[Returnanalytics-commits] r2808 - in pkg/PerformanceAnalytics/sandbox/pulkit: . R man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Aug 17 23:18:06 CEST 2013


Author: braverock
Date: 2013-08-17 23:18:06 +0200 (Sat, 17 Aug 2013)
New Revision: 2808

Added:
   pkg/PerformanceAnalytics/sandbox/pulkit/DESCRIPTION
   pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE
   pkg/PerformanceAnalytics/sandbox/pulkit/man/AlphaDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/BenchmarkSR.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/CdarMultiPath.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/DrawdownGPD.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/MonteSimulTriplePenance.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/MultiBetaDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/ProbSharpeRatio.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/PsrPortfolio.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/REDDCOPS.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/TuW.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/chart.BenchmarkSR.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/chart.Penance.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/chart.SRIndifference.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/golden_section.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/rollDrawdown.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/rollEconomicMax.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/table.PSR.Rd
   pkg/PerformanceAnalytics/sandbox/pulkit/man/table.Penance.Rd
Modified:
   pkg/PerformanceAnalytics/sandbox/pulkit/R/BenchmarkSR.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/CDaRMultipath.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/chart.Penance.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R
   pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R
Log:
- add DESCRIPTION, NAMESPACE
- additional changes so that roxygenize could work on the entire package
- additional changes so that R CMD build would work


Added: pkg/PerformanceAnalytics/sandbox/pulkit/DESCRIPTION
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/DESCRIPTION	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/DESCRIPTION	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,46 @@
+Package: noniid.pm
+Type: Package
+Title: Non-i.i.d. GSoC 2013 Pulkit
+Version: 0.1
+Date: $Date: 2013-05-13 14:30:22 -0500 (Mon, 13 May 2013) $
+Author: Pulkit Mahotra <mehrotra.pulkit at gmail.com>
+Contributors: Peter Carl, Brian G. Peterson
+Depends:
+    xts,
+    PerformanceAnalytics
+Suggests:
+    PortfolioAnalytics
+Maintainer: Brian G. Peterson <brian at braverock.com>
+Description: GSoC 2013 project to replicate literature on drawdowns and
+    non-i.i.d assumptions in finance.
+License: GPL (>=3)
+ByteCompile: TRUE
+Collate:
+    'BenchmarkPlots.R'
+    'BenchmarkSR.R'
+    'CDaRMultipath.R'
+    'CdaR.R'
+    'chart.Penance.R'
+    'chart.REDD.R'
+    'chart.SharpeEfficient.R'
+    'Drawdownalpha.R'
+    'DrawdownBetaMulti.R'
+    'DrawdownBeta.R'
+    'EDDCOPS.R'
+    'edd.R'
+    'Edd.R'
+    'ExtremeDrawdown.R'
+    'GoldenSection.R'
+    'MaxDD.R'
+    'MinTRL.R'
+    'MonteSimulTriplePenance.R'
+    'ProbSharpeRatio.R'
+    'PSRopt.R'
+    'REDDCOPS.R'
+    'redd.R'
+    'REM.R'
+    'SRIndifferenceCurve.R'
+    'table.Penance.R'
+    'table.PSR.R'
+    'TriplePenance.R'
+    'TuW.R'

Added: pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/NAMESPACE	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,10 @@
+export(AlphaDrawdown)
+export(BenchmarkSR)
+export(chart.BenchmarkSR)
+export(chart.SRIndifference)
+export(EconomicDrawdown)
+export(EDDCOPS)
+export(MinTrackRecord)
+export(REDDCOPS)
+export(rollDrawdown)
+export(rollEconomicMax)

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/BenchmarkSR.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/BenchmarkSR.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/BenchmarkSR.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -8,7 +8,6 @@
 #' average pairwise correlation. The Returns are given as
 #' the input with the benchmark Sharpe Ratio as the output.
 #' 
-#'@aliases BenchmarkSR
 #'\deqn{SR_B = \bar{SR}\sqrt{\frac{S}{1+(S-1)\bar{\rho}}}}
 #'
 #'Here \eqn{\bar{SR}} is the average SR of the portfolio and \eqn{\bar{\rho}} 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/CDaRMultipath.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/CDaRMultipath.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/CDaRMultipath.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -1,7 +1,7 @@
 #'@title
 #'Conditional Drawdown at Risk for Multiple Sample Path
 #'
-#'@desctipion
+#'@description
 #'
 #' For a given \eqn{\alpha \epsilon [0,1]} in the multiple sample-paths setting,CDaR, 
 #' denoted by \eqn{D_{\alpha}(w)}, is the average of \eqn{(1-\alpha).100\%} drawdowns 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/GoldenSection.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -15,7 +15,7 @@
 #' \eqn{f(x_2)<f(x_1)} then the three new points are \eqn{x_2<x_1<x_u}. This process is continued until the distance between the outer point
 #' is sufficiently small.
 
