[Returnanalytics-commits] r2850 - pkg/PerformanceAnalytics/sandbox/pulkit/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Aug 22 12:48:35 CEST 2013


Author: pulkit
Date: 2013-08-22 12:48:35 +0200 (Thu, 22 Aug 2013)
New Revision: 2850

Added:
   pkg/PerformanceAnalytics/sandbox/pulkit/R/gpdmle.R
Modified:
   pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R
Log:
modified GPD function from pot package 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R	2013-08-21 23:28:46 UTC (rev 2849)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R	2013-08-22 10:48:35 UTC (rev 2850)
@@ -1,14 +1,14 @@
 #'@title
 #'Modelling Drawdown using Extreme Value Theory
 #'
-#'@description
+#"@description
 #'It has been shown empirically that Drawdowns can be modelled using Modified Generalized Pareto 
 #'distribution(MGPD), Generalized Pareto Distribution(GPD) and other particular cases of MGPD such 
 #'as weibull distribution \eqn{MGPD(\gamma,0,\psi)} and unit exponential distribution\eqn{MGPD(1,0,\psi)}
 #'
 #' Modified Generalized Pareto Distribution is given by the following formula
 #'
-#' \deqn{G_{\eta}(m) = \begin{array}{l} 1-(1+\eta\frac{m^\gamma}{\psi})^(-1/\eta), if \eta \neq 0 \\ 1- e^{-frac{m^\gamma}{\psi}}, if \eta = 0,\end{array}}
+#' \dqeqn{G_{\eta}(m) = \begin{array}{l} 1-(1+\eta\frac{m^\gamma}{\psi})^(-1/\eta), if \eta \neq 0 \\ 1- e^{-frac{m^\gamma}{\psi}}, if \eta = 0,\end{array}}
 #'
 #' Here \eqn{\gamma{\epsilon}R} is the modifying parameter. When \eqn{\gamma<1} the corresponding densities are
 #' strictly decreasing with heavier tail; the GDP is recovered by setting \eqn{\gamma = 1} .\eqn{\gamma \textgreater 1}
@@ -29,13 +29,12 @@
 #' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of asset return 
 #' @param type The type of distribution "gpd","pd","weibull"
 #' @param threshold The threshold beyond which the drawdowns have to be modelled
-#'
-#'@author Pulkit Mehrotra 
+#' 
 #'@references
 #'Mendes, Beatriz V.M. and Leal, Ricardo P.C., Maximum Drawdown: Models and Applications (November 2003). Coppead Working Paper Series No. 359. 
 #'Available at SSRN: http://ssrn.com/abstract=477322 or http://dx.doi.org/10.2139/ssrn.477322.
 #'
-#'@export
+#'
 DrawdownGPD<-function(R,type=c("gpd","pd","weibull"),threshold=0.90){
     x = checkData(R)
     columns = ncol(R)
@@ -43,10 +42,10 @@
     type = type[1]
     dr = -Drawdowns(R)
     dr_sorted = sort(as.vector(dr))
-    data = dr_sorted[(0.9*nrow(R)):nrow(R)]
+    #data = dr_sorted[(0.9*nrow(R)):nrow(R)]
     if(type=="gpd"){
-        gpd = fitgpd(data)
-        return(gpd)
+        gpd_fit = gpd(dr_sorted,dr_sorted[threshold*nrow(R)])
+        return(gpd_fit)
     }
     if(type=="wiebull"){
         weibull = fitdistr(data,"weibull")

