[Returnanalytics-commits] r2818 - in pkg/PerformanceAnalytics/sandbox/pulkit: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sun Aug 18 15:19:59 CEST 2013


Author: pulkit
Date: 2013-08-18 15:19:58 +0200 (Sun, 18 Aug 2013)
New Revision: 2818

Modified:
   pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE
   pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R
   pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/TuW.Rd
Log:
some modifications

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE	2013-08-18 13:19:58 UTC (rev 2818)
@@ -1,21 +1,21 @@
 export(AlphaDrawdown)
 export(BenchmarkSR)
+export(CdarMultiPath)
 export(chart.BenchmarkSR)
+export(chart.Penance)
 export(chart.SRIndifference)
+export(DrawdownGPD)
 export(EconomicDrawdown)
 export(EDDCOPS)
+export(golden_section)
 export(MinTrackRecord)
+export(MonteSimulTriplePenance)
+export(MultiBetaDrawdown)
+export(ProbSharpeRatio)
+export(PsrPortfolio)
 export(REDDCOPS)
 export(rollDrawdown)
 export(rollEconomicMax)
-export(CDaR)
-export(CdarMultiPath)
-export(chart.Penance)
-export(chart.REDD)
-export(chart.SharpeEfficientFrontier)
-export(BetaDrawdown)
-export(MultiBetaDrawdown)
-export(EDDCOPS)
-export(DrawdownGPD)
-export(golden_section)
-export(MaxDD)
+export(table.Penance)
+export(table.PSR)
+export(TuW)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBeta.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -40,8 +40,7 @@
 #'of Florida,September 2012.
 #'
 #'@examples
-#'
-#'BetaDrawdown(edhec[,1],edhec[,2]) #expected value 0.5390431
+#'BetaDrawdown(edhec[,1],edhec[,2]) 
 
 BetaDrawdown<-function(R,Rm,h=0,p=0.95,weights=NULL,geometric=TRUE,type=c("alpha","average","max"),...){
 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/DrawdownBetaMulti.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -37,6 +37,7 @@
 #'@examples
 #'MultiBetaDrawdown(cbind(edhec,edhec),cbind(edhec[,2],edhec[,2]),sample = 2,ps=c(0.4,0.6))
 #'BetaDrawdown(edhec[,1],edhec[,2]) #expected value 0.5390431
+#'@export
 
 MultiBetaDrawdown<-function(R,Rm,sample,ps,h=0,p=0.95,weights=NULL,geometric=TRUE,type=c("alpha","average","max"),...){
 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/ExtremeDrawdown.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -34,7 +34,7 @@
 #'Mendes, Beatriz V.M. and Leal, Ricardo P.C., Maximum Drawdown: Models and Applications (November 2003). Coppead Working Paper Series No. 359. 
 #'Available at SSRN: http://ssrn.com/abstract=477322 or http://dx.doi.org/10.2139/ssrn.477322.
 #'
-#'
+#'@export
 DrawdownGPD<-function(R,type=c("gpd","pd","weibull"),threshold=0.90){
     x = checkData(R)
     columns = ncol(R)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -14,14 +14,13 @@
 #' in which \eqn{x_2} is chosen. If \eqn{f(x_2)>f(x_1)} then the new three points would be \eqn{x_l \textless x_2 \textless x_1} else if
 #' \eqn{f(x_2)<f(x_1)} then the three new points are \eqn{x_2<x_1<x_u}. This process is continued until the distance between the outer point
 #' is sufficiently small.
-
-#' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
-#' 
 #'@param a initial point
 #'@param b final point
 #'@param minimum TRUE to calculate the minimum and FALSE to calculate the Maximum
 #'@param function_name The name of the function  
-
+#' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
+#' 
+#'@export
 golden_section<-function(a,b,minimum = TRUE,function_name,...){
 