-#' @reference Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
+#' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
 #' 
 #'@param a initial point
 #'@param b final point

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/MaxDD.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -43,7 +43,7 @@
 #' @param confidence the confidence interval
 #' @param type The type of distribution "normal" or "ar"."ar" stands for Autoregressive.
 #' 
-#' @reference Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
+#' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
 #' 
 #' @examples
 #' 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/MinTRL.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -38,7 +38,7 @@
 #'@param kr Kurtosis, in the same periodicity as the returns(non-annualized).
 #'To be given in case the return series is not given.
 #'
-#'@reference Bailey, David H. and Lopez de Prado, Marcos, \emph{The Sharpe Ratio 
+#'@references Bailey, David H. and Lopez de Prado, Marcos, \emph{The Sharpe Ratio 
 #'Efficient Frontier} (July 1, 2012). Journal of Risk, Vol. 15, No. 2, Winter
 #' 2012/13
 #'@keywords ts multivariate distribution models

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/MonteSimulTriplePenance.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -20,7 +20,7 @@
 #' @param bets Number of bets in the cumulative process
 #' @param confidence Confidence level for quantile
 #' 
-#' @reference Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs
+#' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs
 #'  and the ‘Triple Penance’ Rule(January 1, 2013).
 #'  
 #'  @examples

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/TuW.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -27,7 +27,7 @@
 #' @param confidence the confidence interval
 #' @param type The type of distribution "normal" or "ar"."ar" stands for Autoregressive.
 #' 
-#' @reference Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
+#' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
 #' 
 #' @examples
 #' TuW(edhec,0.95,"ar")

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/chart.Penance.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/chart.Penance.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/chart.Penance.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -31,9 +31,10 @@
 #'@seealso \code{\link{plot}}
 #'@keywords ts multivariate distribution models hplot
 #'@examples
+#'ls()
 #'
 #'
-#'@reference Bailey, David H. and Lopez de Prado, Marcos,Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
+#'@references Bailey, David H. and Lopez de Prado, Marcos,Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
 
 chart.Penance<-function(R,confidence,type=c("ar","normal"),reference.grid = TRUE,main=NULL,ylab = NULL,xlab = NULL,element.color="darkgrey",lwd = 2,pch = 1,cex = 1,cex.axis=0.8,cex.lab = 1,cex.main = 1,xlim = NULL,ylim = NULL,...){
 

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/table.PSR.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -12,7 +12,7 @@
 #'@param the confidence level
 #'@param weights the weights for the portfolio
 #'
-#'@reference Bailey, David H. and Lopez de Prado, Marcos, \emph{The Sharpe Ratio 
+#'@references Bailey, David H. and Lopez de Prado, Marcos, \emph{The Sharpe Ratio 
 #'Efficient Frontier} (July 1, 2012). Journal of Risk, Vol. 15, No. 2, Winter
 #' 2012/13
 #'@keywords ts multivariate distribution models

Modified: pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R	2013-08-17 18:01:02 UTC (rev 2807)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/R/table.Penance.R	2013-08-17 21:18:06 UTC (rev 2808)
@@ -7,7 +7,7 @@
 #' @param R Returns
 #' @param confidence the confidence interval
 #' 
-#' @reference Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
+#' @references Bailey, David H. and Lopez de Prado, Marcos, Drawdown-Based Stop-Outs and the ‘Triple Penance’ Rule(January 1, 2013).
 
 table.Penance<-function(R,confidence){
   # DESCRIPTION:

