[Returnanalytics-commits] r1955 - pkg/PerformanceAnalytics/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed May 23 18:38:16 CEST 2012


Author: braverock
Date: 2012-05-23 18:38:16 +0200 (Wed, 23 May 2012)
New Revision: 1955

Modified:
   pkg/PerformanceAnalytics/R/ActivePremium.R
   pkg/PerformanceAnalytics/R/CAPM.alpha.R
   pkg/PerformanceAnalytics/R/CAPM.beta.R
   pkg/PerformanceAnalytics/R/CalmarRatio.R
   pkg/PerformanceAnalytics/R/ES.R
   pkg/PerformanceAnalytics/R/MultivariateMoments.R
   pkg/PerformanceAnalytics/R/Return.read.R
   pkg/PerformanceAnalytics/R/apply.fromstart.R
   pkg/PerformanceAnalytics/R/apply.rolling.R
   pkg/PerformanceAnalytics/R/chart.BarVaR.R
   pkg/PerformanceAnalytics/R/chart.Drawdown.R
   pkg/PerformanceAnalytics/R/chart.Events.R
   pkg/PerformanceAnalytics/R/chart.Histogram.R
   pkg/PerformanceAnalytics/R/chart.QQPlot.R
   pkg/PerformanceAnalytics/R/chart.Regression.R
   pkg/PerformanceAnalytics/R/chart.RelativePerformance.R
   pkg/PerformanceAnalytics/R/chart.RollingCorrelation.R
   pkg/PerformanceAnalytics/R/chart.RollingPerformance.R
   pkg/PerformanceAnalytics/R/chart.RollingQuantileRegression.R
   pkg/PerformanceAnalytics/R/chart.RollingRegression.R
   pkg/PerformanceAnalytics/R/chart.SnailTrail.R
   pkg/PerformanceAnalytics/R/chart.StackedBar.R
   pkg/PerformanceAnalytics/R/chart.TimeSeries.R
   pkg/PerformanceAnalytics/R/chart.VaRSensitivity.R
   pkg/PerformanceAnalytics/R/charts.Bar.R
   pkg/PerformanceAnalytics/R/charts.BarVaR.R
   pkg/PerformanceAnalytics/R/findDrawdowns.R
   pkg/PerformanceAnalytics/R/mean.utils.R
   pkg/PerformanceAnalytics/R/sortDrawdowns.R
   pkg/PerformanceAnalytics/R/table.CalendarReturns.R
   pkg/PerformanceAnalytics/R/table.DownsideRisk.R
   pkg/PerformanceAnalytics/R/table.Drawdowns.R
   pkg/PerformanceAnalytics/R/table.MonthlyReturns.R
Log:
- improvements to roxygen docs supporting svn r1954

Modified: pkg/PerformanceAnalytics/R/ActivePremium.R
===================================================================
--- pkg/PerformanceAnalytics/R/ActivePremium.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/ActivePremium.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -25,6 +25,10 @@
 #'     ActivePremium(managers[,1:6], managers[,8,drop=FALSE]) 
 #'     ActivePremium(managers[,1:6], managers[,8:7,drop=FALSE])
 #' 
+#' @export
+#' 
+#' 
+
 ActivePremium <- function (Ra, Rb, scale = NA)
 { # @author Peter Carl
 

Modified: pkg/PerformanceAnalytics/R/CAPM.alpha.R
===================================================================
--- pkg/PerformanceAnalytics/R/CAPM.alpha.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/CAPM.alpha.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -22,14 +22,26 @@
 #' 
 #' # First we load the data
 #'     data(managers)
-#'     CAPM.alpha(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12) 
-#'     CAPM.alpha(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf = managers[,10,drop=FALSE])
-#'     CAPM.alpha(managers[,1:6], managers[,8,drop=FALSE], Rf=.035/12)
-#'     CAPM.alpha(managers[,1:6], managers[,8,drop=FALSE], Rf = managers[,10,drop=FALSE])
-#'     CAPM.alpha(managers[,1:6], managers[,8:7,drop=FALSE], Rf=.035/12) 
-#'     CAPM.alpha(managers[,1:6], managers[,8:7,drop=FALSE], Rf = managers[,10,drop=FALSE])
+#'     CAPM.alpha(managers[,1,drop=FALSE], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf=.035/12) 
+#'     CAPM.alpha(managers[,1,drop=FALSE], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf = managers[,10,drop=FALSE])
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf=.035/12)
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf = managers[,10,drop=FALSE])
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8:7,drop=FALSE], 
+#' 			Rf=.035/12) 
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8:7,drop=FALSE], 
+#' 			Rf = managers[,10,drop=FALSE])
 #' 
-#' 
+#' @export
 CAPM.alpha <- function (Ra, Rb, Rf = 0)
 { # @author Peter Carl
 

