[Returnanalytics-commits] r2871 - in pkg/PerformanceAnalytics/sandbox/Shubhankit: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Aug 24 11:24:24 CEST 2013


Author: shubhanm
Date: 2013-08-24 11:24:23 +0200 (Sat, 24 Aug 2013)
New Revision: 2871

Added:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/LoSharpe.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/Return.Okunev.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/LoSharpe.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/quad.Rd
Modified:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION
   pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/GLMSmoothIndex.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd
Log:
.Rd details added

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION	2013-08-24 00:07:51 UTC (rev 2870)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION	2013-08-24 09:24:23 UTC (rev 2871)
@@ -1,37 +1,38 @@
-Package: noniid.sm
-Type: Package
-Title: Non-i.i.d. GSoC 2013 Shubhankit
-Version: 0.1
-Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
-Author: Shubhankit Mohan <shubhankit1 at gmail.com>
-Contributors: Peter Carl, Brian G. Peterson
-Depends:
-    xts,
-    PerformanceAnalytics
-Suggests:
-    PortfolioAnalytics
-Maintainer: Brian G. Peterson <brian at braverock.com>
-Description: GSoC 2013 project to replicate literature on drawdowns and
-    non-i.i.d assumptions in finance.
-License: GPL-3
-ByteCompile: TRUE
-Collate:
-    'ACStdDev.annualized.R'
-    'CalmarRatio.Normalized.R'
-    'CDDopt.R'
-    'CDrawdown.R'
-    'chart.Autocorrelation.R'
-    'EmaxDDGBM.R'
-    'GLMSmoothIndex.R'
-    'maxDDGBM.R'
-    'na.skip.R'
-    'Return.GLM.R'
-    'table.ComparitiveReturn.GLM.R'
-    'table.normDD.R'
-    'table.UnsmoothReturn.R'
-    'UnsmoothReturn.R'
-    'AcarSim.R'
-    'CDD.Opt.R'
-    'CalmarRatio.Norm.R'
-    'SterlingRatio.Norm.R'
-
+Package: noniid.sm
+Type: Package
+Title: Non-i.i.d. GSoC 2013 Shubhankit
+Version: 0.1
+Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
+Author: Shubhankit Mohan <shubhankit1 at gmail.com>
+Contributors: Peter Carl, Brian G. Peterson
+Depends:
+    xts,
+    PerformanceAnalytics
+Suggests:
+    PortfolioAnalytics
+Maintainer: Brian G. Peterson <brian at braverock.com>
+Description: GSoC 2013 project to replicate literature on drawdowns and
+    non-i.i.d assumptions in finance.
+License: GPL-3
+ByteCompile: TRUE
+Collate:
+    'ACStdDev.annualized.R'
+    'CalmarRatio.Normalized.R'
+    'CDDopt.R'
+    'CDrawdown.R'
+    'chart.Autocorrelation.R'
+    'EmaxDDGBM.R'
+    'GLMSmoothIndex.R'
+    'maxDDGBM.R'
+    'na.skip.R'
+    'Return.GLM.R'
+    'table.ComparitiveReturn.GLM.R'
+    'table.normDD.R'
+    'table.UnsmoothReturn.R'
+    'UnsmoothReturn.R'
+    'AcarSim.R'
+    'CDD.Opt.R'
+    'CalmarRatio.Norm.R'
+    'SterlingRatio.Norm.R'
+    'LoSharpe.R'
+    'Return.Okunev.R'

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE	2013-08-24 00:07:51 UTC (rev 2870)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE	2013-08-24 09:24:23 UTC (rev 2871)
@@ -1,12 +1,19 @@
-export(ACStdDev.annualized)
-export(CalmarRatio.Normalized)
-export(CDrawdown)
-export(chart.Autocorrelation)
-export(EMaxDDGBM)
-export(GLMSmoothIndex)
-export(QP.Norm)
-export(SterlingRatio.Normalized)
-export(table.ComparitiveReturn.GLM)
-export(table.EMaxDDGBM)
-export(table.NormDD)
-export(table.UnsmoothReturn)
+export(AcarSim)
+export(ACStdDev.annualized)
+export(CalmarRatio.Norm)
+export(CalmarRatio.Normalized)
+export(CDD.Opt)
+export(CDDOpt)
+export(CDrawdown)
+export(chart.Autocorrelation)
+export(EMaxDDGBM)
+export(GLMSmoothIndex)
+export(LoSharpe)
+export(QP.Norm)
+export(Return.Okunev)
+export(SterlingRatio.Norm)
+export(SterlingRatio.Normalized)
+export(table.ComparitiveReturn.GLM)
+export(table.EMaxDDGBM)
+export(table.NormDD)
+export(table.UnsmoothReturn)