     # DESCRIPTION

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -13,14 +13,12 @@
 #' 
 #' The time at which the Maximum Drawdown occurs is given by
 #' \deqn{t^\ast=\biggl(\frac{Z_{\alpha}\sigma}{2\mu}\biggr)^2}
-#' Here $Z_{\alpha}$ is the critical value of the Standard Normal Distribution 
-#' associated with a probability $\alpha$.$\sigma$ and $\mu$ are the Standard 
-#' Distribution and the mean respectively.
+#' Here \eqn{Z_{\alpha}} is the critical value of the Standard Normal Distribution  associated with a probability \eqn{\alpha}.\eqn{\sigma} and \eqn{\mu} are the Standard Distribution and the mean respectively.
 #' When the distribution is non-normal and time dependent, Autoregressive process.
 #' 
 #' \deqn{Q_{\alpha,t}=\frac{\phi^{(t+1)}-\phi}{\phi-1}(\triangle\pi_0-\mu)+{\mu}t+Z_{\alpha}\frac{\sigma}{|\phi-1|}\biggl(\frac{\phi^{2(t+1)}-1}{\phi^2-1}-2\frac{\phi^(t+1)-1}{\phi-1}+t+1\biggr)^{1/2}}
 #' 
-#' $\phi$ is estimated as
+#' \eqn{\phi} is estimated as
 #' 
 #' \deqn{\hat{\phi} = Cov_0[\triangle\pi_\tau,\triangle\pi_{\tau-1}](Cov_0[\triangle\pi_{\tau-1},\triangle\pi_{\tau-1}])^{-1}}
 #' 
@@ -34,8 +32,7 @@
 #'
 #'The random shocks are iid distributed \eqn{\epsilon_{\tau}~N(0,1)}. These random shocks follow an independent and 
 #'identically distributed Gaussian Process, however \eqn{\triangle{\pi_\tau}} is neither an independent nor an 
-#'identically distributed Gaussian Process. This is due to the parameter \eqn{\phi}, which incorporates a first-order 
-#'serial-correlation effect of auto-regressive form.
+#'identically distributed Gaussian Process. This is due to the parameter \eqn{\phi}, which incorporates a first-order serial-correlation effect of auto-regressive form.
 #' 
 #' Golden Section Algorithm is used to calculate the Minimum of the function Q.
 #'  

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -12,7 +12,7 @@
 #'
 #'\deqn{MinTRL = n^\ast = 1+\biggl[1-\hat{\gamma_3}\hat{SR}+\frac{\hat{\gamma_4}}{4}\hat{SR^2}\biggr]\biggl(\frac{Z_\alpha}{\hat{SR}-SR^\ast}\biggr)^2}
 #'
-#'$\gamma{_3}$ and $\gamma{_4}$ are the skewness and kurtosis respectively. 
+#'\eqn{\gamma{_3}} and \eqn{\gamma{_4}} are the skewness and kurtosis respectively. 
 #'It is important to note that MinTRL is expressed in terms of number of observations,
 #'not annual or calendar terms.
 #'
@@ -118,4 +118,4 @@
 #
 # $Id: MinTRL.R $
 #
-##############################################################################
\ No newline at end of file
+##############################################################################

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -25,7 +25,8 @@
 #'  
 #'  @examples
 #'  MonteSimulTriplePenance(10^6,0.5,1,2,1,25,0.95) # Expected Value Quantile (Exact) = 6.781592
-#'  
+#'
+#'@export  
 
 
  

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/PSRopt.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -3,14 +3,14 @@
 #'Maximizing for PSR leads to better diversified and more balanced hedge fund allocations compared to the concentrated 
 #'outcomes of Sharpe ratio maximization.We would like to find the vector of weights that maximize the expression
 #'
-#'\deqn{\hat{PSR}(SR^\ast) = Z\biggl[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]}
+#'\deqn{\hat{PSR}(SR^\**) = Z\biggl[\frac{(\hat{SR}-SR^\**)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\** + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]}
 #'
 #'where \eqn{\sigma = \sqrt{E[(r-\mu)^2]}} ,its standard deviation.\eqn{\gamma_3=\frac{E\biggl[(r-\mu)^3\biggr]}{\sigma^3}} its skewness,
 #'\eqn{\gamma_4=\frac{E\biggl[(r-\mu)^4\biggr]}{\sigma^4}} its kurtosis and \eqn{SR = \frac{\mu}{\sigma}} its Sharpe Ratio.
-#'Because \eqn{\hat{PSR}(SR^\ast)=Z[\hat{Z^\ast}]} is a monotonic increasing function of 
-#'\eqn{\hat{Z^\ast}} ,it suffices to compute the vector that maximizes \eqn{\hat{Z^\ast}}
+#'Because \eqn{\hat{PSR}(SR^\**)=Z[\hat{Z^\**}]} is a monotonic increasing function of 
+#'\eqn{\hat{Z^\**}} ,it suffices to compute the vector that maximizes \eqn{\hat{Z^\**}}
 #'
-#'This optimal vector is invariant of the value adopted by the parameter $SR^\ast$. 
+#'This optimal vector is invariant of the value adopted by the parameter \eqn{SR^\**}. 
 #'Gradient Ascent Logic is used to compute the weights using the Function PsrPortfolio
 