Modified: pkg/PerformanceAnalytics/R/CAPM.beta.R
===================================================================
--- pkg/PerformanceAnalytics/R/CAPM.beta.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/CAPM.beta.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -44,19 +44,43 @@
 #' @examples
 #' 
 #' data(managers)
-#'     CAPM.alpha(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12) 
-#'     CAPM.alpha(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf = managers[,10,drop=FALSE])
-#'     CAPM.alpha(managers[,1:6], managers[,8,drop=FALSE], Rf=.035/12)
-#'     CAPM.alpha(managers[,1:6], managers[,8,drop=FALSE], Rf = managers[,10,drop=FALSE])
-#'     CAPM.alpha(managers[,1:6], managers[,8:7,drop=FALSE], Rf=.035/12) 
-#'     CAPM.alpha(managers[,1:6], managers[,8:7,drop=FALSE], Rf = managers[,10,drop=FALSE])
-#'     CAPM.beta(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Rf = managers[, "US 3m TR", drop=FALSE])
-#'     CAPM.beta.bull(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Rf = managers[, "US 3m TR", drop=FALSE])
-#'     CAPM.beta.bear(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Rf = managers[, "US 3m TR", drop=FALSE])
-#'     TimingRatio(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Rf = managers[, "US 3m TR", drop=FALSE])
-#'     chart.Regression(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Rf = managers[, "US 3m TR", drop=FALSE], fit="conditional", main="Conditional Beta")
+#'     CAPM.alpha(managers[,1,drop=FALSE], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf=.035/12) 
+#'     CAPM.alpha(managers[,1,drop=FALSE], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf = managers[,10,drop=FALSE])
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf=.035/12)
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8,drop=FALSE], 
+#' 			Rf = managers[,10,drop=FALSE])
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8:7,drop=FALSE], 
+#' 			Rf=.035/12) 
+#'     CAPM.alpha(managers[,1:6], 
+#' 			managers[,8:7,drop=FALSE], 
+#' 			Rf = managers[,10,drop=FALSE])
+#'     CAPM.beta(managers[, "HAM2", drop=FALSE], 
+#' 			managers[, "SP500 TR", drop=FALSE], 
+#' 			Rf = managers[, "US 3m TR", drop=FALSE])
+#'     CAPM.beta.bull(managers[, "HAM2", drop=FALSE], 
+#' 			managers[, "SP500 TR", drop=FALSE], 
+#' 			Rf = managers[, "US 3m TR", drop=FALSE])
+#'     CAPM.beta.bear(managers[, "HAM2", drop=FALSE], 
+#' 			managers[, "SP500 TR", drop=FALSE], 
+#' 			Rf = managers[, "US 3m TR", drop=FALSE])
+#'     TimingRatio(managers[, "HAM2", drop=FALSE], 
+#' 			managers[, "SP500 TR", drop=FALSE], 
+#' 			Rf = managers[, "US 3m TR", drop=FALSE])
+#'     chart.Regression(managers[, "HAM2", drop=FALSE], 
+#' 			managers[, "SP500 TR", drop=FALSE], 
+#' 			Rf = managers[, "US 3m TR", drop=FALSE], 
+#' 			fit="conditional", 
+#' 			main="Conditional Beta")
 #' 
-#' 
+#' @export
 CAPM.beta <-
 function (Ra, Rb, Rf = 0)
 { # @author Peter Carl