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/AlphaDrawdown.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/AlphaDrawdown.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/AlphaDrawdown.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,63 @@
+\name{AlphaDrawdown}
+\alias{AlphaDrawdown}
+\title{Drawdown alpha}
+\usage{
+  AlphaDrawdown(R, Rm, p = 0.95, weights = NULL,
+    geometric = TRUE, type = c("alpha", "average", "max"),
+    ...)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+
+  \item{Rm}{Return series of the optimal portfolio an xts,
+  vector, matrix, data frame, timeSeries or zoo object of
+  asset returns}
+
+  \item{p}{confidence level for calculation
+  ,default(p=0.95)}
+
+  \item{weights}{portfolio weighting vector, default NULL,
+  see Details}
+
+  \item{geometric}{utilize geometric chaining (TRUE) or
+  simple/arithmetic chaining (FALSE) to aggregate returns,
+  default TRUE}
+
+  \item{type}{The type of BetaDrawdown if specified alpha
+  then the alpha value given is taken (default 0.95). If
+  "average" then alpha = 0 and if "max" then alpha = 1 is
+  taken.}
+
+  \item{\dots}{any passthru variable}
+}
+\description{
+  Then the difference between the actual rate of return and
+  the rate of return of the instrument estimated by
+  \eqn{\beta_DD{w_T}} is called CDaR alpha and is given by
+
+  \deqn{\alpha_DD = w_T - \beta_DD{w_T^M}}
+
+  here \eqn{\beta_DD} is the beta drawdown. The code for
+  beta drawdown can be found here \code{BetaDrawdown}.
+
+  Postive \eqn{\alpha_DD} implies that the instrument did
+  better than it was predicted, and consequently,
+  \eqn{\alpha_DD} can be used as a performance measure to
+  rank instrument and to identify those that outperformed
+  their CAPM predictions
+}
+\examples{
+AlphaDrawdown(edhec[,1],edhec[,2]) ## expected value : 0.5141929
+
+AlphaDrawdown(edhec[,1],edhec[,2],type="max") ## expected value : 0.8983177
+
+AlphaDrawdown(edhec[,1],edhec[,2],type="average") ## expected value : 1.692592
+}
+\references{
+  Zabarankin, M., Pavlikov, K., and S. Uryasev. Capital
+  Asset Pricing Model (CAPM) with Drawdown Measure.Research
+  Report 2012-9, ISE Dept., University of Florida,September
+  2012.
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/BenchmarkSR.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/BenchmarkSR.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/BenchmarkSR.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,34 @@
+\name{BenchmarkSR}
+\alias{BenchmarkSR}
+\title{Benchmark Sharpe Ratio}
+\usage{
+  BenchmarkSR(R)
+}
+\arguments{
+  \item{R}{a vector, matrix, data frame,timeseries or zoo
+  object of asset returns}
+}
+\description{
+  The benchmark SR is a linear function of the average SR
+  of the individual strategies, and a decreasing convex
+  function of the number of strategies and the average
+  pairwise correlation. The Returns are given as the input
+  with the benchmark Sharpe Ratio as the output.
+
+  \deqn{SR_B = \bar{SR}\sqrt{\frac{S}{1+(S-1)\bar{\rho}}}}
+
+  Here \eqn{\bar{SR}} is the average SR of the portfolio
+  and \eqn{\bar{\rho}} is the average correlation across
+  off-diagonal elements
+}
+\examples{
+data(edhec)
+BenchmarkSR(edhec) #expected 0.393797
+}
+\references{
+  Bailey, David H. and Lopez de Prado, Marcos, The Strategy
+  Approval Decision: A Sharpe Ratio Indifference Curve
+  Approach (January 2013). Algorithmic Finance, Vol. 2, No.
+  1 (2013).
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/BetaDrawdown.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,76 @@
+\name{BetaDrawdown}
+\alias{BetaDrawdown}
+\title{Drawdown Beta for single path}
+\usage{
+  BetaDrawdown(R, Rm, h = 0, p = 0.95, weights = NULL,
