[Returnanalytics-commits] r2810 - in pkg/PerformanceAnalytics/sandbox/Shubhankit: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Aug 17 23:40:48 CEST 2013


Author: braverock
Date: 2013-08-17 23:40:48 +0200 (Sat, 17 Aug 2013)
New Revision: 2810

Added:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/.Rbuildignore
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EMaxDDGBM.Rd
Removed:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/Shubhankit/
Modified:
   pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION
   pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE
   pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd
   pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd
Log:
- add DESCRIPTION, NAMESPACE, .Rbuildignore
- changes to allow roxygenize to work
- changes to allow R CMD build to work


Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/.Rbuildignore
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/.Rbuildignore	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/.Rbuildignore	2013-08-17 21:40:48 UTC (rev 2810)
@@ -0,0 +1,5 @@
+sandbox
+generatechangelog\.sh
+ChangeLog\.1\.0\.0
+week*
+Week*

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION	2013-08-17 21:20:42 UTC (rev 2809)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/DESCRIPTION	2013-08-17 21:40:48 UTC (rev 2810)
@@ -1,53 +1,32 @@
-Package: Shubhankit
-Type: Package
-Title: Econometric tools for performance and risk analysis.
-Version: 1.1.0
-Date: $Date: 2013-01-29 21:04:00 +0800 (Tue, 29 Jan 2013) $
-Author: Peter Carl, Brian G. Peterson
-Maintainer: Brian G. Peterson <brian at braverock.com>
-Description: Collection of econometric functions for
-    performance and risk analysis. This package aims to aid
-    practitioners and researchers in utilizing the latest
-    research in analysis of non-normal return streams.  In
-    general, it is most tested on return (rather than
-    price) data on a regular scale, but most functions will
-    work with irregular return data as well, and increasing
-    numbers of functions will work with P&L or price data
-    where possible.
-Depends:
-    R (>= 2.14.0),
-    zoo,
-    xts (>= 0.8-9)
-Suggests:
-    Hmisc,
-    MASS,
-    tseries,
-    quadprog,
-    sn,
-    robustbase,
-    quantreg,
-    gplots,
-    ff
-License: GPL
-URL: http://r-forge.r-project.org/projects/returnanalytics/
-Copyright: (c) 2004-2012
-Contributors: Kris Boudt,  Diethelm Wuertz, Eric Zivot, Matthieu Lestel
-Thanks: A special thanks for additional contributions from
-    Stefan Albrecht, Khahn Nygyen, Jeff Ryan,
-    Josh Ulrich, Sankalp Upadhyay, Tobias Verbeke,
-    H. Felix Wittmann, Ram Ahluwalia
-Collate:
-    'GLMSmoothIndex.R'
-    'chart.Autocorrelation.R'
-    'ACStdDev.annualized.R'
-    'CalmarRatio.Normalized.R'
-    'na.skip.R'
-    'Return.GLM.R'
-    'table.ComparitiveReturn.GLM.R'
-    'table.UnsmoothReturn.R'
-    'UnsmoothReturn.R'
-    'EmaxDDGBM.R'
-    'maxDDGBM.R'
-    'table.normDD.R'
-    'CDDopt.R'
-    'CDrawdown.R'
+Package: noniid.sm
+Type: Package
+Title: Non-i.i.d. GSoC 2013 Shubhankit
+Version: 0.1
+Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
+Author: Shubhankit Mohan <shubhankit1 at gmail.com>
+Contributors: Peter Carl, Brian G. Peterson
+Depends:
+    xts,
+    PerformanceAnalytics
+Suggests:
+    PortfolioAnalytics
+Maintainer: Brian G. Peterson <brian at braverock.com>
+Description: GSoC 2013 project to replicate literature on drawdowns and
+    non-i.i.d assumptions in finance.
+License: GPL-3
+ByteCompile: TRUE
+Collate:
+    'ACStdDev.annualized.R'
+    'CalmarRatio.Normalized.R'
+    'CDDopt.R'
+    'CDrawdown.R'
+    'chart.Autocorrelation.R'
+    'EmaxDDGBM.R'
+    'GLMSmoothIndex.R'
+    'maxDDGBM.R'
+    'na.skip.R'
+    'Return.GLM.R'
+    'table.ComparitiveReturn.GLM.R'
+    'table.normDD.R'
+    'table.UnsmoothReturn.R'
+    'UnsmoothReturn.R'