Modified: pkg/PerformanceAnalytics/R/CalmarRatio.R
===================================================================
--- pkg/PerformanceAnalytics/R/CalmarRatio.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/CalmarRatio.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -1,7 +1,5 @@
 #' calculate a Calmar or Sterling reward/risk ratio
-#' 
-#' @aliases SterlingRatio
-#' 
+#'  
 #' Calmar and Sterling Ratios are yet another method of creating a
 #' risk-adjusted measure for ranking investments similar to the
 #' \code{\link{SharpeRatio}}.
@@ -9,7 +7,7 @@
 #' Both the Calmar and the Sterling ratio are the ratio of annualized return
 #' over the absolute value of the maximum drawdown of an investment. The
 #' Sterling ratio adds an excess risk measure to the maximum drawdown,
-#' traditionally and defaulting to 10%.
+#' traditionally and defaulting to 10\%.
 #' 
 #' It is also traditional to use a three year return series for these
 #' calculations, although the functions included here make no effort to
@@ -19,8 +17,8 @@
 #' 
 #' Many other measures have been proposed to do similar reward to risk ranking.
 #' It is the opinion of this author that newer measures such as Sortino's
-#' \code{\link{UpsidePotentialRatio}} or Favre's
-#' \code{\link{SharpeRatio.modified}} are both \dQuote{better} measures, and
+#' \code{\link{UpsidePotentialRatio}} or Favre's modified
+#' \code{\link{SharpeRatio}} are both \dQuote{better} measures, and
 #' should be preferred to the Calmar or Sterling Ratio.
 #' 
 #' @aliases CalmarRatio SterlingRatio
@@ -29,10 +27,13 @@
 #' @param scale number of periods in a year (daily scale = 252, monthly scale =
 #' 12, quarterly scale = 4)
 #' @param excess for Sterling Ratio, excess amount to add to the max drawdown,
-#' traditionally and default .1 (10%)
+#' traditionally and default .1 (10\%)
 #' @author Brian G. Peterson
-#' @seealso \code{\link{Return.annualized}}, \cr \code{\link{maxDrawdown}}, \cr
-#' \code{\link{SharpeRatio.modified}}, \cr \code{\link{UpsidePotentialRatio}}
+#' @seealso 
+#' \code{\link{Return.annualized}}, \cr 
+#' \code{\link{maxDrawdown}}, \cr
+#' \code{\link{SharpeRatio.modified}}, \cr 
+#' \code{\link{UpsidePotentialRatio}}
 #' @references Bacon, Carl. \emph{Practical Portfolio Performance Measurement
 #' and Attribution}. Wiley. 2004.
 #' @keywords ts multivariate distribution models
@@ -44,6 +45,8 @@
 #'     SterlingRatio(managers[,1,drop=FALSE])
 #'     SterlingRatio(managers[,1:6])
 #' 
+#' @export 
+#' @rdname CalmarRatio
 CalmarRatio <- function (R, scale = NA)
 { # @author Brian G. Peterson
 

Modified: pkg/PerformanceAnalytics/R/ES.R
===================================================================
--- pkg/PerformanceAnalytics/R/ES.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/ES.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -155,8 +155,8 @@
             if (is.null(mu)) { mu =  apply(R,2,'mean' ) }
             if (is.null(sigma)) { sigma = cov(R) }
             if(method=="modified"){
-                if (is.null(m3)) {m3 = M3.MM(R,mu=mu,sigma=sigma)}
-                if (is.null(m4)) {m4 = M4.MM(R,mu=mu,sigma=sigma)}
+                if (is.null(m3)) {m3 = M3.MM(R,mu=mu)}
+                if (is.null(m4)) {m4 = M4.MM(R,mu=mu)}
             }
         } 
     } else { 

