߇ÓIÙµKÇ\™äÀØNÂcÚ‡á3“›ONpÊÖë–ÚÊ'ŒiàÁ™TàÁùžˆ£ÀÓûÜ¢Ï=EqôøÆW$²
+žC‚ºŸd8ˆ]€úm0}JƒjŒ4€;Á `øƒÚM*A[ƒKÖà›…°…ñ"ê²Î*QW…D@©Æ‚$EUkµÿã1[d)*•Ep?$ÏÕ¢T2s¢pîY‡z(£"¨JHØÌÞEÁ˜Ê¦Ö
+S&Ž2Bi gfw°¥9‹Îš2GÀld¬€- Ʀˆ`ƒ«ã¿½ÊçIMˆ12uLýÐ1DëÕŸ¯¯~»Â}`J™ª-kêZhཿzó®È6°Þ,tí²{ÝÓE¦*PÔwÙ?¯þqõÓù]G«Z°Å8'Ô„µ3í¦ÿrÅš‰2fNâ*`ÍePj¸·…-ÀM5üKŸ.
+äùªó´d7ùõ6„Ë&E¡.Ádá>d.eŠÂ3sù&.5+D„Ñ>X˜±ÃÚ®¶Óœjfag(Uã2&ïCur‹ïzŠÅž×&ãêRÂ)€VÎ+óÌûR°ö9µ!Ô²ÄÊ`ç3©ò…ÃïˆgR9˜…-Í4a¥Séð\GIe–¡ùn´
+¥Ñžß[®OñÞÝ¡fê5Vt« 9K°ïCæ??+Y~ø¥Ýˆ5Á”u)!ƒ)á´I>v¤™g°CÚ9…û‚öÈ™ÿSgKò5f“(ä ©+•ÿ>Å#ħô<Ü•gáÎ]¸1Ÿ“\°/ÆC$Íe H[¤%£4 *ê'…éò+„iOÖs%6¨á!‹0O²ˆ¯\Ò$0(Ex PaØ?Õ¦d"¥—R¸JgFY USzUW«K)îOõUf L–ÅÔ/¨¥€¤'7d-Œ5
+¹ìo¢79í¬Š<^Q0ÓÞ,ÊLj •"Û
+gõ·(#Ÿÿ¡JZ-
+8ø¼>2‰ú"¥8pü̉ˆú«ÒÒuþú–¯Z§yGTš!ÅHΧ¨ï ËÛ¶KFejõUªAIýœ,\怢5%Û±ß Ä8aùfièË[%d9‰xx—¥¿_³HïwQïäCKM×xeÉ©zŠ&ó‹‡5f›lº@WÊ}}¡ƒääY…ç
+j9Âß‹/K#…
+'¿¸À {oVQCHxÔÁü˜˜XTHÂ@ëÁ¿{ÑmÆÅÖÛ`ÂøBNVÜ Ä‰¼NÎe±%æmºòÌ>®l¸¡Ÿt*ƶ2ŽWX—þ‹1÷G.¬C±K »[óC¦ŽšÜˆ¼„¢O<„(ÑñÅ]kïØÌø.tœNÄzZ{Ö³ï3ëÆžŽ£@„çîRŽÙ™õùNÐÃ_(Ò‡i-½êFô=‹+}‘ˆ>¥¬©Ô;£öКР{Â'ÍŸ@~!‚Øð›$JN¯ÓJ?ªã›3¢øPÜOãñ‰Ïä×fd½ö›HpøOA…z¯ßñÙ-K£;E‘ˆÓ
+Öaó¿Ò17üöráÔ$(ütÖ[cA:=\ókþDó§ÅÒ*=|.{ÏûWüÿÙ_=Ñâÿ>\9¥¿¼Å¿ßæÇ¨!}Çh‚!Y~CÊœÙ.S4#S.™¡c¾~Óëð=c.¿üÃe(¼Íbüü¥à†.‘izCú–9ƈwÓØó ¸ý>:¥…õÜ“@ñö‚âq›|‡½t/3Z:mèÄžêéöóDúVÅãt»Ý’é–5üH·K¾.¡Ö0øm2®¥ñBð_ÁIsà
+endstream
+endobj
+26 0 obj <<
+/Length 567
+/Filter /FlateDecode
+>>
+stream
+xÚÕUKoÛ0¾çWÙÅÅU²,;>l‡¡+†½0´Þ©Ë!“6Hj¶»aÿ¾”DËtç¶Æ€mèEñýQò›lr|ºPLJžj²lˤ\E1‹“”'zÁ²œ]¯æ:TÁ·œÉ`tt
+Ô8ñ9nÍѶ—vë
+7öD·@PT»ã4nðÈð—¨Úྴ&V}‹ÛÊmWn)0†InEX¹U©Ý£ÚO\sw”£v=*eöž 6—"ÝëÔžTØ ~M|ZøÈ®m†_] Í€$ÐÒ©J €Ò(&\¥‘1“Kˆ.U cØp#Hà³0žRt¡†\$’ûÃ`>s2³Àœu
+¥à“<–óƒ“Ùöôû909»ŽûVd.r¬fƒš¶ƒæŠ-1HÑOã±´Ûâø±i9 Î/âµé:]á î|0´îXiçÆú[¼„è©Nuzt¡‰Æ>Q)¢Äú¹ÆlÛù0 ½»woJ¼êÞŒ››Y×·•/ØŠ^up}:ô4¤•ÏúMo±(±cuÏÑg|úˆô
+?A¹
+Ž
+iÀ%ú¦#Ý/Þà.¬Á@Å/±âq}$ƒ5Åx9ÇuDÊC¦…Þ¥ïË͞Ѵž÷~6þ!Ƈ{ïíô7dô_ at fMi¯Èã÷:&}5‘6§ÿ