 
@@ -32,6 +32,7 @@
 #'
 #'data(edhec)
 #'PsrPortfolio(edhec) 
+#'@export
 
 PsrPortfolio<-function(R,refSR=0,bounds=NULL,MaxIter = 1000,delta = 0.005){
     # DESCRIPTION:

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/ProbSharpeRatio.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -10,9 +10,9 @@
 #' 
 #' \deqn{\hat{PSR}(SR^\ast) = Z\biggl[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]}
 
-#' Here $n$ is the track record length or the number of data points. It can be daily,weekly or yearly depending on the input given
+#' Here \eqn{n} is the track record length or the number of data points. It can be daily,weekly or yearly depending on the input given
 
-#' $\hat{\gamma{_3}}$ and $\hat{\gamma{_4}}$ are the skewness and kurtosis respectively.
+#' \eqn{\hat{\gamma{_3}}} and \eqn{\hat{\gamma{_4}}} are the skewness and kurtosis respectively.
 #'
 #'
 #' @aliases ProbSharpeRatio
@@ -43,6 +43,7 @@
 #' ProbSharpeRatio(edhec[,1],refSR = 0.23) 
 #' ProbSharpeRatio(refSR = 1/12^0.5,Rf = 0,p=0.95,sr = 2/12^0.5,sk=-0.72,kr=5.78,n=59)
 #' ProbSharpeRatio(edhec[,1:2],refSR = c(0.28,0.24)) 
+#'@export
 
 ProbSharpeRatio<-
 function(R = NULL, refSR,Rf=0,p = 0.95, weights = NULL,n = NULL,sr = NULL,sk = NULL, kr = NULL, ...){

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -5,8 +5,8 @@
 #' \code{TriplePenance} calculates the maximum 
 #' Maximum Time under water for a particular confidence interval is given by
 #' 
-#' For a particular sequence $\left\{\pi_t\right\}$, the time under water $(TuW)$ 
-#' is the minimum number of observations, $t>0$, such that $\pi_{t-1}<0$ and $\pi_t>0$. 
+#' For a particular sequence \eqn{\left\{\pi_t\right\}}, the time under water \eqn{(TuW)} 
+#' is the minimum number of observations, \eqn{t>0}, such that \eqn{\pi_{t-1}<0} and \eqn{\pi_t>0}. 
 #' 
 #' For a normal distribution Maximum Time Under Water is given by the following expression.
 #' \deqn{MaxTuW_\alpha=\biggl(\frac{Z_\alpha{\sigma}}{\mu}\biggr)^2}
@@ -32,6 +32,7 @@
 #' @examples
 #' TuW(edhec,0.95,"ar")
 #' TuW(edhec[,1],0.95,"normal") # expected value 103.2573 
+#'@export
 
 TuW<-function(R,confidence,type=c("ar","normal"),...){
   x = checkData(R)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -21,6 +21,7 @@
 #'data(edhec)
 #'table.PSR(edhec[,1],0.20)
 #'
+#'@export
 table.PSR<-function(R=NULL,refSR,Rf=0,p=0.95,weights = NULL,...){
     
     if(!is.null(R)){

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R	2013-08-18 13:19:58 UTC (rev 2818)
@@ -8,6 +8,7 @@
 #' @param confidence the confidence interval
 #' 
 #' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
+#' @export
 
 table.Penance<-function(R,confidence){
   # DESCRIPTION:

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd	2013-08-18 13:19:58 UTC (rev 2818)
@@ -65,7 +65,7 @@
   the market performs well.
 }
 \examples{
-BetaDrawdown(edhec[,1],edhec[,2]) #expected value 0.5390431
+BetaDrawdown(edhec[,1],edhec[,2])
 }
 \references{
   Zabarankin, M., Pavlikov, K., and S. Uryasev. Capital