Modified: pkg/PerformanceAnalytics/R/MultivariateMoments.R
===================================================================
--- pkg/PerformanceAnalytics/R/MultivariateMoments.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/MultivariateMoments.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -1,5 +1,5 @@
 ###############################################################################
-# Functions to peRform multivariate matrix
+# Functions to perform multivariate matrix
 # calculations on portfolios of assets.
 #
 # I've modified these to minimize the number of
@@ -23,7 +23,7 @@
    for(t in c(1:T))
    {
        centret = as.numeric(matrix(R[t,]-mu,nrow=cAssets,ncol=1))
-        M3 = M3 + ( centret%*%t(centret) )%x%t(centret)
+       M3 = M3 + ( centret%*%t(centret) )%x%t(centret)
    }
    return( 1/T*M3 );
 }

Modified: pkg/PerformanceAnalytics/R/Return.read.R
===================================================================
--- pkg/PerformanceAnalytics/R/Return.read.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/Return.read.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -3,20 +3,21 @@
 #' A simple wrapper of read.zoo with some defaults for different date formats
 #' and xts conversion
 #' 
-#' The parameter 'format.in' takes several values, including: \describe{
-#' \item{excel}{default date format for MS Excel spreadsheet csv format, which
-#' is "%m/%d/%Y"} \item{oo}{default date format for OpenOffice spreadsheet csv
-#' format, "%m/%d/%y", although this may be operating system dependent}
-#' \item{gnumeric}{default date format for Gnumeric spreadsheet, which is
-#' "%d-%b-%Y"} \item{...}{alternatively, any specific format may be passed in,
-#' such as "%M/%y"} }
+#' The parameter 'format.in' takes several values, including: 
+#' \describe{
+#'   \item{excel}{default date format for MS Excel spreadsheet csv format, which is "\%m/\%d/\%Y"} 
+#'   \item{oo}{default date format for OpenOffice spreadsheet csv format, "\%m/\%d/\%y", although this may be operating system dependent}
+#'   \item{gnumeric}{default date format for Gnumeric spreadsheet, which is "\%d-\%b-\%Y"} 
+#'   \item{...}{alternatively, any specific format may be passed in, such as "\%M/\%y"} 
+#' }
 #' 
 #' @param filename the name of the file to be read
-#' @param frequency \itemize{ \item "d" sets as a daily timeseries using
-#' \code{\link{as.Date}}, \item "m" sets as monthly timeseries using
-#' \code{\link[zoo]{as.yearmon}}, \item "q" sets as a quarterly timeseries
-#' using \code{\link[zoo]{as.yearqtr}}, and \item "i" sets as irregular
-#' timeseries using \code{\link{as.POSIXct}} }
+#' @param frequency \itemize{ 
+#' 	\item "d" sets as a daily timeseries using \code{\link{as.Date}}, 
+#' 	\item "m" sets as monthly timeseries using \code{\link[zoo]{as.yearmon}}, 
+#'  \item "q" sets as a quarterly timeseries using \code{\link[zoo]{as.yearqtr}}, and 
+#' 	\item "i" sets as irregular timeseries using \code{\link{as.POSIXct}} 
+#' }
 #' @param format.in says how the data being read is formatted.  Although the
 #' default is set to the ISO 8601 standard (which can also be set as "%F"),
 #' most spreadsheets have less sensible date formats as defaults. See below.

Modified: pkg/PerformanceAnalytics/R/apply.fromstart.R
===================================================================
--- pkg/PerformanceAnalytics/R/apply.fromstart.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/apply.fromstart.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -21,6 +21,7 @@
 #' data(managers)
 #' apply.fromstart(managers[,1,drop=FALSE], FUN="mean", width=36)
 #' 
+#' @export
 #' 
 apply.fromstart <- function (R, FUN = "mean" , gap = 1, ...)
 { # @author Peter Carl

Modified: pkg/PerformanceAnalytics/R/apply.rolling.R
===================================================================
--- pkg/PerformanceAnalytics/R/apply.rolling.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/apply.rolling.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -25,6 +25,7 @@
 #' data(managers)
 #' apply.rolling(managers[,1,drop=FALSE], FUN="mean", width=36)
 #' 
+#' @export
 #' 
 apply.rolling <- function (R, width, trim = TRUE, gap = 12, by = 1, FUN = "mean", ...)
 { # @author Peter Carl