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/GLMSmoothIndex.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/GLMSmoothIndex.R	2013-08-24 00:07:51 UTC (rev 2870)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/GLMSmoothIndex.R	2013-08-24 09:24:23 UTC (rev 2871)
@@ -1,14 +1,14 @@
-#'@title Getmansky Lo Markov Smoothing Index Parameter
+#'@title  GLM Index 
 #'@description
-#'A useful summary statistic for measuring the concentration of weights is
+#'Getmansky Lo Markov Smoothing Index is a useful summary statistic for measuring the concentration of weights is
 #' a sum of square of Moving Average lag coefficient.
 #' This measure is well known in the industrial organization literature as the 
-#' Herfindahl index, a measure of the concentration of firms in a given industry. 
+#' \bold{ Herfindahl index}, a measure of the concentration of firms in a given industry. 
 #' The index is maximized when one coefficient is 1 and the rest are 0. In the context of
-#'smoothed returns, a lower value of x implies more smoothing, and the upper bound
-#'of 1 implies no smoothing,  hence x is reffered as a ''smoothingindex' '.
-#' 
-#' \deqn{ R_t  =    \mu + \beta \delta_t+ \xi_t}
+#'smoothed returns, a lower value implies more smoothing, and the upper bound
+#'of 1 implies no smoothing,  hence \eqn{\xi} is reffered as a '\bold{smoothingindex}'.
+#'\deqn{ \xi =   \sum\theta(j)^2}
+#'Where j belongs to 0 to k,which is the number of lag factors input.
 #' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' asset returns
 #' @author Peter Carl, Brian Peterson, Shubhankit Mohan