+ȉµwâOä¶ÔÄïÆ?üÿâ®T½ÄÛz|
+ú3CÍU¬Ù\éOÚ¢2ª“·Ùä˜%E
+endstream
+endobj
+29 0 obj <<
+/Length 755
+/Filter /FlateDecode
+>>
+stream
+xÚÕVKs›0¾ó+˜œ`c$àC;ÓŽ›iúnêž’lð#cR ÉøßwWZˆÛ=´“Žg‘XíãÓ·+fûðc6ó}/#;à‘±nŸ–—„BiaLå#?R/·ÌÖ7øé¥Ž90‚¾™XÃËÌ Áíɦ±7ò… nÄìIf_;“•Ëœ¹;ÅÈ™ÎÜœÂå‰ó€ÔG¾s㳬– ¿@Jò€•
+½¥ýc¥bÔF<nŽš©ŠÉœ;tPQ¤MÓ…
+VÃÔðÎȺª)'¾ÌC-ã€ä”ýrxh¯\nÖ
+Ú¡p±À[ 9¥¿À1<™3vo'ïÙØbcè…@°dì0.½ELá\¸ —@a¿ˆœ´ ´÷˜Z»k7Íz bi é¾§Â@Öù9,GmžiëtªÈÀªæå“˜ÅŒÛ]’1Z¸kƒu\btI”KI~’úÒ$'i¥ìU}‘L¿K£ì¢ÚØ#æã™¢#GlÀbC”n»LQIÑÎÄGi0˼)/@/’À<€‰&?Q˜^¹Ái®‹ZÙw 7¾ðaø*3*õ‚ZÑl(Ìœ’Íkz×HvFÁѦRaYK„(3¸ž¶(æÔð+š§Ç#]‘i—y!—_¶ÂŽþ²&}Nv‡1]ƒœƒ0Ûã7´Ë«e(©4ú˜gíRÚN™Ì)ãq²ÑvA«
+[;sèÊü0–qVF‡ÔÄÑ;}HWÐõ©»iûg|>Ý\t:zQKn:Lê
+g]ÒAÊö
+ÿ4?@>’ì ž/c
+S^}±îºDÌš¿0l½Gö/zJÿ‚v~ŸF£Q¾ŒÄ£ñÈ}®yϳ!·ÿ°{¿S%0È£RO›ó-_?wQÝðó·+”ªK_oüH•J½<¹2Ós)Ì•‘sÔŸŒÓSu>
+Õû¿©LÙÖKïÓ/`Î…D?”½$¨-·ë7òÎ
+endstream
+endobj
+23 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./OkunevWhite-Graph10.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 30 0 R
+/BBox [0 0 432 432]
+/Resources <<
+/ProcSet [ /PDF /Text ]
+/Font << /F2 31 0 R/F3 32 0 R>>
+/ExtGState <<
+>>/ColorSpace <<
+/sRGB 33 0 R
+>>>>
+/Length 8958
+/Filter /FlateDecode
+>>
+stream
+xœ½]Ë®%¹qÜ÷Wœ€ž…ŽŠ¯$¹Û2 C†ØÁA’ïŒ!CofFdÉ{NwßvË‹ééè¬+*È|<n¿¸…Ûn|÷¯·?ÞŽûqÜb×ÿûÓw·¿ýðîëoßýìÇ_ýã×·ßþøN>nóŸ?þö‡w?ûyüö?oÁ.výøgÓÿå#Ýû8ìûÛûyùÍïøêöíÞý÷výŸÇ_ ÞS¼Åî%ë~ýþWßýù/úêöÓXnïøñ«ÿ¸}û‹ýZÓ~–KV¹¥CîI¬1?ÿÓwüËw?üö¯Þ e%w#¢Ê½Ë-äpïzæ %;-'-ÖÛü§qbæ¿ûæ]0šæ?¿ù»'ÕrûŸw¿þÛqûÝ»pûÅøïïÐÌ_¾+éžÇÝÛ¸\»å{K·x/Mïüõ»Òî1-¶ƒ/ëëw’îG}f«úm5Þë³kÖz/Ï®ÙâÞÎÉVŸ·³Ç½×óuyÞÎp„½¡×‰úzž¶4„°7µÜCu£ìmŒ1¼jl»çèÖ²77Éunï9/ÖVîñ´–½Áƒ´VhÍÇÞâšï=¹u\g½rWó§-ÇÞæÅš÷6O,–¾79Ä{÷Ç•üŽ¥€ãÑøÁÓ™µ?nh6n<nîè«WW;î"zæõçÇ»»:ú÷7¿ðËí›ý ‡Ç½7³SçnwxÚ]yç_GP环#øRÎ#_G,ížžã<âS†qŽœm„
+{•qü/Ûüþ§Ç==Â<^oÊÛÉñSOÃo”°>ùìÑåì?ùäÑSB[Oþô;×vOe=ù|húhú{º›4Æö!