+    geometric = TRUE, type = c("alpha", "average", "max"),
+    ...)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+
+  \item{Rm}{Return series of the optimal portfolio an xts,
+  vector, matrix, data frame, timeSeries or zoo object of
+  asset returns}
+
+  \item{p}{confidence level for calculation
+  ,default(p=0.95)}
+
+  \item{weights}{portfolio weighting vector, default NULL,
+  see Details}
+
+  \item{geometric}{utilize geometric chaining (TRUE) or
+  simple/arithmetic chaining (FALSE) to aggregate returns,
+  default TRUE}
+
+  \item{type}{The type of BetaDrawdown if specified alpha
+  then the alpha value given is taken (default 0.95). If
+  "average" then alpha = 0 and if "max" then alpha = 1 is
+  taken.}
+
+  \item{\dots}{any passthru variable.}
+}
+\description{
+  The drawdown beta is formulated as follows
+
+  \deqn{\beta_DD =
+  \frac{{\sum_{t=1}^T}{q_t^\asterisk}{(w_{k^{\asterisk}(t)}-w_t)}}{D_{\alpha}(w^M)}}
+  here \eqn{\beta_DD} is the drawdown beta of the
+  instrument.
+  \eqn{k^{\asterisk}(t)\in{argmax_{t_{\tau}{\le}k{\le}t}}w_k^M}
+
+  \eqn{q_t^\asterisk=1/((1-\alpha)T)} if \eqn{d_t^M} is one
+  of the \eqn{(1-\alpha)T} largest drawdowns \eqn{d_1^{M}
+  ,......d_t^M} of the optimal portfolio and
+  \eqn{q_t^\asterisk = 0} otherwise. It is assumed that
+  \eqn{D_\alpha(w^M) {\neq} 0} and that \eqn{q_t^\asterisk}
+  and \eqn{k^{\asterisk}(t) are uniquely determined for all
+  \eqn{t = 1....T}
+
+  The numerator in \eqn{\beta_DD} is the average rate of
+  return of the instrument over time periods corresponding
+  to the \eqn{(1-\alpha)T} largest drawdowns of the optimal
+  portfolio, where \eqn{w_t - w_k^{\asterisk}(t)} is the
+  cumulative rate of return of the instrument from the
+  optimal portfolio#' peak time \eqn{k^\asterisk(t)} to
+  time t.
+
+  The difference in CDaR and standard betas can be
+  explained by the conceptual difference in beta
+  definitions: the standard beta accounts for the fund
+  returns over the whole return history, including the
+  periods when the market goes up, while CDaR betas focus
+  only on market drawdowns and, thus, are not affected when
+  the market performs well.
+}
+\examples{
+BetaDrawdown(edhec[,1],edhec[,2]) #expected value 0.5390431
+}
+\references{
+  Zabarankin, M., Pavlikov, K., and S. Uryasev. Capital
+  Asset Pricing Model (CAPM) with Drawdown Measure.Research
+  Report 2012-9, ISE Dept., University of Florida,September
+  2012.
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/CdarMultiPath.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/CdarMultiPath.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/CdarMultiPath.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,63 @@
+\name{CdarMultiPath}
+\alias{CdarMultiPath}
+\title{Conditional Drawdown at Risk for Multiple Sample Path}
+\usage{
+  CdarMultiPath(R, ps, sample, geometric = TRUE, p = 0.95,
+    ...)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix,data frame, timeSeries or
+  zoo object of multiple sample path returns}
+
+  \item{ps}{the probability for each sample path}
+
+  \item{scen}{the number of scenarios in the Return series}
+
+  \item{instr}{the number of instruments in the Return
+  series}
+
+  \item{geometric}{utilize geometric chaining (TRUE) or
+  simple/arithmetic chaining (FALSE) to aggregate returns,
+  default TRUE}
+
+  \item{p}{confidence level for calculation
+  ,default(p=0.95)}
+
+  \item{\dots}{any other passthru parameters}
+}
+\description{
+  For a given \eqn{\alpha \epsilon [0,1]} in the multiple
+  sample-paths setting,CDaR, denoted by
+  \eqn{D_{\alpha}(w)}, is the average of
+  \eqn{(1-\alpha).100\%} drawdowns of the set
+  {d_st|t=1,....T,s = 1,....S}, and is defined by
+
+  \deqn{D_\alpha(w) =