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd	2013-08-18 13:19:58 UTC (rev 2818)
@@ -3,8 +3,6 @@
 \title{Calculate the Economic Drawdown}
 \usage{
   EconomicDrawdown(R, Rf, geometric = TRUE, ...)
-
-  EconomicDrawdown(R, Rf, geometric = TRUE, ...)
 }
 \arguments{
   \item{R}{an xts, vector, matrix, data frame, timeseries,
@@ -18,18 +16,6 @@
   default is TRUE}
 
   \item{\dots}{any other variable}
-
-  \item{R}{an xts, vector, matrix, data frame, timeseries,
-  or zoo object of asset return.}
-
-  \item{Rf}{risk free rate can be vector such as government
-  security rate of return}
-
-  \item{geometric}{utilize geometric chaining (TRUE) or
-  simple/arithmetic chaining(FALSE) to aggregate returns,
-  default is TRUE}
-
-  \item{\dots}{any other variable}
 }
 \description{
   \code{EconomicDrawdown} calculates the Economic
@@ -44,31 +30,13 @@
 
   Here EM stands for Economic Max and is the code
   \code{\link{EconomicMax}}
-
-  \code{EconomicDrawdown} calculates the Economic
-  Drawdown(EDD) for a return series.To calculate the
-  economic drawdown cumulative return and economic max is
-  calculated for each point. The risk free return(rf) is
-  taken as the input.
-
-  Economic Drawdown is given by the equation
-
-  \deqn{EDD(t)=1-\frac{W_t}/{EM(t)}}
-
-  Here EM stands for Economic Max and is the code
-  \code{\link{EconomicMax}}
 }
 \examples{
 EconomicDrawdown(edhec,0.08,100)
-EconomicDrawdown(edhec,0.08,100)
 }
 \references{
   Yang, Z. George and Zhong, Liang, Optimal Portfolio
   Strategy to Control Maximum Drawdown - The Case of Risk
   Based Dynamic Asset Allocation (February 25, 2012)
-
-  Yang, Z. George and Zhong, Liang, Optimal Portfolio
-  Strategy to Control Maximum Drawdown - The Case of Risk
-  Based Dynamic Asset Allocation (February 25, 2012)
 }
 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd	2013-08-18 13:19:58 UTC (rev 2818)
@@ -21,19 +21,20 @@
   autoregressive. For a normal process Maximum Drawdown is
   given by the formula When the distibution is normal
 
-  \deqn{MaxDD_{\alpha}=max\left\{0,\frac{(z_{\alpha}\sigma)^2}{4\mu}\right\}}
+  \deqn{MaxDD_\alpha=max\left\{0,\frac{(z_\alpha\sigma)^2}{4\mu}\right\}}
 
   The time at which the Maximum Drawdown occurs is given by
   \deqn{t^\ast=\biggl(\frac{Z_{\alpha}\sigma}{2\mu}\biggr)^2}
-  Here $Z_{\alpha}$ is the critical value of the Standard
-  Normal Distribution associated with a probability
-  $\alpha$.$\sigma$ and $\mu$ are the Standard Distribution
-  and the mean respectively. When the distribution is
-  non-normal and time dependent, Autoregressive process.
+  Here \eqn{Z_{\alpha}} is the critical value of the
+  Standard Normal Distribution associated with a
+  probability \eqn{\alpha}.\eqn{\sigma} and \eqn{\mu} are
+  the Standard Distribution and the mean respectively. When
+  the distribution is non-normal and time dependent,
+  Autoregressive process.
 
   \deqn{Q_{\alpha,t}=\frac{\phi^{(t+1)}-\phi}{\phi-1}(\triangle\pi_0-\mu)+{\mu}t+Z_{\alpha}\frac{\sigma}{|\phi-1|}\biggl(\frac{\phi^{2(t+1)}-1}{\phi^2-1}-2\frac{\phi^(t+1)-1}{\phi-1}+t+1\biggr)^{1/2}}
 
-  $\phi$ is estimated as
+  \eqn{\phi} is estimated as
 
   \deqn{\hat{\phi} =
   Cov_0[\triangle\pi_\tau,\triangle\pi_{\tau-1}](Cov_0[\triangle\pi_{\tau-1},\triangle\pi_{\tau-1}])^{-1}}