+}[»}¨î .»z±O;ádO£§Èeœì¸ái¿îÿÊ‘Ú#ýôzΔGújú?{¸G¼|àÔ4œú õÔðæsÇJÄ7Ÿ;œk/vn:¶×ÁÞó.ôÃFHŽŽÓèTã°go…çÑßX¥|,„°ÃE^_8 Ka¸•>`ÿÝ?þþÏýô,…öåB°Åb°îéa{>‘¿¿egÕá'ý›yXý…Åxù«¨ž.=5Ê]ÊSãìwc~£=5¦É¥¿2н»'Æ6…T»±‡{xÚÚž¦Xà•±¨ãyfl;·—1úŸÓsnÓQžs›4 yÖÚ4ÞúÆíõ²“Æ?O[;⪧Üj¿{ÊmŠÇÎítÏŸs›b~ÎmŠõÜÆ¾s[µÀ8¼ÃÆíÔ <Ÿ¶6ÕÛ8Þ“¸uô¤¾XÈü\tìÅZÔßÓšwzSÓ±ƒV™bU³æx—ìÖ¾¬Á·ß·„áqµÝ:úS~®ìÏü¾ãïÉ#Œð ?I˜âàWÏ;ÂËæé‰ì4XR’[Û+š'k=> âš^±|½ÜZv’gcÛ9žŸfüósäq£x6–ç£oÒ,éis‡«Þø.;Ïç#IJž½îìÎÆ>e([ƒþÏŠ{íýnWвqâ3ø÷qó¼†ãëŽçޝ#ØcÎ#_GP*环#–¶OÏò¥ÒõÌŸŸ§¨×úüD%aíóÌ>;QÑîýÙ‰Jêùy¢âa˜g"ÄIª–¦¾ýˆ‘œ®ÉŠŸstºÏ#ˆç#Æà>†ïëàùÜ÷:âjÇGãÿXŽÏÎYxn:*ãß÷åÍçú[?u;¹ìïÆÓ–|È’¶ŸyŠs¸á·'.Óx6÷Ð"ÁƳ ¥¦DÖ#¶Á <.üýÀI95œ¬Uù^T?AûZY¢ááj‹ãÔ
+WëvW<UÓûÇá_\ñ‡å›W{ñžÌ^ƒãÑ…¼Úõš]xÇ,†‹ÝÄ÷¹æõ¬ßX{ø «±Ž‘ý¡ÛóT+ZÿÀõGû„Û\ø{Aà¿à¨>á¤ÑÔ„Gw®3.Zêž°l¸Z÷¿p³AðÂ]‰ºðð°W´ðbIB
+3Ží›Û?†›8·¿[d5aQb'\7Ü4¶œp¿Ç©ýš@Ä<ã0ŵŠã†‡/œÞG:FûÂŒGûÐþ
+‹öcÃÕpï×k6«>p~7—ÔÌ]¾X² 'ÓC
+L²¢^æÅò
+bÓ§¦É!_úMaŒ# úΆË= ?ÔbX´8b÷ÃùÕqÆù£}‡a9‘íoªWMLö»¾ÀmæÅr“Cfœ[ÿÔôä@ÿ _±hC}ö|#û?п»ÝDGÄõ€›ãŽötsŒCæÕ®—00™gÇHfŸÒ£¢ÝîÅòâ—UœôÅ)îö¾’¨²ÏÖ¾T´@¤2/ÀãÀÑþžÐ¿5Û1\ÜÞtàR™6ܯ냫,ÅøÈÖñM†Ö>Œ¨*;è%GàbŹ“
+OeÔÿ‘
+¡ª¢é%—{«V‘‰Æ×šÖÄFê`í˸“ÏÜtRÁ28{þ‘µ|Ófâý£Óš:Y{F\7Âk½
+ôR¢;ì²8>ï
+ûhŸÖMv}ÑŠmüÖl©6;Ÿ÷«z¢Þï0~F¾¤xÐÎã-,P™ˆa±øØ’i;~dP#ªÔn}‹Í^i·nÖžáO4ëÃúÓð'5ÚûBþ¤{ŸxßTý¢óŠë]†žÆ°–½ÃŸ>؇?ÕS×nõb©•¨žlîFq°0cèKìú•IGaûkr¬½ÃŸH6|Øý‡?‘ýÚýµdízæŸÒð'ì~æß4#FþDŽ 7²éÝ®§úôÚXkÈÔÏèhE¬¿5œŸ›¿ÕÜÌüwR7¡Xà¿“ºÅKÏÌ'ö§Ñ±Ì_ŸÇwàÈþ§-Æñ=Àޝ=Â[éQq‚¿¶DZqvŒþÙ‹ûoð3ü ýw°çÑTŽþ÷oî¿ÑÿFÇ%¶ñ?’ÓäÑ‘s¼Æç<„—Ã5>k™5OñGþ$W|’GGOýŠ_4JKíŠoòð'©^ñOýuÇõú‰õzW6zæTßÔ8çò“ß.³ß¸Î~xèö(+^üx¥n&Üæ8aè<+^âíiÅm¹šj Œ»âŠ¥¸/÷¿ü¶ã\W\—ûÏyðWÔ²ñU6¾dãK6¾dãK6¾êÆWÝøª_uã«!Ž˜ðÊWÛøjæ×.Ü7¾úÆ×<Œ¸tá«+_:Τ/|µM_Ú⊾ڦ/í€aÅkœ»é«Íu[ÄÉ_mÓ×À²ÅÕ_mÓWËSÑxåkÓ¦þ¼òµéK–=n+^ùu at K\¿òµéKD^ñÊצ/
+ÒŠW¾6}q>Ư|mú꘩ñ÷oú¸-yEXùêáUžRúоú¦/ÍcÚŠ¾ú¦¯á—B]ñÂWßô5p_Ú›—<$öK_Žk™q9ùrì|9f^}bçøÒ—cÏó;_ŽÛrÿмc©XòŠûÒÞvòå8§×cÅ}ioßø:õe~Qq-Ö¼|˜|ØëŽÉñ©¯“¯“/äuÇ©/âè|˜|˜|1ÏŒÎñ©¯{]Á1ù²8Aq—Ÿú:1KÚˆS_ħ¾z!fž~bç˱óeqÔqNW0O>õubç«7™ñ©¯Þ‰'± ŽCÞpP_yÞÑ<ïFxœqòæƒú