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE	2013-08-17 21:20:42 UTC (rev 2809)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/NAMESPACE	2013-08-17 21:40:48 UTC (rev 2810)
@@ -1,11 +1,12 @@
-export(ACStdDev.annualized)
-export(CDrawdown)
-export(chart.Autocorrelation)
-export(EMaxDDGBM)
-export(GLMSmoothIndex)
-export(QP.Norm)
-export(SterlingRatio.Normalized)
-export(table.ComparitiveReturn.GLM)
-export(table.EMaxDDGBM)
-export(table.NormDD)
-export(table.UnsmoothReturn)
+export(ACStdDev.annualized)
+export(CalmarRatio.Normalized)
+export(CDrawdown)
+export(chart.Autocorrelation)
+export(EMaxDDGBM)
+export(GLMSmoothIndex)
+export(QP.Norm)
+export(SterlingRatio.Normalized)
+export(table.ComparitiveReturn.GLM)
+export(table.EMaxDDGBM)
+export(table.NormDD)
+export(table.UnsmoothReturn)

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R	2013-08-17 21:20:42 UTC (rev 2809)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/R/CalmarRatio.Normalized.R	2013-08-17 21:40:48 UTC (rev 2810)
@@ -1,3 +1,5 @@
+#' QP function fo calculation of Sharpe Ratio
+#' 
 #' calculate a Normalized Calmar or Sterling reward/risk ratio
 #'  
 #' Normalized Calmar and Sterling Ratios are yet another method of creating a
@@ -45,14 +47,14 @@
 #'     Normalized.SterlingRatio(managers[,1:6])
 #' 
 #' @export 
-#' @rdname CalmarRatio
-#' QP function fo calculation of Sharpe Ratio
+#' @rdname CalmarRatio.normalized
 QP.Norm <- function (R, tau,scale = NA)
 {
   Sharpe= as.numeric(SharpeRatio.annualized(edhec))
 return(.63519+(.5*log(tau))+log(Sharpe))
 }
 
+#' @export 
 CalmarRatio.Normalized <- function (R, tau = 1,scale = NA)
 { # @author Brian G. Peterson
   
@@ -89,7 +91,7 @@
 }
 
 #' @export 
-#' @rdname CalmarRatio
+#' @rdname CalmarRatio.normalized
 SterlingRatio.Normalized <-
   function (R, tau=1,scale=NA, excess=.1)
   { # @author Brian G. Peterson