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd	2013-08-18 13:19:58 UTC (rev 2818)
@@ -48,8 +48,8 @@
   \deqn{MinTRL = n^\ast =
   1+\biggl[1-\hat{\gamma_3}\hat{SR}+\frac{\hat{\gamma_4}}{4}\hat{SR^2}\biggr]\biggl(\frac{Z_\alpha}{\hat{SR}-SR^\ast}\biggr)^2}
 
-  $\gamma{_3}$ and $\gamma{_4}$ are the skewness and
-  kurtosis respectively. It is important to note that
+  \eqn{\gamma{_3}} and \eqn{\gamma{_4}} are the skewness
+  and kurtosis respectively. It is important to note that
   MinTRL is expressed in terms of number of observations,
   not annual or calendar terms.
 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd	2013-08-18 13:19:58 UTC (rev 2818)
@@ -47,11 +47,12 @@
 
   \deqn{\hat{PSR}(SR^\ast) =
   Z\biggl[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast
-  + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]} Here $n$
-  is the track record length or the number of data points.
-  It can be daily,weekly or yearly depending on the input
-  given $\hat{\gamma{_3}}$ and $\hat{\gamma{_4}}$ are the
-  skewness and kurtosis respectively.
+  + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]} Here
+  \eqn{n} is the track record length or the number of data
+  points. It can be daily,weekly or yearly depending on the
+  input given \eqn{\hat{\gamma{_3}}} and
+  \eqn{\hat{\gamma{_4}}} are the skewness and kurtosis
+  respectively.
 }
 \examples{
 data(edhec)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd	2013-08-18 13:19:58 UTC (rev 2818)
@@ -23,8 +23,8 @@
   would like to find the vector of weights that maximize
   the expression
 
-  \deqn{\hat{PSR}(SR^\ast) =
-  Z\biggl[\frac{(\hat{SR}-SR^\ast)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\ast
+  \deqn{\hat{PSR}(SR^\**) =
+  Z\biggl[\frac{(\hat{SR}-SR^\**)\sqrt{n-1}}{\sqrt{1-\hat{\gamma_3}SR^\**
   + \frac{\hat{\gamma_4}-1}{4}\hat{SR^2}}}\biggr]}
 
   where \eqn{\sigma = \sqrt{E[(r-\mu)^2]}} ,its standard
@@ -32,14 +32,14 @@
   its skewness,
   \eqn{\gamma_4=\frac{E\biggl[(r-\mu)^4\biggr]}{\sigma^4}}
   its kurtosis and \eqn{SR = \frac{\mu}{\sigma}} its Sharpe
-  Ratio. Because \eqn{\hat{PSR}(SR^\ast)=Z[\hat{Z^\ast}]}
-  is a monotonic increasing function of \eqn{\hat{Z^\ast}}
-  ,it suffices to compute the vector that maximizes
-  \eqn{\hat{Z^\ast}}
+  Ratio. Because \eqn{\hat{PSR}(SR^\**)=Z[\hat{Z^\**}]} is
+  a monotonic increasing function of \eqn{\hat{Z^\**}} ,it
+  suffices to compute the vector that maximizes
+  \eqn{\hat{Z^\**}}
 
   This optimal vector is invariant of the value adopted by
-  the parameter $SR^\ast$. Gradient Ascent Logic is used to
-  compute the weights using the Function PsrPortfolio
+  the parameter \eqn{SR^\**}. Gradient Ascent Logic is used
+  to compute the weights using the Function PsrPortfolio
 }
 \examples{
 data(edhec)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/man/TuW.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/TuW.Rd	2013-08-18 12:39:18 UTC (rev 2817)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/TuW.Rd	2013-08-18 13:19:58 UTC (rev 2818)
@@ -17,10 +17,10 @@
   under water for a particular confidence interval is given
   by
 
-  For a particular sequence $\left\{\pi_t\right\}$, the
-  time under water $(TuW)$ is the minimum number of
-  observations, $t>0$, such that $\pi_{t-1}<0$ and
-  $\pi_t>0$.
+  For a particular sequence \eqn{\left\{\pi_t\right\}}, the
+  time under water \eqn{(TuW)} is the minimum number of
+  observations, \eqn{t>0}, such that \eqn{\pi_{t-1}<0} and
+  \eqn{\pi_t>0}.
 
   For a normal distribution Maximum Time Under Water is
   given by the following expression.



More information about the Returnanalytics-commits mailing list