+ÌCê+0qVdªç%ϧ¾‚¦Ï/–׬Sâȸ.ÜyÐÀ
+íEÞ˜gæú
+^ˆëóÀÀ—•7^P7Àýc!fœ‰87DçyaˆÎ×Ug@{S!&_©“¯ˆ;Ú‹<%dç+7bÛqêhZ· _ÈÃBq¾$´yÉÀäu€ ÎWâĸ=“¯ævò…þ¢uÖ!*qBð𺉰.swÄý×c':ÿÔ—×1®È’×]:ê(È“õ½NÓ½n‰<=tðõ2/¨ËàþÈËŽh/êT´·;n¨› ý1 ®“X78!oc‡úJ¬›Üªa¼¯ÁWb R_‰|,È»o|eöH}eòò°L}
+l|eæy‘úÊÈ›´®du½Ì<`ã«°?Gê«è0÷‚ºóèƒØø*Ì‹#õU¼.E} ÇS¡n„þ©/aÝ)R_bs†êJlõU9Dꫲ
+l|yž©¯êu8ê«qüÐe§Å0òðH}5öH}µ«nf|uŽ‘úêþ>©¯Îº…ÖÕ’Õ90þ$èk`ÖÅ ¯~ð}¬Ó°Ýǯ}iݤ+_=°n4°Ö)FØý%è«GæÝ úÒ°Êëvš7w[%¬|õD=$è«»¾R²:,Â&`åkàæv«ûöO6ì+B_#ÌÁøœ ¯.¬Û\«Õù }¡œ l|U¿Ÿô4lAÝc`㫱ÿ&èKÃ!Ö:¼†-‰X´nx8_&,ÅâuÈ®HþmÆV1ÆÏT}ô£uKÔÉ ·d2«Czs<ˆâ³®9ˆÑ° þNëœÍp6}Y˜P‰K@Ó±Öõ¼X”‹‹ãtØ”ümÖ$L±9Ö:¤.Üñºéº(ô›ÍQ©>_ãÇÀV7=d+h›ÄÊWðøB ZWõ:y6!*fÖô¥nãI¶y!ÅèïÙ
+Ô¶ª-wÔmQ'ÍY;¢¹É@¬|…ìubÓ—¹EÔ…m`KX¹
+¬|
+ܽ¬|aÿÈVÐS¡ÊÝê¦x¿Ùô¥uÎluE[˜ˆ¯Æ:#
+¶ŠK$ÎÁ0Æ‹¯Îñ"C_¡;V 67æXùR7Vˆ•¯Ùþ¦/ÂÜÚg—¹±ƒXùŠÏiºŽ^ÇV¾†ÿ*ÐW¬#[¢¸6båk`Œ7úÂôpÃÁëâÊ×À¨#è+º/Ð×Àˆ‡ŠÕm)×A¬|)v»ò}ü+昹ô8Ëj¯¸?â¬Q²û¡=Ð×uèKÛ'ÄíÅ<R¾ôù'ÜŸuùâ|Ao¥8_ˆ·
+ô=~+¾<>,ÐWôxµ@_Ñã÷RuàÒ÷Ëyè+þ|ÐW<¿›w1ýàz—¾±õÇîïßV6š>+_ª_Ÿg°þØè/ŠÕ¥Mÿ‰XùÒy³ô*ŸOL¸Ö¿2±ò„ýYïßÅ
+ÐÆ:V¾‚×ùúBX¬ó@c|à<…M°ÙôŸ[Lìïb86Oävå+x¼(З¦™8c¼›çMö' _ž_JÖÛZÉL¬|ññ†@_‡÷]GP0Õˆ•¯ÃçÙúҴͱÎKéøû‹ñu¸¿èKý‡c?9í6oæã¥@_‡Ï+
+œáÏŠc?;íÊ—ú?<oSášLÄÊ×áýWšÏ;¡¿×äû<¯˜c·²A#6¾Ÿ×ê6O60ôVm`´yC!Öz²Æ±Öû´,’‰µ>ªÓá˜2}]óZ¿G¼‚x±Z` ñL÷y*'k|ƒy,Kl¬,Ôˆ3æÍØÓ—•™2qg|…ûÙ¥Å_޵ž¬ñ™ãŠyTÄË5c͕뵚¾4þü|Å:±ÖG»Ï3×¾|^¹b)®ÆŸn/ˆG‘ÿÔ¾|¼©˜'ïÇ5Ïf|Œ—ª žÜ9^TîLëÞžŠúhçøV+êÉý¥bQãóDÜ¿ãyêÉþ¹6Ôßmu#°ÕG+õT¹'¤2¾¨õ÷êï«£>*Œ·kG=ÙçQô¥eäNœæyÅvø¼ òá}i~Põø®A_º¼¤sÞzm\ÙëãgËß
+qF~ˆ|R_Ìã?¾3?4¾ôÕ<~jœÌŒ/ô¥ù'æ5¡/ýçN‘ÏBÏ-û<%úsƒ¾0-ðbóœç=â„yÌp΃"Ÿÿ:¡Êü˜ë0\Ï
+úÒ|Þ± ^€yâF}E_ÔWt>ªÏCB¯úrÿÞ¨/O†°"êȇ[;×9âŠûCë,¼þ¡Â®S}¤u_—…x@;Æ\_Ñú½Lõ_'äñBç<t ¿ÒD’õ؃¯SAý£¯÷!ßX8O›‰û1Õ—zôz_>çÓTŸêÔ—Ç'=z½úí\äõ¯kžýMϹ~Ö3øâ:0ÅäùvÏ^ïC½£gçúíÅù‚ž41e½Ïç±ÉÞW/ÎòSMTYoŒÄ>ˆÉÞ¯ü¬âyëYÄäñïÀ^ÍÄ^Åó4çý»·³>ê¸ÎõÙÞ/økul¬'wb¯'7b¯'cÞýXêÉŠ½ž,Ä^OvìõdÌ«‡³žìØëï™X¦ú÷7ÓFp9>¸‰kÚÚô7ÙÀ¥#O¹…V¹ë×ï¿ù¯ï¾º
