[Returnanalytics-commits] r2929 - in pkg/PerformanceAnalytics/sandbox/pulkit: R man vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Aug 29 12:11:43 CEST 2013


Author: pulkit
Date: 2013-08-29 12:11:43 +0200 (Thu, 29 Aug 2013)
New Revision: 2929

Modified:
   pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R
   pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/MultiBetaDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/vignettes/ProbSharpe.pdf
Log:
changes during R CMD check

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R	2013-08-29 10:11:43 UTC (rev 2929)
@@ -4,21 +4,21 @@
 #'@description
 #'The drawdown beta is formulated as follows
 #'
-#'\deqn{\beta_DD = \frac{{\sum_{t=1}^T}{q_t^\**}{(w_{k^{\**}(t)}-w_t)}}{D_{\alpha}(w^M)}}
+#'\deqn{\beta_DD = \frac{{\sum_{t=1}^T}{q_t^{*}}(w_{k^{*}(t)}-w_t)}{D_{\alpha}(w^M)}}
 #' here \eqn{\beta_DD} is the drawdown beta of the instrument.
 #'\eqn{k^{\**}(t)\in{argmax_{t_{\tau}{\le}k{\le}t}}w_k^M}
 #'
-#'\eqn{q_t^\**=1/((1-\alpha)T)} if \eqn{d_t^M} is one of the 
+#'\eqn{q_t^{*}=1/((1-\alpha)T)} if \eqn{d_t^M} is one of the 
 #'\eqn{(1-\alpha)T} largest drawdowns \eqn{d_1^{M} ,......d_t^M} of the 
-#'optimal portfolio and \eqn{q_t^\** = 0} otherwise. It is assumed 
-#'that \eqn{D_\alpha(w^M) {\neq} 0} and that \eqn{q_t^\**} and 
-#'\eqn{k^{\**}(t)} are uniquely determined for all \eqn{t = 1....T}
+#'optimal portfolio and \eqn{q_t^{*} = 0} otherwise. It is assumed 
+#'that \eqn{D_{\alpha}(w^M) \neq 0} and that \eqn{q_t^{*}} and 
+#'\eqn{k^{*}(t)} are uniquely determined for all \eqn{t = 1....T}
 #'
 #'The numerator in \eqn{\beta_DD} is the average rate of return of the 
 #'instrument over time periods corresponding to the \eqn{(1-\alpha)T} largest
-#'drawdowns of the optimal portfolio, where \eqn{w_t - w_k^{\**}(t)} 
+#'drawdowns of the optimal portfolio, where \eqn{w_t - w_k^{*}(t)} 
 #'is the cumulative rate of return of the instrument from the optimal portfolio
-#' peak time \eqn{k^\**(t)} to time t.
+#' peak time \eqn{k^{*}(t)} to time t.
 #'
 #'The difference in CDaR and standard betas can be explained by the 
 #'conceptual difference in beta definitions: the standard beta accounts for

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R	2013-08-29 10:11:43 UTC (rev 2929)
@@ -4,15 +4,15 @@
 #'@description
 #'The drawdown beta is formulated as follows
 #'
-#'\deqn{\beta_DD^i = \frac{{\sum_{s=1}^S}{\sum_{t=1}^T}p_s{q_t^\asterisk}{(w_{s,k^{\asterisk}(s,t)^i}-w_{st}^i)}}{D_{\alpha}(w^M)}}
+#'\deqn{\beta_DD^i = \frac{{\sum_{s=1}^S}{\sum_{t=1}^T}p_s{q_t^{*}}{(w_{s,k^{*}(s,t)^i}-w_{st}^i)}}{D_{\alpha}(w^M)}}
 #' here \eqn{\beta_DD} is the drawdown beta of the instrument for multiple sample path.
-#'\eqn{k^{\asterisk}(s,t)\in{argmax_{t_{\tau}{\le}k{\le}t}}w_{sk}^p(x^\asterisk)}
+#'\eqn{k^{*}(s,t)\in{argmax_{t_{\tau}{\le}k{\le}t}}w_{sk}^p(x^{*})}
 #'
 #'The numerator in \eqn{\beta_DD} is the average rate of return of the 
 #'instrument over time periods corresponding to the \eqn{(1-\alpha)T} largest
-#'drawdowns of the optimal portfolio, where \eqn{w_t - w_k^{\asterisk}(t)} 
+#'drawdowns of the optimal portfolio, where \eqn{w_t - w_k^{*}(t)} 
 #'is the cumulative rate of return of the instrument from the optimal portfolio
-#' peak time \eqn{k^\asterisk(t)} to time t.
+#' peak time \eqn{k^{*}(t)} to time t.
 #'
 #'The difference in CDaR and standard betas can be explained by the 
 #'conceptual difference in beta definitions: the standard beta accounts for