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/LoSharpe.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/LoSharpe.R	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/LoSharpe.R	2013-08-24 09:24:23 UTC (rev 2871)
@@ -0,0 +1,92 @@
+#'@title Andrew Lo Sharpe Ratio
+#'@description
+#' Although the Sharpe ratio has become part of the canon of modern financial 
+#' analysis, its applications typically do not account for the fact that it is an
+#' estimated quantity, subject to estimation errors that can be substantial in 
+#' some cases.
+#' 
+#' Many studies have documented various violations of the assumption of 
+#' IID returns for financial securities.
+#' 
+#' Under the assumption of stationarity,a version of the Central Limit Theorem can 
+#' still be  applied to the estimator .
+#' @details
+#' The relationship between SR and SR(q) is somewhat more involved for non-
+#'IID returns because the variance of Rt(q) is not just the sum of the variances of component returns but also includes all the covariances. Specifically, under
+#' the assumption that returns \eqn{R_t}  are stationary,
+#' \deqn{ Var[(R_t)] =   \sum \sum Cov(R(t-i),R(t-j)) = q{\sigma^2} + 2{\sigma^2} \sum (q-k)\rho(k) }
+#' Where  \eqn{ \rho(k) = Cov(R(t),R(t-k))/Var[(R_t)]} is the \eqn{k^{th}} order autocorrelation coefficient of the series of returns.This yields the following relationship between SR and SR(q):
+#' and i,j belongs to 0 to q-1
+#'\deqn{SR(q)  =  \eta(q) }
+#'Where :
+#' \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2 \sum(q-k)\rho(k)] }
+#' Where k belongs to 0 to q-1
+#' @param Ra an xts, vector, matrix, data frame, timeSeries or zoo object of
+#' daily asset returns
+#' @param Rf an xts, vector, matrix, data frame, timeSeries or zoo object of
+#' annualized Risk Free Rate
+#' @param q Number of autocorrelated lag periods. Taken as 3 (Default)
+#' @param \dots any other pass thru parameters
+#' @author Brian G. Peterson, Peter Carl, Shubhankit Mohan
+#' @references Getmansky, Mila, Lo, Andrew W. and Makarov, Igor,\emph{ An Econometric Model of Serial Correlation and Illiquidity in Hedge Fund Returns} (March 1, 2003). MIT Sloan Working Paper No. 4288-03; MIT Laboratory for Financial Engineering Working Paper No. LFE-1041A-03; EFMA 2003 Helsinki Meetings.
+#'\code{\link[stats]{}} \cr
+#' \url{http://ssrn.com/abstract=384700}
+#' @keywords ts multivariate distribution models non-iid 
+#' @examples
+#' 
+#' data(edhec)
+#' head(LoSharpe(edhec,0,3)
+#' @rdname LoSharpe
+#' @export
+LoSharpe <-
+  function (Ra,Rf = 0,q = 3, ...)
+  { # @author Brian G. Peterson, Peter Carl
+    
+    
+    # Function:
+    R = checkData(Ra, method="xts")
+    # Get dimensions and labels
+    columns.a = ncol(R)
+    columnnames.a = colnames(R)
+    # Time used for daily Return manipulations
+    Time= 252*nyears(edhec)
+    clean.lo <- function(column.R,q) {
+      # compute the lagged return series
+      gamma.k =matrix(0,q)
+      mu = sum(column.R)/(Time)
+      Rf= Rf/(Time)
+      for(i in 1:q){
+        lagR = lag(column.R, k=i)
+        # compute the Momentum Lagged Values
+        gamma.k[i]= (sum(((column.R-mu)*(lagR-mu)),na.rm=TRUE))
+      }
+      return(gamma.k)
+    }
+    neta.lo <- function(pho.k,q) {
+      # compute the lagged return series
+      sumq = 0
+      for(j in 1:q){
+        sumq = sumq+ (q-j)*pho.k[j]
+      }
+      return(q/(sqrt(q+2*sumq)))
+    }
+    for(column.a in 1:columns.a) { # for each asset passed in as R
+      # clean the data and get rid of NAs
+      mu = sum(R[,column.a])/(Time)
+      sig=sqrt(((R[,column.a]-mu)^2/(Time)))
+      pho.k = clean.lo(R[,column.a],q)/(as.numeric(sig[1]))
+      netaq=neta.lo(pho.k,q)
+      column.lo = (netaq*((mu-Rf)/as.numeric(sig[1])))
+      
+      if(column.a == 1)  { lo = column.lo }
+      else { lo = cbind (lo, column.lo) }
+      
+    }
+    colnames(lo) = columnnames.a
+    rownames(lo)= paste("Lo Sharpe Ratio")
+    return(lo)
+    
+    
+    # RESULTS:
+    
+  }