+Y¼ÿŸÛo~øÝ퟾qÄí=öc¿üùáv¬î®å‹m®×ˆãé¾®ú·ßX/¶ Êw§y_ýdºÖ÷cííc“Í™>4aSýc“¹ô‡&l©lªO[ˆ
+õŸûéžÅíôOãnúÇç!E˜lVš÷Ò?¶a%á|¿ªwÒOÆTtü7ÒOÆ–Î>Ü/=§-øØF?Gzî„Ç.úɨsaÙDÿ̘·ÖNÔawö|¢eþóúǼbÏácî°þñyØïñ؆àú…6Ï£/Ÿ{ίón*yÝ8ïV ËêókNv¾t·Nv¾·Nö¹±gÛ/ûÙ.Ÿúçï–_Î}ëfùåä·î•¿N~Ãn•ŸÏ}ëNùùÜm£<äëûäC)¾éc3[ªtYŸ#Àp+ÐeÕ(ì²]Ö¬úîfÂɨqÚ'»?“p²ãQNûõdŸ¸]âçnÀN¨â̇êúÀ™Ý*Þzf~ã™A‹=ÍN•·ž-ÏÒSÛ[OÕÝ²í¼™ãsÇ?Ç.‡AX{âËZ¡ü‰â«M3ërÍoš)V¡Î
+•PçŠFÞz"«ŠL(…TjB-_ȪmJuF’fÔ¦ûY•mB9ÎHÚŒút?«~L(×Õé~S7t2ahf¢ÏLÈ13jí„&&䘙@vBf&P¡=‘Õ7&41Úì„úÔ²43ªì„êÔ²<3!yf»¦&43±hB¬Ž1¡™‰EbŒ ÍL,š)Ê|ѨxfbÑV×OhfbÑ„X½bB3‹&Ä*š™X4QF1¡‰‰ºh¢ZuâDaf¢.š¨V—˜ÐÄD]4Q"1¡‰‰ºh¢Z-bBuÑDµ*Ä„&&ꢉÚÔ²²0±h¢ZåaBdBÓôzj‚(µ‘ "2aȪ
+"Dd‚¨Ë…š3A”ÛŒêÔ²îLÅ:£’gÔ®–µSD)ͨô [ð‡ÂË„À„#0á18P$ŽÀ„£zÌLXÁ¹& G`È5áLXYËk&&€\V at m…L8ŽÈ„–Jš8Dd‚ˆL 2aÈ5a~´¹&¬¼Óª3AD&T‘Í5á(£eH™(ðÔ¨i
+§€šUœ„éM”³PÍ.&êÈý
+¦v°õG¸AuLᲇnU&á¤}‡&
+¦PÁT€ÄZfÓ=š((æ¡v©H€²µÌ
+óš`YUKá"§nûø…S2ݶÜHÁ„
+ê•ÂmOZ´–Ùd»Ö*e6ˆJ¥¢
+Ô¬e6
+ˆ_En¦CR¸5¬ÛR*á„[/dÂʳ¨N»JÖ2+ív!VøE]»²ªúÔŠL4ÚÀD£[ËL»½‘ Ój‘"|›ö›!ðfucBPfEr 0h‹£DPòí6õ#&
+
+á`O¸œE¡’ÁÙ߀ê£î-úÚE0÷¡0YûºC%¤Bn
+Ç3Á‹*´ÆF¨œTo•”ŠYs…ÊJ·?ô0 ÍXzxÜ0Ó ¨Ä4ˆ7ÐH
+‡t¤ù²qÓ°A¡’Ó0ûëÚ˜£PÉé¨=+Tr:´¨pdÒI1r:&B*9ƒ BMW8-§p£®\™^à»sQØá §@“L
+½þ0éxÒʰ
+95Àí)äÔèoÁ~p rõ¦Âñ,Zäs8È© C„ÂANM˜Zдq4 r¦^áh@Í|ÝÁ”3 ÍË)äÔÌ+SNå ¢pV©6{Ræð*9\r‚)§
+ŬñµbäR¨äTÌÇ+Tr*úSÐu£‘œT¨äpñ„B%§cî#„ÌÜÚ¦¦rtƒP äè~ ƒ°Å›Ï{,xòíq
+9:k%(„Ì‚=iKþ€¦ßª¨phµej#؃7zS…Ý~È'ã\Û·Ýã¿ÂAŽÏ–*ähYê Kó~L9:•Û9Á)¬£‘º
+¦œ~²aÊé.Q]ö;rêಟh꜔،. ŽGÓ%‘B8ZÛ3œÂANç‚2-·çâû^f«w ïGS6y Ï®{íaµÝè½’ºhÊé\z§p´ÇW&(ät.$ÕL}\DGÀr—p³!0z¬úŒ[›xl\KÄ ¥,è4ÚÔppá§âA‘@ Ç[ÑF1FÓˆé_ˆ¨X‚eãæO®¸ÛŠÏ€}—Àù@Bˆ¥ÚÏ—Lܵ½Ü ¢ I±Tâñ.Väö
+£GGÓ’öUè±éŒ¡bòÑŒ¯ýÅ™œ¬»âø®nÍ:h!V¾|!båK
+¹]‹Ð7Ì7Ú#)V¾Bá 4°DÃ6ñ¯Xù
+\’½Hël8Ã’Ø·þ‰•/_8’ V,Øør¯”"øjðЊ{7Ìö%ðÕüy ¯Ðȯ.ôm†á‹R_Ñ€bã«“Ÿd%yë—n7¾:b%-_½.ÙjîÄÆW§£LÐ~åL1ô¥¸_î
+ô¸DqÇý¡¯TÁ—/‰úâBLÅäKÜN¾
+ÎoÎWrL¾0ÆèBßfüózÔWåШ¯êçwðUU+6¾¸á]‹œÆ—/]è+†¡·|êËÆ(6¾