Added: pkg/PerformanceAnalytics/sandbox/pulkit/R/gpdmle.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/gpdmle.R	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/gpdmle.R	2013-08-22 10:48:35 UTC (rev 2850)
@@ -0,0 +1,172 @@
+## This function comes from the  package "POT" . The gpd function
+## corresponds to the gpdmle function. So, I'm very gratefull to Mathieu Ribatet.
+
+gpd <- function(x, threshold, start, ...,
+                   std.err.type = "observed", corr = FALSE,
+                   method = "BFGS", warn.inf = TRUE){
+
+  if (all(c("observed", "expected", "none") != std.err.type))
+    stop("``std.err.type'' must be one of 'observed', 'expected' or 'none'")
+  
+  nlpot <- function(scale, shape) { 
+    -.C("gpdlik", exceed, nat, threshold, scale,
+        shape, dns = double(1), PACKAGE = "POT")$dns
+  }
+  
+  nn <- length(x)
+  
+  threshold <- rep(threshold, length.out = nn)
+  
+  high <- (x > threshold) & !is.na(x)
+  threshold <- as.double(threshold[high])
+  exceed <- as.double(x[high])
+  nat <- length(exceed)
+  
+  if(!nat) stop("no data above threshold")
+  
+  pat <- nat/nn
+  param <- c("scale", "shape")
+  
+  if(missing(start)) {
+    
+    start <- list(scale = 0, shape = 0)
+    start$scale <- mean(exceed) - min(threshold)
+    
+    start <- start[!(param %in% names(list(...)))]
+    
+  }
+  
+  if(!is.list(start)) 
+    stop("`start' must be a named list")
+  
+  if(!length(start))
+    stop("there are no parameters left to maximize over")
+  
+  nm <- names(start)
+  l <- length(nm)
+  f <- formals(nlpot)
+  names(f) <- param
+  m <- match(nm, param)
+  
+  if(any(is.na(m))) 
+    stop("`start' specifies unknown arguments")
+  
+  formals(nlpot) <- c(f[m], f[-m])
+  nllh <- function(p, ...) nlpot(p, ...)
+  
+  if(l > 1)
+    body(nllh) <- parse(text = paste("nlpot(", paste("p[",1:l,
+                          "]", collapse = ", "), ", ...)"))
+  
+  fixed.param <- list(...)[names(list(...)) %in% param]
+  
+  if(any(!(param %in% c(nm,names(fixed.param)))))
+    stop("unspecified parameters")
+  
+  start.arg <- c(list(p = unlist(start)), fixed.param)
+  if( warn.inf && do.call("nllh", start.arg) == 1e6 )
+    warning("negative log-likelihood is infinite at starting values")
+  
+  opt <- optim(start, nllh, hessian = TRUE, ..., method = method)
+    
+  if ((opt$convergence != 0) || (opt$value == 1e6)) {
+    warning("optimization may not have succeeded")
+    if(opt$convergence == 1) opt$convergence <- "iteration limit reached"
+  }
+  
+  else opt$convergence <- "successful"
+
+  if (std.err.type != "none"){
+    
+    tol <- .Machine$double.eps^0.5
+    
+    if(std.err.type == "observed") {
+      
+      var.cov <- qr(opt$hessian, tol = tol)
+      if(var.cov$rank != ncol(var.cov$qr)){
+        warning("observed information matrix is singular; passing std.err.type to ``expected''")
+        obs.fish <- FALSE
+        return
+      }
+      
+      if (std.err.type == "observed"){
+        var.cov <- try(solve(var.cov, tol = tol), silent = TRUE)
+
+        if(!is.matrix(var.cov)){
+          warning("observed information matrix is singular; passing std.err.type to ''none''")
+          std.err.type <- "expected"
+          return
+        }
+
+        else{
+          std.err <- diag(var.cov)
+          if(any(std.err <= 0)){
+            warning("observed information matrix is singular; passing std.err.type to ``expected''")
+            std.err.type <- "expected"
+            return
+          }
+          
+          std.err <- sqrt(std.err)
+        
+          if(corr) {
+            .mat <- diag(1/std.err, nrow = length(std.err))
+            corr.mat <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm))
+            diag(corr.mat) <- rep(1, length(std.err))
+          }
+          else {
+            corr.mat <- NULL
+          }
+        }
+      }
+    }
+    
+    if (std.err.type == "expected"){
+      
+      shape <- opt$par[2]
+      scale <- opt$par[1]
+      a22 <- 2/((1+shape)*(1+2*shape))
+      a12 <- 1/(scale*(1+shape)*(1+2*shape))
+      a11 <- 1/((scale^2)*(1+2*shape))
+      ##Expected Matix of Information of Fisher
+      expFisher <- nat * matrix(c(a11,a12,a12,a22),nrow=2)
+
+      expFisher <- qr(expFisher, tol = tol)
+      var.cov <- solve(expFisher, tol = tol)
+      std.err <- sqrt(diag(var.cov))
+      
+      if(corr) {
+        .mat <- diag(1/std.err, nrow = length(std.err))
+        corr.mat <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm))
+        diag(corr.mat) <- rep(1, length(std.err))
+      }
+      else
+        corr.mat <- NULL
+    }
+
+    colnames(var.cov) <- nm
+    rownames(var.cov) <- nm
+    names(std.err) <- nm
+  }
+
+  else{
+    std.err <- std.err.type <- corr.mat <- NULL
+    var.cov <- NULL
+  }
+  
+  
+  param <- c(opt$par, unlist(fixed.param))
+  scale <- param["scale"]
+  
+  var.thresh <- !all(threshold == threshold[1])
+
+  if (!var.thresh)
+    threshold <- threshold[1]
+  
+  list(fitted.values = opt$par, std.err = std.err, std.err.type = std.err.type,
+       var.cov = var.cov, fixed = unlist(fixed.param), param = param,
+       deviance = 2*opt$value, corr = corr.mat, convergence = opt$convergence,
+       counts = opt$counts, message = opt$message, threshold = threshold,
+       nat = nat, pat = pat, data = x, exceed = exceed, scale = scale,
+       var.thresh = var.thresh, est = "MLE", logLik = -opt$value,
+       opt.value = opt$value, hessian = opt$hessian)
+}



More information about the Returnanalytics-commits mailing list