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/Return.Okunev.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/Return.Okunev.R	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/Return.Okunev.R	2013-08-24 09:24:23 UTC (rev 2871)
@@ -0,0 +1,55 @@
+#'@title OW Return Model
+#'@description The objective is to determine the true underlying return by removing the 
+#' autocorrelation structure in the original return series without making any assumptions 
+#' regarding the actual time series properties of the underlying process. We are 
+#' implicitly assuming by this approach that the autocorrelations that arise in reported 
+#'returns are entirely due to the smoothing behavior funds engage in when reporting 
+#' results. In fact, the method may be adopted to produce any desired 
+#' level of autocorrelation at any lag and is not limited to simply eliminating all 
+#'autocorrelations.It can be be said as the general form of Geltner Return Model
+#'@details dffd
+#' @references "Hedge Fund Risk Factors and Value at Risk of Credit 
+#' Trading Strategies , John Okunev & Derek White
+#' 
+#' @keywords ts multivariate distribution models
+#' @examples
+#' 
+#' data(managers)
+#' head(Return.Okunev(managers[,1:3]),n=3)
+#' 
+#'
+#' @export
+
+Return.Okunev<-function(R,q=3)
+{
+  column.okunev=R
+  column.okunev <- column.okunev[!is.na(column.okunev)]
+  for(i in 1:q)
+  {
+    lagR = lag(column.okunev, k=i)
+    column.okunev= (column.okunev-(lagR*quad(lagR,0)))/(1-quad(lagR,0))
+  }
+  return(c(column.okunev))
+}
+#' Recusrsive Okunev Call Function
+quad <- function(R,d)
+{
+  coeff = as.numeric(acf(as.numeric(edhec[,1]), plot = FALSE)[1:2][[1]])
+b=-(1+coeff[2]-2*d*coeff[1])
+c=(coeff[1]-d)
+  ans= (-b-sqrt(b*b-4*c*c))/(2*c)
+  #a <- a[!is.na(a)]
+  return(c(ans))               
+}
+###############################################################################
+# R (http://r-project.org/) Econometrics for Performance and Risk Analysis
+#
+# Copyright (c) 2004-2012 Peter Carl and Brian G. Peterson
+#
+# This R package is distributed under the terms of the GNU Public License (GPL)
+# for full details see the file COPYING
+#
+# $Id: Return.Okunev.R 2163 2012-07-16 00:30:19Z braverock $
+#
+###############################################################################
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd	2013-08-24 00:07:51 UTC (rev 2870)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd	2013-08-24 09:24:23 UTC (rev 2871)
@@ -1,25 +1,23 @@
-\name{table.EMaxDDGBM}
-\alias{table.EMaxDDGBM}
-\title{Expected Drawdown using Brownian Motion Assumptions}
-\usage{
-  table.EMaxDDGBM(R, digits = 4)
-}
-\arguments{
-  \item{R}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of asset returns}
-}
-\description{
-  Works on the model specified by Maddon-Ismail which
-  investigates the behavior of this statistic for a
-  Brownian motion with drift.
-}
-\author{
-  Peter Carl, Brian Peterson, Shubhankit Mohan
-}
-\keyword{Assumptions}
-\keyword{Brownian}
-\keyword{Drawdown}
-\keyword{Expected}
-\keyword{Motion}
-\keyword{Using}
-
+\name{EMaxDDGBM}
+\alias{EMaxDDGBM}
+\title{Expected Drawdown using Brownian Motion Assumptions}
+\usage{
+  EMaxDDGBM(R, digits = 4)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+}
+\description{
+  Works on the model specified by Maddon-Ismail
+}
+\author{
+  R
+}
+\keyword{Assumptions}
+\keyword{Brownian}
+\keyword{Drawdown}
+\keyword{Expected}
+\keyword{Motion}
+\keyword{Using}
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd	2013-08-24 00:07:51 UTC (rev 2870)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/GLMSmoothIndex.Rd	2013-08-24 09:24:23 UTC (rev 2871)
@@ -1,7 +1,7 @@
 \name{GLMSmoothIndex}
 \alias{GLMSmoothIndex}
 \alias{Return.Geltner}
-\title{Getmansky Lo Markov Smoothing Index Parameter}
+\title{GLM Index}
 \usage{
   GLMSmoothIndex(R = NULL, ...)
 }
@@ -10,18 +10,19 @@
   or zoo object of asset returns}
 }
 \description{
-  A useful summary statistic for measuring the
-  concentration of weights is a sum of square of Moving
-  Average lag coefficient. This measure is well known in
-  the industrial organization literature as the Herfindahl
-  index, a measure of the concentration of firms in a given
-  industry. The index is maximized when one coefficient is
-  1 and the rest are 0. In the context of smoothed returns,
-  a lower value of x implies more smoothing, and the upper
-  bound of 1 implies no smoothing, hence x is reffered as a
-  ''smoothingindex' '.
-
-  \deqn{ R_t = \mu + \beta \delta_t+ \xi_t}
+  Getmansky Lo Markov Smoothing Index is a useful summary
+  statistic for measuring the concentration of weights is a
+  sum of square of Moving Average lag coefficient. This
+  measure is well known in the industrial organization
+  literature as the \bold{ Herfindahl index}, a measure of
+  the concentration of firms in a given industry. The index
+  is maximized when one coefficient is 1 and the rest are
+  0. In the context of smoothed returns, a lower value
+  implies more smoothing, and the upper bound of 1 implies
+  no smoothing, hence \eqn{\xi} is reffered as a
+  '\bold{smoothingindex}'. \deqn{ \xi = \sum\theta(j)^2}
+  Where j belongs to 0 to k,which is the number of lag
+  factors input.
 }
 \examples{
 data(edhec)