+  \max_{{q_st}{\epsilon}Q}{\sum_{s=1}^S}{\sum_{t=1}^T}{p_s}{q_st}{d_st}},
+
+  where
+
+  \deqn{Q = \left\{ \left\{ q_st\right\}_{s,t=1}^{S,T} |
+  \sum_{s = 1}^S \sum_{t = 1}^T{p_s}{q_st} = 1,
+  0{\leq}q_st{\leq}\frac{1}{(1-\alpha)T}, s = 1....S, t =
+  1.....T \right\}}
+
+  For \eqn{\alpha = 1} , \eqn{D_\alpha(w)} is defined by
+  (3) with the constraint
+  \eqn{0{\leq}q_st{\leq}\frac{1}{(1-\alpha)T}}, in Q
+  replaced by \eqn{q_st{\geq}0}
+
+  As in the case of a single sample-path, the CDaR
+  definition includes two special cases : (i) for
+  \eqn{\alpha = 1},\eqn{D_1(w)} is the maximum drawdown,
+  also called drawdown from peak-to-valley, and (ii) for
+  \eqn{\alpha} = 0, \eqn{D_\alpha(w)} is the average
+  drawdown
+}
+\references{
+  Zabarankin, M., Pavlikov, K., and S. Uryasev. Capital
+  Asset Pricing Model (CAPM) with Drawdown Measure.Research
+  Report 2012-9, ISE Dept., University of Florida,
+  September 2012
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/DrawdownGPD.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/DrawdownGPD.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/DrawdownGPD.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,88 @@
+\name{DrawdownGPD}
+\alias{DrawdownGPD}
+\title{Modelling Drawdown using Extreme Value Theory
+
+It has been shown empirically that Drawdowns can be modelled using Modified Generalized Pareto
+distribution(MGPD), Generalized Pareto Distribution(GPD) and other particular cases of MGPD such
+as weibull distribution \eqn{MGPD(\gamma,0,\psi)} and unit exponential distribution\eqn{MGPD(1,0,\psi)}
+
+Modified Generalized Pareto Distribution is given by the following formula
+
+\dqeqn{G_{\eta}(m) = \begin{array}{l} 1-(1+\eta\frac{m^\gamma}{\psi})^(-1/\eta), if \eta \neq 0 \\ 1- e^{-frac{m^\gamma}{\psi}}, if \eta = 0,\end{array}}
+
+Here \eqn{\gamma{\epsilon}R} is the modifying parameter. When \eqn{\gamma<1} the corresponding densities are
+strictly decreasing with heavier tail; the GDP is recovered by setting \eqn{\gamma = 1} .\eqn{\gamma \textgreater 1}
+
+The GDP is given by the following equation. \eqn{MGPD(1,\eta,\psi)}
+
+\deqn{G_{\eta}(m) = \begin{array}{l} 1-(1+\eta\frac{m}{\psi})^(-1/\eta), if \eta \neq 0 \\ 1- e^{-frac{m}{\psi}}, if \eta = 0,\end{array}}
+
+The weibull distribution is given by the following equation \eqn{MGPD(\gamma,0,\psi)}
+
+\deqn{G(m) =  1- e^{-frac{m^\gamma}{\psi}}}
+
+The unit exponential distribution is given by the following equation \eqn{MGPD(1,0,\psi)}
+
+\deqn{G(m) =  1- e^{-m}}}
+\usage{
+  DrawdownGPD(R, type = c("gpd", "pd", "weibull"),
+    threshold = 0.9)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset return}
+
+  \item{type}{The type of distribution
+  "gpd","pd","weibull"}
+
+  \item{threshold}{The threshold beyond which the drawdowns
+  have to be modelled}
+}
+\description{
+  Modelling Drawdown using Extreme Value Theory
+
+  It has been shown empirically that Drawdowns can be
+  modelled using Modified Generalized Pareto
+  distribution(MGPD), Generalized Pareto Distribution(GPD)
+  and other particular cases of MGPD such as weibull
+  distribution \eqn{MGPD(\gamma,0,\psi)} and unit
+  exponential distribution\eqn{MGPD(1,0,\psi)}
+
+  Modified Generalized Pareto Distribution is given by the
+  following formula
+
+  \dqeqn{G_{\eta}(m) = \begin{array}{l}
+  1-(1+\eta\frac{m^\gamma}{\psi})^(-1/\eta), if \eta \neq 0
+  \\ 1- e^{-frac{m^\gamma}{\psi}}, if \eta = 0,\end{array}}
+
+  Here \eqn{\gamma{\epsilon}R} is the modifying parameter.
+  When \eqn{\gamma<1} the corresponding densities are
+  strictly decreasing with heavier tail; the GDP is
+  recovered by setting \eqn{\gamma = 1} .\eqn{\gamma
+  \textgreater 1}
+
+  The GDP is given by the following equation.