+õœmÆÛÜD&6¾¸°H±ñ•ÈG¶ºæ¡p<õÅ…Š/.|V\“að›©/ròþÈómE˜ö_Œ~™úâBÄ¡/]ø&Ä)ØxÁ3C_GCT©XùÒØíµtÁ"™B¬|éœcåë(ßt¡o¿1ÄR,Æ×‘é$2ôupa¼bi6~²}öK :ÞÂeèëà(ΟyûCÏù<Ð×qÐ gûA]·]Û¶t<N¶åÚ½ÒGeëd¾¦^á ª{
+~ªBW蛵JTgV¦pð¤ëÍáÐSOÈ–tS¦‘RLT‹eæxÃPÀAQçR
+…ƒ¡~PÅ‚‘áÏ-·P˜Í½Ã]“Sk~_ûu%lžäø".…ƒÿí…ÕbŒÅBÂV°Lá §y¿(6€ëz©N8È£r1é¼èA˜,PB at Z¬³5®]T8ÈÑ¥>¸‘hk}%ÂlÚápÓ¬CRØ-šCÜTª’S;Ó‚bâ0„Õ¢HÁ}1ÃÅŸ.Q}&p$1º>rª0 -¦œ*ÞȮݩ2©S8È©ÜÌ¡pS½‹È¡‡UV&±¡X1å`ý!àºþ¼€]JëÁbÓÆP–Ñ#P[€¾9àøK|^1åÔèÍ0åT®UX-ÿ€ŸSN
+›ÄnQ¹¼]¡’ÃÕ0
+•þèŠN+–÷@Þb¿›Y½‡Š)§t€bÊ‘N™¡@!ÞQÎn%¦qç$˜¦ïTŽ˜rFÚ‡¡ZL9Â-I
+Å2H>‘)Gš³aÊî7P˜-ƒ„®Ä”#•Ù˜˜rÄÇLMR‘æÂbinöƒµè[逴µb t&LH¯#a±ôjcE<TSŽxlSM9Â=
+Åj V×ø•M- Ø#TSŽrR³Õ 0nTSŽV:a·ûF\Ê–í‰Ð'hÞie
+¸¤jÊþ¤QмÓJ(rUœ¨Œ„ÅJ#xG5±Ò…hSÓP+Û€ØjÊÑ—îV»0\k
+•<>”Ã_.Rˆz¿9…š¬PNq6„%¯ ³51U…r
+ß ~ŒN
+G†1DD³Âl÷E<]«¾pn#9Ûk#9Ðsm¬}Á÷ÕFrzÖNrø:Ë_ruгFBHµ“ŒHí`^XËí,*9Èq°ÜŽ‹ ½©ä k Wö:¦BcÁçQ„‡mÑ+ÅhUòRq#Œm,WBV‹X¬¼!ëÅ…c‡MΪphe.,"öê²B)'üæÓVªŒ|lþ”«=ÎÙÔ€—ì¶…ÊD§ÕÉk¥ŠÃËì÷®¥*™³C“=¯ö¼Úë5÷üýÍád·ç—½³Þíöh;®O;ád·¿—=rÆv²Ç¾Øcßì%/vˆb²·¶ØÛz‹§/;àbï²Ø»,vûÁÅ˸Øk[ìu½?j‘§p±·°ØÛòþ#¦¼N»Ï€Möåùe~«Ü^öÊ>6ÙkZìuÑ6ö^vÀÉnùÚe\ìaµ‡ÝÓbi³gYìY6»¬×—ýúíXìíx«}m_[Ú—ŽeZòu{“½•ÅÞý$¸éÓ8g;Ùc]ì±nvé‹]úf¯e±×õþÑÆàÓ9$Oö"‹½Èf—´Ø%möz,özlöÖ{[Ûo¿ pÙ×GLöœ{N›]iLv¬Ù˜íëùåÕù²Úe³ËÚ>ÙÛ7ë“p±×õþkÿKyÕGÞõa¿`0ÛSÛìËóåýù,™ívûz¾ìç׸ØkÜíyµçݾ>_ÝŸ¯×oûõûÚþ¾¶¿¬ú.»¾-DZì}³Ç¸ØcÜìóøžöñ=YŒ9Ûó~þ¢Ÿ²ëGVþdçOÖñEöñÅ~xd±¯üÖÅ?.ö¥Õ½ÕÅ?®öºÚëf—õú²_¿®í«{ûj_í}³·õü¶Ÿß×óûz~[üáb«=ìö…ß¶óÛ–øðMö9~ \ì=.öw{Zíi·Ëj_õc;œ/;àj—ÕþêüØçø•p±/ãëîÿ“ýîb/›½÷oûý?f_øí;¿±£^}Ú ûÌ/áb/«½¼²Ëj—Ý^W{ÝìsÿÉ{ü’mÚo±¯çÛŽ®Ë¸Êg²Ïã#áj﫽oöy|$\ìKûÂÞ¾¸ô_ÂÅžd±'ÙìKûãÞ~,˜˜íûõk]ìuo_[í¯Ú?ÇOyŸ²Í‡^öÄ“=¥ÅžÒn—Õ.›}Þ*‘}“Óì‹þÒ®¿´¾ß´¿ß´ø‡œ6ÿÓÊoÚùÍKüžó¿˜ãOÂÅ>Çy?ðC(—]öþ-Kü–e‹ßr]ûwÝû÷Çìëø™÷ñ³`¡²Û‹¯[žìiµ§Ý>¿¿²øá’Ë8ÙÓ’ÿ.ö9?+iËÏJ^üád¯K|KxÙeŸdŸ$.ï—p²¯ú–]ßãæñ“p²ÛÒe¼ìõXúg=¶þYã⟫¯Út;«Yn?‹[´OÝÀ1ûXàßp§©þ…Î
+ž[Mßÿê÷?þ×í—ßýæÇ¿üé»ßüÁÀ/²«”ßìÇ?Ùüq
+ÿ¾(Ë>»ósùéÎÍø½{üªß[{º½”_æ{bkO7˜ò«POlíõÓõyÏõõÓõ+wÏÃ÷§&Ûõ-a~©î‰îí¼¾ÖÌO/LÆécÍüšÜdœ¾ÕÌ]ÍÆëSÍüÜdœ¾Ô̾MÆéSÌü¤Û#g“R‡OkÍ'^_iæw×óŠŸC|̾öø<®~lë¯÷˜~áÏŸùèé÷2¨£çf'¼6rº¨ý|ÀÉN¡¹p²óÍ»p²óM¸p²Ï