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/LoSharpe.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/LoSharpe.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/LoSharpe.Rd	2013-08-24 09:24:23 UTC (rev 2871)
@@ -0,0 +1,70 @@
+\name{LoSharpe}
+\alias{LoSharpe}
+\title{Andrew Lo Sharpe Ratio}
+\usage{
+  LoSharpe(Ra, Rf = 0, q = 3, ...)
+}
+\arguments{
+  \item{Ra}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of daily asset returns}
+
+  \item{Rf}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of annualized Risk Free Rate}
+
+  \item{q}{Number of autocorrelated lag periods. Taken as 3
+  (Default)}
+
+  \item{\dots}{any other pass thru parameters}
+}
+\description{
+  Although the Sharpe ratio has become part of the canon of
+  modern financial analysis, its applications typically do
+  not account for the fact that it is an estimated
+  quantity, subject to estimation errors that can be
+  substantial in some cases.
+
+  Many studies have documented various violations of the
+  assumption of IID returns for financial securities.
+
+  Under the assumption of stationarity,a version of the
+  Central Limit Theorem can still be applied to the
+  estimator .
+}
+\details{
+  The relationship between SR and SR(q) is somewhat more
+  involved for non- IID returns because the variance of
+  Rt(q) is not just the sum of the variances of component
+  returns but also includes all the covariances.
+  Specifically, under the assumption that returns \eqn{R_t}
+  are stationary, \deqn{ Var[(R_t)] = \sum \sum
+  Cov(R(t-i),R(t-j)) = q{\sigma^2} + 2{\sigma^2} \sum
+  (q-k)\rho(k) } Where \eqn{ \rho(k) =
+  Cov(R(t),R(t-k))/Var[(R_t)]} is the \eqn{k^{th}} order
+  autocorrelation coefficient of the series of returns.This
+  yields the following relationship between SR and SR(q):
+  and i,j belongs to 0 to q-1 \deqn{SR(q) = \eta(q) } Where
+  : \deqn{ }{\eta(q) = [q]/[\sqrt(q\sigma^2) + 2\sigma^2
+  \sum(q-k)\rho(k)] } Where k belongs to 0 to q-1
+}
+\examples{
+data(edhec)
+head(LoSharpe(edhec,0,3)
+}
+\author{
+  Brian G. Peterson, Peter Carl, Shubhankit Mohan
+}
+\references{
+  Getmansky, Mila, Lo, Andrew W. and Makarov, Igor,\emph{
+  An Econometric Model of Serial Correlation and
+  Illiquidity in Hedge Fund Returns} (March 1, 2003). MIT
+  Sloan Working Paper No. 4288-03; MIT Laboratory for
+  Financial Engineering Working Paper No. LFE-1041A-03;
+  EFMA 2003 Helsinki Meetings. \code{\link[stats]{}} \cr
+  \url{http://ssrn.com/abstract=384700}
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{non-iid}
+\keyword{ts}
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd	2013-08-24 00:07:51 UTC (rev 2870)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd	2013-08-24 09:24:23 UTC (rev 2871)
@@ -1,47 +1,47 @@
-\name{Return.GLM}
-\alias{Return.GLM}
-\title{GLM Return Model}
-\usage{
-  Return.GLM(edhec,4)
-}
-\arguments{
-  \item{Ra}{: an xts, vector, matrix, data frame,
-  timeSeries or zoo object of asset returns}
-
-  \item{q}{: order of autocorrelation coefficient lag
-  factors}
-}
-\description{
-  True returns represent the flow of information that would
-  determine the equilibrium value of the fund's securities
-  in a frictionless market. However, true economic returns
-  are not observed. The returns to hedge funds and other
-  alternative investments are often highly serially
-  correlated.We propose an econometric model of return
-  smoothingand develop estimators for the smoothing profile
-  as well as a smoothing-adjusted Sharpe ratio.
-}
-\details{
-  To quantify the impact of all of these possible sources
-  of serial correlation, denote by R(t) the true economic
-  return of a hedge fund in period 't'; and let R(t)
-  satisfy the following linear single-factor model: where:
-  \deqn{R(0,t) = \theta_{0}R(t) + \theta_{1}R(t-1) +
-  \theta_{2}R(t-2) ....  + \theta_{k}R(t-k)} where
-  \eqn{\theta}'i is defined as the weighted lag of
-  autocorrelated lag and whose sum is 1.
-}
-\author{
-  Brian Peterson,Peter Carl, Shubhankit Mohan
-}
-\references{
-  Mila Getmansky, Andrew W. Lo, Igor Makarov,\emph{An
-  econometric model of serial correlation and and
-  illiquidity in hedge fund Returns},Journal of Financial
-  Economics 74 (2004).
-}
-\keyword{distribution}
-\keyword{models}
-\keyword{multivariate}
-\keyword{ts}
-
+\name{Return.GLM}
+\alias{Return.GLM}
+\title{GLM Return Model}
+\usage{
+  Return.GLM(edhec,4)
+}
+\arguments{
+  \item{Ra}{: an xts, vector, matrix, data frame,
+  timeSeries or zoo object of asset returns}
+
+  \item{q}{: order of autocorrelation coefficient lag
+  factors}
+}
+\description{
+  True returns represent the flow of information that would
+  determine the equilibrium value of the fund's securities
+  in a frictionless market. However, true economic returns
+  are not observed. The returns to hedge funds and other
+  alternative investments are often highly serially
+  correlated.We propose an econometric model of return
+  smoothingand develop estimators for the smoothing
+  profile as well as a smoothing-adjusted Sharpe ratio.
+}
+\details{
+  To quantify the impact of all of these possible sources
+  of serial correlation, denote by R(t) the true economic
+  return of a hedge fund in period 't'; and let R(t)
+  satisfy the following linear single-factor model: where:
+  \deqn{R(0,t) = \theta_{0}R(t) + \theta_{1}R(t-1) +
+  \theta_{2}R(t-2) ....  + \theta_{k}R(t-k)} where
+  \eqn{\theta}'i is defined as the weighted lag of
+  autocorrelated lag and whose sum is 1.
+}
+\author{
+  Brian Peterson,Peter Carl, Shubhankit Mohan
+}
+\references{
+  Mila Getmansky, Andrew W. Lo, Igor Makarov,\emph{An
+  econometric model of serial correlation and and
+  illiquidity in hedge fund Returns},Journal of Financial
+  Economics 74 (2004).
+}
+\keyword{distribution}
+\keyword{model}
+\keyword{multivariate}
+\keyword{ts}
+