+  \eqn{MGPD(1,\eta,\psi)}
+
+  \deqn{G_{\eta}(m) = \begin{array}{l}
+  1-(1+\eta\frac{m}{\psi})^(-1/\eta), if \eta \neq 0 \\ 1-
+  e^{-frac{m}{\psi}}, if \eta = 0,\end{array}}
+
+  The weibull distribution is given by the following
+  equation \eqn{MGPD(\gamma,0,\psi)}
+
+  \deqn{G(m) = 1- e^{-frac{m^\gamma}{\psi}}}
+
+  The unit exponential distribution is given by the
+  following equation \eqn{MGPD(1,0,\psi)}
+
+  \deqn{G(m) = 1- e^{-m}}
+}
+\references{
+  Mendes, Beatriz V.M. and Leal, Ricardo P.C., Maximum
+  Drawdown: Models and Applications (November 2003).
+  Coppead Working Paper Series No. 359. Available at SSRN:
+  http://ssrn.com/abstract=477322 or
+  http://dx.doi.org/10.2139/ssrn.477322.
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/EDDCOPS.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,53 @@
+\name{EDDCOPS}
+\alias{EDDCOPS}
+\title{Economic Drawdown Controlled Optimal Portfolio Strategy}
+\usage{
+  EDDCOPS(R, delta, gamma, Rf, geometric = TRUE, ...)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset returns}
+
+  \item{delta}{Drawdown limit}
+
+  \item{gamma}{(1-gamma) is the investor risk aversion else
+  the return series will be used}
+
+  \item{Rf}{risk free rate can be vector such as government
+  security rate of return.}
+
+  \item{h}{Look back period}
+
+  \item{geomtric}{geometric utilize geometric chaining
+  (TRUE) or simple/arithmetic #'chaining(FALSE) to
+  aggregate returns, default is TRUE.}
+
+  \item{...}{any other variable}
+}
+\description{
+  The Economic Drawdown Controlled Optimal Portfolio
+  Strategy(EDD-COPS) has the portfolio fraction allocated
+  to single risky asset as:
+
+  \deqn{x_t = Max\left\{0,\biggl(\frac{\lambda/\sigma +
+  1/2}{1-\delta.\gamma}\biggr).\biggl[\frac{\delta-EDD(t)}{1-EDD(t)}\biggr]\right\}}
+
+  The risk free asset accounts for the rest of the
+  portfolio allocation \eqn{x_f = 1 - x_t}.
+}
+\examples{
+# with S&P 500 data and T-bill data
+
+dt<-read.zoo("returns.csv",sep=",",header = TRUE)
+dt<-as.xts(dt)
+EDDCOPS(dt[,1],delta = 0.33,gamma = 0.7,Rf = (1+dt[,2])^(1/12)-1,geometric = TRUE)
+
+data(edhec)
+EDDCOPS(edhec,delta = 0.1,gamma = 0.7,Rf = 0)
+}
+\references{
+  Yang, Z. George and Zhong, Liang, Optimal Portfolio
+  Strategy to Control Maximum Drawdown - The Case of Risk
+  Based Dynamic Asset Allocation (February 25, 2012)
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/EconomicDrawdown.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,74 @@
+\name{EconomicDrawdown}
+\alias{EconomicDrawdown}
+\title{Calculate the Economic Drawdown}
+\usage{
+  EconomicDrawdown(R, Rf, geometric = TRUE, ...)
+
+  EconomicDrawdown(R, Rf, geometric = TRUE, ...)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeseries,
+  or zoo object of asset return.}
+
+  \item{Rf}{risk free rate can be vector such as government
+  security rate of return}
+
+  \item{geometric}{utilize geometric chaining (TRUE) or
+  simple/arithmetic chaining(FALSE) to aggregate returns,
+  default is TRUE}
+
+  \item{\dots}{any other variable}
+
+  \item{R}{an xts, vector, matrix, data frame, timeseries,
+  or zoo object of asset return.}
+
+  \item{Rf}{risk free rate can be vector such as government
+  security rate of return}
+
+  \item{geometric}{utilize geometric chaining (TRUE) or
+  simple/arithmetic chaining(FALSE) to aggregate returns,
+  default is TRUE}
+
+  \item{\dots}{any other variable}
+}
+\description{
+  \code{EconomicDrawdown} calculates the Economic
+  Drawdown(EDD) for a return series.To calculate the
+  economic drawdown cumulative return and economic max is
+  calculated for each point. The risk free return(rf) is
+  taken as the input.
+
+  Economic Drawdown is given by the equation