+>ÛÿÅ6šòƒgŸ·Ó”ß;û¼¦üÜÙçm5å×Î>k«)?vöY[Mù³‡[MÝdl&%ø™@“Úv >A8Ùõ†¦O”Nv]e_eæÄó¸çuÄÕ†Oý`Øçìå©M>ãÃÌ<—‹ªÞøef?9Õןf^Üúù3ö‡çÎL'pÃ~ø§[Ÿ8bqNAn Çc—þÄjoÓØbЧƒÃZZ#œxÃèðx,~ôÕÖÖˆÃÃ?¹ýò¿÷o_Ýêq{ÿ›_=Å^]-Ù§¸¾¨Ä«ýäöúJÿúîëqä
+endstream
+endobj
+35 0 obj
+<<
+/Alternate /DeviceRGB
+/N 3
+/Length 2596
+/Filter /FlateDecode
+>>
+stream
+xœ–wTSهϽ7½P’Š”ÐkhRH
+½H‘.*1 JÀ "6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Idß¼yïÍ›ß÷~kŸ½ÏÝgï}Öº üƒÂLX €¡Xáçň‹g`ð l àp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁ ÿŸ”¹Y"1 P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6 (’Ü.æsSdl-c’(2‚-ãy àHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™Yár fÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™
+ °¦eµÙú‡mi ]ëP»ý‡Í`/ в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøÐ–X¥!@~ (* {d+Ðï}ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸ àA(ˆq`1à‚D €µ ”‚`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð
+Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº
+C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX
+?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL”ʅ⢖¡V¡6£ªQP¨>ÔUÔ(j
+õMFk¢ÍÑÎè t,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ
+År°bl1¶
+{{{;Ž}ƒ#âtp¶8_\<Nˆ+ÄUàZp'pWp¸¼ÞïŒÅóðËñeøF|~?ŽŸ!(Œ ®„HB*a-¡’ÐF8K¸KxA$õˆNÄp¢€¸†XI<D<O%¾%QHf$6)$!m!í'"Ý"½ “ÉFdr<YLÞBn&Ÿ!ß'¿Q *X*(ðV+Ô(t*\Qx¦ˆW4TôT\¬˜¯X¡xDqHñ©^ÉH‰ÄQZ¥T£tTé†Ò´2UÙF9T9Cy³r‹òåG,ňâCáQŠ(û(g(cT„ªOeS¹ÔuÔFêYê8
+C3¦ÐRi¥´ohƒ´)ŠŠJ´JžJÊq)¡Ñèéô2úaúuú;U-UOU¾ê&Õ6Õ+ª¯Õæ¨y¨ñÕJÔÚÕFÔÞ©3Ô}ÔÓÔ·©w©ßÓ@i˜i„käjìÑ8«ñtmŽË9‡çÜÖ„5Í4#4WhîÓМÖÒÖòÓÊÒªÒ:£õT›®í¡ª½Cû„ö¤UÇMG ³Cç¤Îc†
+Ó‘Ψdô1¦t5uýu%ºõºƒº3zÆzQz…zíz÷ô ú,ý$ýú½úS:!·
+ñ†,ÃÃ]†ý†¯ŒbŒ6u=2V30Î7n5¾kB6q7YfÒ`rÍcÊ2M3ÝmzÙ6³7K1«12‡ÍÌæ»Í‡-ÐNB‹‹LÓ“™ÃleŽZÒ-ƒ--»,ŸYXÅ[m³ê·úhmonÝh}džbhShÓcó«™-×¶ÆöÚ\ò\ß¹«çvÏ}ngnÇ·ÛcwÓžjb¿Á¾×þƒƒ£ƒÈ¡ÍaÒÑÀ1ѱÖñ‹Æ