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R	2013-08-29 10:11:43 UTC (rev 2929)
@@ -3,14 +3,14 @@
 #'Maximizing for PSR leads to better diversified and more balanced hedge fund allocations compared to the concentrated 
 #'outcomes of Sharpe ratio maximization.We would like to find the vector of weights that maximize the expression
 #'
-#'\deqn{\hat{PSR}(SR^\**) = Z\biggl[\frac{(\hat{SR}-SR^\**)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\** + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]}
+#'\deqn{\hat{PSR}(SR^{*}) = Z\bigg[\frac{(\hat{SR}-SR^{*})\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^{*} + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\bigg]}
 #'
 #'where \eqn{\sigma = \sqrt{E[(r-\mu)^2]}} ,its standard deviation.\eqn{\gamma_3=\frac{E\biggl[(r-\mu)^3\biggr]}{\sigma^3}} its skewness,
-#'\eqn{\gamma_4=\frac{E\biggl[(r-\mu)^4\biggr]}{\sigma^4}} its kurtosis and \eqn{SR = \frac{\mu}{\sigma}} its Sharpe Ratio.
-#'Because \eqn{\hat{PSR}(SR^\**)=Z[\hat{Z^\**}]} is a monotonic increasing function of 
-#'\eqn{\hat{Z^\**}} ,it suffices to compute the vector that maximizes \eqn{\hat{Z^\**}}
+#'\eqn{\gamma_4=\frac{E\bigg[(r-\mu)^4\bigg]}{\sigma^4}} its kurtosis and \eqn{SR = \frac{\mu}{\sigma}} its Sharpe Ratio.
+#'Because \eqn{\hat{PSR}(SR^{*})=Z[\hat{Z^{*}}]} is a monotonic increasing function of 
+#'\eqn{\hat{Z^{*}}} ,it suffices to compute the vector that maximizes \eqn{\hat{Z^{*}}}
 #'
-#'This optimal vector is invariant of the value adopted by the parameter \eqn{SR^\**}. 
+#'This optimal vector is invariant of the value adopted by the parameter \eqn{SR^{*}}. 
 #'Gradient Ascent Logic is used to compute the weights using the Function PsrPortfolio
 #'@aliases PsrPortfolio
 #'

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R	2013-08-29 10:11:43 UTC (rev 2929)
@@ -8,7 +8,7 @@
 #' probability of skill. The reference Sharpe Ratio should be less than 
 #' the Observed Sharpe Ratio.
 #' 
-#' \deqn{\hat{PSR}(SR^\ast) = Z\biggl[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]}
+#' \deqn{\hat{PSR}(SR^{*}) = Z\bigg[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\bigg]}
 
 #' Here \eqn{n} is the track record length or the number of data points. It can be daily,weekly or yearly depending on the input given
 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd	2013-08-29 10:11:43 UTC (rev 2929)
@@ -35,24 +35,24 @@
   The drawdown beta is formulated as follows
 
   \deqn{\beta_DD =
-  \frac{{\sum_{t=1}^T}{q_t^\**}{(w_{k^{\**}(t)}-w_t)}}{D_{\alpha}(w^M)}}
+  \frac{{\sum_{t=1}^T}{q_t^{*}}(w_{k^{*}(t)}-w_t)}{D_{\alpha}(w^M)}}
   here \eqn{\beta_DD} is the drawdown beta of the
   instrument.
   \eqn{k^{\**}(t)\in{argmax_{t_{\tau}{\le}k{\le}t}}w_k^M}
 
-  \eqn{q_t^\**=1/((1-\alpha)T)} if \eqn{d_t^M} is one of
+  \eqn{q_t^{*}=1/((1-\alpha)T)} if \eqn{d_t^M} is one of
   the \eqn{(1-\alpha)T} largest drawdowns \eqn{d_1^{M}
-  ,......d_t^M} of the optimal portfolio and \eqn{q_t^\** =
-  0} otherwise. It is assumed that \eqn{D_\alpha(w^M)
-  {\neq} 0} and that \eqn{q_t^\**} and \eqn{k^{\**}(t)} are
+  ,......d_t^M} of the optimal portfolio and \eqn{q_t^{*} =
+  0} otherwise. It is assumed that \eqn{D_{\alpha}(w^M)
+  \neq 0} and that \eqn{q_t^{*}} and \eqn{k^{*}(t)} are
   uniquely determined for all \eqn{t = 1....T}
 
   The numerator in \eqn{\beta_DD} is the average rate of
   return of the instrument over time periods corresponding
   to the \eqn{(1-\alpha)T} largest drawdowns of the optimal
-  portfolio, where \eqn{w_t - w_k^{\**}(t)} is the
-  cumulative rate of return of the instrument from the
-  optimal portfolio peak time \eqn{k^\**(t)} to time t.
+  portfolio, where \eqn{w_t - w_k^{*}(t)} is the cumulative
+  rate of return of the instrument from the optimal
+  portfolio peak time \eqn{k^{*}(t)} to time t.
 