+
+  \deqn{EDD(t)=1-\frac{W_t}/{EM(t)}}
+
+  Here EM stands for Economic Max and is the code
+  \code{\link{EconomicMax}}
+
+  \code{EconomicDrawdown} calculates the Economic
+  Drawdown(EDD) for a return series.To calculate the
+  economic drawdown cumulative return and economic max is
+  calculated for each point. The risk free return(rf) is
+  taken as the input.
+
+  Economic Drawdown is given by the equation
+
+  \deqn{EDD(t)=1-\frac{W_t}/{EM(t)}}
+
+  Here EM stands for Economic Max and is the code
+  \code{\link{EconomicMax}}
+}
+\examples{
+EconomicDrawdown(edhec,0.08,100)
+EconomicDrawdown(edhec,0.08,100)
+}
+\references{
+  Yang, Z. George and Zhong, Liang, Optimal Portfolio
+  Strategy to Control Maximum Drawdown - The Case of Risk
+  Based Dynamic Asset Allocation (February 25, 2012)
+
+  Yang, Z. George and Zhong, Liang, Optimal Portfolio
+  Strategy to Control Maximum Drawdown - The Case of Risk
+  Based Dynamic Asset Allocation (February 25, 2012)
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/MaxDD.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,72 @@
+\name{MaxDD}
+\alias{MaxDD}
+\title{Triple Penance Rule}
+\usage{
+  MaxDD(R, confidence, type = c("ar", "normal"), ...)
+}
+\arguments{
+  \item{R}{Returns}
+
+  \item{confidence}{the confidence interval}
+
+  \item{type}{The type of distribution "normal" or
+  "ar"."ar" stands for Autoregressive.}
+}
+\description{
+  \code{MaxDD} calculates the Maximum drawdown for a
+  particular confidence interval. Maximum Drawdown tells us
+  Up to how much could a particular strategy lose with a
+  given confidence level ?. This function calculated
+  Maximum Drawdown for two underlying processes normal and
+  autoregressive. For a normal process Maximum Drawdown is
+  given by the formula When the distibution is normal
+
+  \deqn{MaxDD_{\alpha}=max\left\{0,\frac{(z_{\alpha}\sigma)^2}{4\mu}\right\}}
+
+  The time at which the Maximum Drawdown occurs is given by
+  \deqn{t^\ast=\biggl(\frac{Z_{\alpha}\sigma}{2\mu}\biggr)^2}
+  Here $Z_{\alpha}$ is the critical value of the Standard
+  Normal Distribution associated with a probability
+  $\alpha$.$\sigma$ and $\mu$ are the Standard Distribution
+  and the mean respectively. When the distribution is
+  non-normal and time dependent, Autoregressive process.
+
+  \deqn{Q_{\alpha,t}=\frac{\phi^{(t+1)}-\phi}{\phi-1}(\triangle\pi_0-\mu)+{\mu}t+Z_{\alpha}\frac{\sigma}{|\phi-1|}\biggl(\frac{\phi^{2(t+1)}-1}{\phi^2-1}-2\frac{\phi^(t+1)-1}{\phi-1}+t+1\biggr)^{1/2}}
+
+  $\phi$ is estimated as
+
+  \deqn{\hat{\phi} =
+  Cov_0[\triangle\pi_\tau,\triangle\pi_{\tau-1}](Cov_0[\triangle\pi_{\tau-1},\triangle\pi_{\tau-1}])^{-1}}
+
+  and the Maximum Drawdown is given by.
+
+  \deqn{MaxDD_{\alpha}=max\left\{0,-MinQ_\alpha\right\}}
+
+  The non normal time dependent process is defined by
+
+  \deqn{\triangle{\pi_{\tau}}=(1-\phi)\mu +
+  \phi{\delta_{\tau-1}} + \sigma{\epsilon_{\tau}}}
+
+  The random shocks are iid distributed
+  \eqn{\epsilon_{\tau}~N(0,1)}. These random shocks follow
+  an independent and identically distributed Gaussian
+  Process, however \eqn{\triangle{\pi_\tau}} is neither an
+  independent nor an identically distributed Gaussian
+  Process. This is due to the parameter \eqn{\phi}, which
+  incorporates a first-order serial-correlation effect of
+  auto-regressive form.
+
+  Golden Section Algorithm is used to calculate the Minimum
+  of the function Q.
+}
+\examples{
+data(edhec)
+MaxDD(edhec,0.95,"ar")
+MaxDD(edhec[,1],0.95,"normal") #expected values 4.241799 6.618966
+}
+\references{
+  Bailey, David H. and Lopez de Prado, Marcos,
+  Drawdown-Based Stop-Outs and the ‘Triple Penance’
+  Rule(January 1, 2013).