+cmfwB;y9v:æôÖÙÁYì|Øù¦KšK‹Ë£yÆóøóç¹ê¹r\ë]¥n·D·½nRw]wŽ{ƒû}žG“Ç„§©gªçAÏg^Ö^"¯¯×lgöJö)oÄÛÏ»Ä{ЇâåSísßWÏ7Ù·ÕwÊÏÞo…ß)´ÿ6ÿZ܀怩@ÇÀ•}A¤ AÕA‚Í‚EÁ=!pH`Èö»ó
+ççw…‚ЀÐí¡÷΅…}Ž ¯ aQÑ¿€º`É‚–¯"½"Ë"ïD™DI¢z££¢›£_ÇxÇ”ÇHcbWÆ^ŠÓˆÄuÇcã£ã›â§ú,ܹp<Á>¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀTž§ú§Ö¥¾NMÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6%
+5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%KK+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-ep«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s/¼oðlÐÙóç|Ïé÷ì?yÞõü±ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVúç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû
+endstream
+endobj
+39 0 obj <<
+/Length 134
+/Filter /FlateDecode
+>>
+stream
+xÚM޽Â0„w?…Gêú§n’¥CH°!eCL ¶ªâýJKPtËÉw>}c†ö
+E(¹+æ
+3Y×c˜ŸxÛ
+û{¾À1ƒ /’ËØÈÕð1Á(vî¾6*»FåïwhÏ“âa†ë¢5e³©FÇ/ r
+hêD0
+™§ÏßOm*\
+endstream
+endobj
+36 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./OkunevWhite-004.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 40 0 R
+/BBox [0 0 432 432]
+/Resources <<
+/ProcSet [ /PDF /Text ]
+/Font << /F2 41 0 R/F3 42 0 R>>
+/ExtGState <<
+>>/ColorSpace <<
+/sRGB 43 0 R
+>>>>
+/Length 8754
+/Filter /FlateDecode
+>>
+stream
+xœ½M¯%·q†÷÷Wœi¡ãæg‘[9q b,/{ؾR`
+Ãÿ>¬zßê&ûžž™;e¡Ñ<SýÁ~»H‹äépûÕ-Üþ|ûëÓon½m÷m»ÅP_þ·ÿ¾}ÿôõ7O?÷Ûûúö‡wOzðv›ÿ|÷‡ïŸ~þË4.øÍÿÜ‚]ìø#ðϦÿË[º÷qØw·/þóùÛ?}ÿåí›??ýë7vý_Æ÷_ ÞS¼Åî%ë~÷Åoßþíï?|yû*–Ûß¿ûò÷·o~u¾Öt¯ÂrI©·´Õ{ªV˜_þðö¯ûýþéRUr7!¤Þ{½…î]ϲd—eÒ¤E¹Íš&fþÅ›§`2;ùÅŒ“¤Üþñô»ßß¶ÛŸÂíWã¿??¡˜¿~*éžÒ-¶q¹vK÷Rnñ^¢Þùë§Rï/¶/ë맺Ýs¾²e{¢Ç6±{<¼Ÿ„{çI¾×zek÷/l-ÜE®låüì“é?>¶õxýì½Üû•f½ŸŸý°…á²áJ4u‡Ë§ãUÆ+ÙBH×Ï‚˜³OF{;0Æí¬Àñ¦BÌ÷|å6!ÊYƒé²¨Y³1}í´–³
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/returnanalytics -r 2957
More information about the Returnanalytics-commits
mailing list