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/CalmarRatio.normalized.Rd	2013-08-17 21:40:48 UTC (rev 2810)
@@ -0,0 +1,77 @@
+\name{QP.Norm}
+\alias{Normalized.CalmarRatio}
+\alias{Normalized.SterlingRatio}
+\alias{QP.Norm}
+\alias{SterlingRatio.Normalized}
+\title{QP function fo calculation of Sharpe Ratio}
+\usage{
+  QP.Norm(R, tau, scale = NA)
+
+  SterlingRatio.Normalized(R, tau = 1, scale = NA,
+    excess = 0.1)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+
+  \item{scale}{number of periods in a year (daily scale =
+  252, monthly scale = 12, quarterly scale = 4)}
+
+  \item{excess}{for Sterling Ratio, excess amount to add to
+  the max drawdown, traditionally and default .1 (10\%)}
+}
+\description{
+  calculate a Normalized Calmar or Sterling reward/risk
+  ratio
+}
+\details{
+  Normalized Calmar and Sterling Ratios are yet another
+  method of creating a risk-adjusted measure for ranking
+  investments similar to the \code{\link{SharpeRatio}}.
+
+  Both the Normalized Calmar and the Sterling ratio are the
+  ratio of annualized return over the absolute value of the
+  maximum drawdown of an investment. The Sterling ratio
+  adds an excess risk measure to the maximum drawdown,
+  traditionally and defaulting to 10\%.
+
+  It is also traditional to use a three year return series
+  for these calculations, although the functions included
+  here make no effort to determine the length of your
+  series.  If you want to use a subset of your series,
+  you'll need to truncate or subset the input data to the
+  desired length.
+
+  Many other measures have been proposed to do similar
+  reward to risk ranking. It is the opinion of this author
+  that newer measures such as Sortino's
+  \code{\link{UpsidePotentialRatio}} or Favre's modified
+  \code{\link{SharpeRatio}} are both \dQuote{better}
+  measures, and should be preferred to the Calmar or
+  Sterling Ratio.
+}
+\examples{
+data(managers)
+    Normalized.CalmarRatio(managers[,1,drop=FALSE])
+    Normalized.CalmarRatio(managers[,1:6])
+    Normalized.SterlingRatio(managers[,1,drop=FALSE])
+    Normalized.SterlingRatio(managers[,1:6])
+}
+\author{
+  Brian G. Peterson
+}
+\references{
+  Bacon, Carl. \emph{Magdon-Ismail, M. and Amir Atiya,
+  Maximum drawdown. Risk Magazine, 01 Oct 2004.
+}
+\seealso{
+  \code{\link{Return.annualized}}, \cr
+  \code{\link{maxDrawdown}}, \cr
+  \code{\link{SharpeRatio.modified}}, \cr
+  \code{\link{UpsidePotentialRatio}}
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{ts}
+

Added: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EMaxDDGBM.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EMaxDDGBM.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EMaxDDGBM.Rd	2013-08-17 21:40:48 UTC (rev 2810)
@@ -0,0 +1,23 @@
+\name{EMaxDDGBM}
+\alias{EMaxDDGBM}
+\title{Expected Drawdown using Brownian Motion Assumptions}
+\usage{
+  EMaxDDGBM(R, digits = 4)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+}
+\description{
+  Works on the model specified by Maddon-Ismail
+}
+\author{
+  R
+}
+\keyword{Assumptions}
+\keyword{Brownian}
+\keyword{Drawdown}
+\keyword{Expected}
+\keyword{Motion}
+\keyword{Using}
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd	2013-08-17 21:20:42 UTC (rev 2809)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/EmaxDDGBM.Rd	2013-08-17 21:40:48 UTC (rev 2810)
@@ -1,23 +1,25 @@
-\name{EMaxDDGBM}
-\alias{EMaxDDGBM}
-\title{Expected Drawdown using Brownian Motion Assumptions}
-\usage{
-  EMaxDDGBM(R, digits = 4)
-}
-\arguments{
-  \item{R}{an xts, vector, matrix, data frame, timeSeries
-  or zoo object of asset returns}
-}
-\description{
-  Works on the model specified by Maddon-Ismail
-}
-\author{
-  R
-}
-\keyword{Assumptions}
-\keyword{Brownian}
-\keyword{Drawdown}
-\keyword{Expected}
-\keyword{Motion}
-\keyword{Using}
-
+\name{table.EMaxDDGBM}
+\alias{table.EMaxDDGBM}
+\title{Expected Drawdown using Brownian Motion Assumptions}
+\usage{
+  table.EMaxDDGBM(R, digits = 4)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+}
+\description{
+  Works on the model specified by Maddon-Ismail which
+  investigates the behavior of this statistic for a
+  Brownian motion with drift.
+}
+\author{
+  Peter Carl, Brian Peterson, Shubhankit Mohan
+}
+\keyword{Assumptions}
+\keyword{Brownian}
+\keyword{Drawdown}
+\keyword{Expected}
+\keyword{Motion}
+\keyword{Using}
+