+}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/MinTrackRecord.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,80 @@
+\name{MinTrackRecord}
+\alias{MinTrackRecord}
+\title{Minimum Track Record Length}
+\usage{
+  MinTrackRecord(R = NULL, refSR, Rf = 0, p = 0.95,
+    weights = NULL, sr = NULL, sk = NULL, kr = NULL, ...)
+}
+\arguments{
+  \item{R}{an xts, vector, matrix, data frame, timeSeries
+  or zoo object of asset return}
+
+  \item{Rf}{the risk free rate of return}
+
+  \item{refSR}{the reference Sharpe Ratio, can be a single
+  value or a vector for a multicolumn return series.Should
+  be non-annualized , in the same periodicity as the
+  returns.}
+
+  \item{p}{the confidence level}
+
+  \item{weights}{the weights for the portfolio}
+
+  \item{sr}{Sharpe Ratio,in the same periodicity as the
+  returns(non-annualized). To be given in case the return
+  series is not given.}
+
+  \item{sk}{Skewness, in the same periodicity as the
+  returns(non-annualized). To be given in case the return
+  series is not given.}
+
+  \item{kr}{Kurtosis, in the same periodicity as the
+  returns(non-annualized). To be given in case the return
+  series is not given.}
+}
+\description{
+  Minimum Track Record Length tells us “How long should a
+  track record be in order to have statistical confidence
+  that its Sharpe ratio is above a given threshold? ". If a
+  track record is shorter than MinTRL, we do not have
+  enough confidence that the observed Sharpe Ratio is above
+  the designated threshold. The reference Sharpe Ratio
+  should be less than the observed Sharpe Ratio and the
+  Values should be given in non-annualized terms, in the
+  same periodicity as the return series. The Minimum Track
+  Record Length is also given in the same Periodicity as
+  the Return Series.
+
+  \deqn{MinTRL = n^\ast =
+  1+\biggl[1-\hat{\gamma_3}\hat{SR}+\frac{\hat{\gamma_4}}{4}\hat{SR^2}\biggr]\biggl(\frac{Z_\alpha}{\hat{SR}-SR^\ast}\biggr)^2}
+
+  $\gamma{_3}$ and $\gamma{_4}$ are the skewness and
+  kurtosis respectively. It is important to note that
+  MinTRL is expressed in terms of number of observations,
+  not annual or calendar terms.
+
+  The sharpe ratio , skewness and kurtosis can be directly
+  given if the return series is not available using the
+  input parameters sr,sk and kr. If the return series is
+  available these parameters can be left.
+
+  weights will be needed to be entered if a portfolio's
+  MinTRL is to be calculated else weight can be left as
+  NULL.
+}
+\examples{
+data(edhec)
+MinTrackRecord(edhec[,1],refSR=0.1,Rf = 0.04/12)
+MinTrackRecord(refSR = 1/12^0.5,Rf = 0,p=0.95,sr = 2/12^0.5,sk=-0.72,kr=5.78)
+MinTrackRecord(edhec[,1:2],refSR = c(0.28,0.24))
+}
+\references{
+  Bailey, David H. and Lopez de Prado, Marcos, \emph{The
+  Sharpe Ratio Efficient Frontier} (July 1, 2012). Journal
+  of Risk, Vol. 15, No. 2, Winter 2012/13
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{ts}
+

Added: pkg/PerformanceAnalytics/sandbox/pulkit/man/MonteSimulTriplePenance.Rd
===================================================================
--- pkg/PerformanceAnalytics/sandbox/pulkit/man/MonteSimulTriplePenance.Rd	                        (rev 0)
+++ pkg/PerformanceAnalytics/sandbox/pulkit/man/MonteSimulTriplePenance.Rd	2013-08-17 21:18:06 UTC (rev 2808)
@@ -0,0 +1,46 @@
+\name{MonteSimulTriplePenance}
+\alias{MonteSimulTriplePenance}
+\title{Monte Carlo Simulation for the Triple Penance Rule}
+\usage{
+  MonteSimulTriplePenance(size, phi, mu, sigma, dp0, bets,
+    confidence)
+}
+\arguments{
+  \item{size}{size of the Monte Carlo experiment}
+
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/returnanalytics -r 2808


More information about the Returnanalytics-commits mailing list