   The difference in CDaR and standard betas can be
   explained by the conceptual difference in beta

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/MultiBetaDrawdown.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/MultiBetaDrawdown.Rd	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/MultiBetaDrawdown.Rd	2013-08-29 10:11:43 UTC (rev 2929)
@@ -40,18 +40,17 @@
   The drawdown beta is formulated as follows
 
   \deqn{\beta_DD^i =
-  \frac{{\sum_{s=1}^S}{\sum_{t=1}^T}p_s{q_t^\asterisk}{(w_{s,k^{\asterisk}(s,t)^i}-w_{st}^i)}}{D_{\alpha}(w^M)}}
+  \frac{{\sum_{s=1}^S}{\sum_{t=1}^T}p_s{q_t^{*}}{(w_{s,k^{*}(s,t)^i}-w_{st}^i)}}{D_{\alpha}(w^M)}}
   here \eqn{\beta_DD} is the drawdown beta of the
   instrument for multiple sample path.
-  \eqn{k^{\asterisk}(s,t)\in{argmax_{t_{\tau}{\le}k{\le}t}}w_{sk}^p(x^\asterisk)}
+  \eqn{k^{*}(s,t)\in{argmax_{t_{\tau}{\le}k{\le}t}}w_{sk}^p(x^{*})}
 
   The numerator in \eqn{\beta_DD} is the average rate of
   return of the instrument over time periods corresponding
   to the \eqn{(1-\alpha)T} largest drawdowns of the optimal
-  portfolio, where \eqn{w_t - w_k^{\asterisk}(t)} is the
-  cumulative rate of return of the instrument from the
-  optimal portfolio peak time \eqn{k^\asterisk(t)} to time
-  t.
+  portfolio, where \eqn{w_t - w_k^{*}(t)} is the cumulative
+  rate of return of the instrument from the optimal
+  portfolio peak time \eqn{k^{*}(t)} to time t.
 
   The difference in CDaR and standard betas can be
   explained by the conceptual difference in beta

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd	2013-08-29 10:11:43 UTC (rev 2929)
@@ -47,9 +47,9 @@
   of skill. The reference Sharpe Ratio should be less than
   the Observed Sharpe Ratio.
 
-  \deqn{\hat{PSR}(SR^\ast) =
-  Z\biggl[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast
-  + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]} Here
+  \deqn{\hat{PSR}(SR^{*}) =
+  Z\bigg[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast
+  + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\bigg]} Here
   \eqn{n} is the track record length or the number of data
   points. It can be daily,weekly or yearly depending on the
   input given \eqn{\hat{\gamma{_3}}} and

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd	2013-08-29 10:03:24 UTC (rev 2928)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd	2013-08-29 10:11:43 UTC (rev 2929)
@@ -23,22 +23,22 @@
   would like to find the vector of weights that maximize
   the expression
 
-  \deqn{\hat{PSR}(SR^\**) =
-  Z\biggl[\frac{(\hat{SR}-SR^\**)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\**
-  + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]}
+  \deqn{\hat{PSR}(SR^{*}) =
+  Z\bigg[\frac{(\hat{SR}-SR^{*})\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^{*}
+  + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\bigg]}
 
   where \eqn{\sigma = \sqrt{E[(r-\mu)^2]}} ,its standard
   deviation.\eqn{\gamma_3=\frac{E\biggl[(r-\mu)^3\biggr]}{\sigma^3}}
   its skewness,
-  \eqn{\gamma_4=\frac{E\biggl[(r-\mu)^4\biggr]}{\sigma^4}}
+  \eqn{\gamma_4=\frac{E\bigg[(r-\mu)^4\bigg]}{\sigma^4}}
   its kurtosis and \eqn{SR = \frac{\mu}{\sigma}} its Sharpe
-  Ratio. Because \eqn{\hat{PSR}(SR^\**)=Z[\hat{Z^\**}]} is
-  a monotonic increasing function of \eqn{\hat{Z^\**}} ,it
+  Ratio. Because \eqn{\hat{PSR}(SR^{*})=Z[\hat{Z^{*}}]} is
+  a monotonic increasing function of \eqn{\hat{Z^{*}}} ,it
   suffices to compute the vector that maximizes
-  \eqn{\hat{Z^\**}}
+  \eqn{\hat{Z^{*}}}
 
   This optimal vector is invariant of the value adopted by
-  the parameter \eqn{SR^\**}. Gradient Ascent Logic is used
+  the parameter \eqn{SR^{*}}. Gradient Ascent Logic is used
   to compute the weights using the Function PsrPortfolio
 }
 \examples{

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/vignettes/ProbSharpe.pdf
===================================================================
(Binary files differ)



More information about the Returnanalytics-commits mailing list