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.Okunev.Rd	2013-08-24 09:24:23 UTC (rev 2871)
@@ -0,0 +1,36 @@
+\name{Return.Okunev}
+\alias{Return.Okunev}
+\title{OW Return Model}
+\usage{
+  Return.Okunev(R, q = 3)
+}
+\description{
+  The objective is to determine the true underlying return
+  by removing the autocorrelation structure in the original
+  return series without making any assumptions regarding
+  the actual time series properties of the underlying
+  process. We are implicitly assuming by this approach that
+  the autocorrelations that arise in reported returns are
+  entirely due to the smoothing behavior funds engage in
+  when reporting results. In fact, the method may be
+  adopted to produce any desired level of autocorrelation
+  at any lag and is not limited to simply eliminating all
+  autocorrelations.It can be be said as the general form of
+  Geltner Return Model
+}
+\details{
+  dffd
+}
+\examples{
+data(managers)
+head(Return.Okunev(managers[,1:3]),n=3)
+}
+\references{
+  "Hedge Fund Risk Factors and Value at Risk of Credit
+  Trading Strategies , John Okunev & Derek White
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{ts}
+

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/quad.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/quad.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/quad.Rd	2013-08-24 09:24:23 UTC (rev 2871)
@@ -0,0 +1,10 @@
+\name{quad}
+\alias{quad}
+\title{Recusrsive Okunev Call Function}
+\usage{
+  quad(R, d)
+}
+\description{
+  Recusrsive Okunev Call Function
+}
+



More information about the Returnanalytics-commits mailing list