Modified: pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd	2013-08-17 21:20:42 UTC (rev 2809)
+++ pkg/PerformanceAnalytics/sandbox/Shubhankit/man/Return.GLM.Rd	2013-08-17 21:40:48 UTC (rev 2810)
@@ -1,47 +1,47 @@
-\name{Return.GLM}
-\alias{Return.GLM}
-\title{GLM Return Model}
-\usage{
-  Return.GLM(edhec,4)
-}
-\arguments{
-  \item{Ra}{: an xts, vector, matrix, data frame,
-  timeSeries or zoo object of asset returns}
-
-  \item{q}{: order of autocorrelation coefficient lag
-  factors}
-}
-\description{
-  True returns represent the flow of information that would
-  determine the equilibrium value of the fund's securities
-  in a frictionless market. However, true economic returns
-  are not observed. The returns to hedge funds and other
-  alternative investments are often highly serially
-  correlated.We propose an econometric model of return
-  smoothingand develop estimators for the smoothing
-  profile as well as a smoothing-adjusted Sharpe ratio.
-}
-\details{
-  To quantify the impact of all of these possible sources
-  of serial correlation, denote by R(t) the true economic
-  return of a hedge fund in period 't'; and let R(t)
-  satisfy the following linear single-factor model: where:
-  \deqn{R(0,t) = \theta_{0}R(t) + \theta_{1}R(t-1) +
-  \theta_{2}R(t-2) ....  + \theta_{k}R(t-k)} where
-  \eqn{\theta}'i is defined as the weighted lag of
-  autocorrelated lag and whose sum is 1.
-}
-\author{
-  Brian Peterson,Peter Carl, Shubhankit Mohan
-}
-\references{
-  Mila Getmansky, Andrew W. Lo, Igor Makarov,\emph{An
-  econometric model of serial correlation and and
-  illiquidity in hedge fund Returns},Journal of Financial
-  Economics 74 (2004).
-}
-\keyword{distribution}
-\keyword{models}
-\keyword{multivariate}
-\keyword{ts}
-
+\name{Return.GLM}
+\alias{Return.GLM}
+\title{GLM Return Model}
+\usage{
+  Return.GLM(edhec,4)
+}
+\arguments{
+  \item{Ra}{: an xts, vector, matrix, data frame,
+  timeSeries or zoo object of asset returns}
+
+  \item{q}{: order of autocorrelation coefficient lag
+  factors}
+}
+\description{
+  True returns represent the flow of information that would
+  determine the equilibrium value of the fund's securities
+  in a frictionless market. However, true economic returns
+  are not observed. The returns to hedge funds and other
+  alternative investments are often highly serially
+  correlated.We propose an econometric model of return
+  smoothingand develop estimators for the smoothing profile
+  as well as a smoothing-adjusted Sharpe ratio.
+}
+\details{
+  To quantify the impact of all of these possible sources
+  of serial correlation, denote by R(t) the true economic
+  return of a hedge fund in period 't'; and let R(t)
+  satisfy the following linear single-factor model: where:
+  \deqn{R(0,t) = \theta_{0}R(t) + \theta_{1}R(t-1) +
+  \theta_{2}R(t-2) ....  + \theta_{k}R(t-k)} where
+  \eqn{\theta}'i is defined as the weighted lag of
+  autocorrelated lag and whose sum is 1.
+}
+\author{
+  Brian Peterson,Peter Carl, Shubhankit Mohan
+}
+\references{
+  Mila Getmansky, Andrew W. Lo, Igor Makarov,\emph{An
+  econometric model of serial correlation and and
+  illiquidity in hedge fund Returns},Journal of Financial
+  Economics 74 (2004).
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{ts}
+



More information about the Returnanalytics-commits mailing list