Modified: pkg/PerformanceAnalytics/R/chart.BarVaR.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.BarVaR.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.BarVaR.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -1,6 +1,6 @@
 #' Periodic returns in a bar chart with risk metric overlay
 #' 
-#' Plots the periodic returns in a bar chart overlayed with a risk metric
+#' Plots the periodic returns as a bar chart overlayed with a risk metric
 #' calculation.
 #' 
 #' Note that \code{StdDev} and \code{VaR} are symmetric calculations, so a high
@@ -11,6 +11,10 @@
 #' indicate value on the y-axis.  Overlays a line to indicate the value of a
 #' risk metric calculated at that time period.
 #' 
+#' \code{charts.BarVaR} places multile bar charts in a single 
+#' graphic, with associated risk measures 
+#' 
+#' @name chart.BarVaR
 #' @aliases chart.BarVaR charts.BarVaR
 #' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' asset returns
@@ -74,25 +78,48 @@
 #' chart.BarVaR(managers[,1,drop=FALSE], main="Monthly Returns")
 #' 
 #' # with risk line
-#' chart.BarVaR(managers[,1,drop=FALSE], methods="HistoricalVaR", main="... with Empirical VaR from Inception")
+#' chart.BarVaR(managers[,1,drop=FALSE], 
+#' 		methods="HistoricalVaR", 
+#' 		main="... with Empirical VaR from Inception")
 #' 
 #' # with lines for all managers in the sample
-#' chart.BarVaR(managers[,1:6], methods="GaussianVaR", all=TRUE, lty=1, lwd=2, colorset= c("red", rep("gray", 5)), main="... with Gaussian VaR and Estimates for Peers")
+#' chart.BarVaR(managers[,1:6], 
+#' 		methods="GaussianVaR", 
+#' 		all=TRUE, lty=1, lwd=2, 
+#' 		colorset= c("red", rep("gray", 5)), 
+#' 		main="... with Gaussian VaR and Estimates for Peers")
 #' 
 #' # with multiple methods
-#' chart.BarVaR(managers[,1,drop=FALSE],methods=c("HistoricalVaR", "ModifiedVaR", "GaussianVaR"), main="... with Multiple Methods")
+#' chart.BarVaR(managers[,1,drop=FALSE],
+#' 		methods=c("HistoricalVaR", "ModifiedVaR", "GaussianVaR"), 
+#' 		main="... with Multiple Methods")
 #' 
 #' # cleaned up a bit
-#' chart.BarVaR(managers[,1,drop=FALSE],methods=c("HistoricalVaR", "ModifiedVaR", "GaussianVaR"), lwd=2, ypad=.01, main="... with Padding for Bottom Legend")
+#' chart.BarVaR(managers[,1,drop=FALSE],
+#' 		methods=c("HistoricalVaR", "ModifiedVaR", "GaussianVaR"), 
+#' 		lwd=2, ypad=.01, 
+#' 		main="... with Padding for Bottom Legend")
 #' 
 #' # with 'cleaned' data for VaR estimates
-#' chart.BarVaR(managers[,1,drop=FALSE],methods=c("HistoricalVaR", "ModifiedVaR"), lwd=2, ypad=.01, clean="boudt", main="... with Robust ModVaR Estimate")
+#' chart.BarVaR(managers[,1,drop=FALSE],
+#' 		methods=c("HistoricalVaR", "ModifiedVaR"), 
+#' 		lwd=2, ypad=.01, clean="boudt", 
+#' 		main="... with Robust ModVaR Estimate")
 #' 
-#' # Cornish Fisher VaR estimated with cleaned data, with horizontal line to show exceptions
-#' chart.BarVaR(managers[,1,drop=FALSE],methods="ModifiedVaR", lwd=2, ypad=.01, clean="boudt", show.horizontal=TRUE, lty=2, main="... with Robust ModVaR and Line for Identifying Exceptions")
+#' # Cornish Fisher VaR estimated with cleaned data, 
+#' # with horizontal line to show exceptions
+#' chart.BarVaR(managers[,1,drop=FALSE],
+#' 		methods="ModifiedVaR", 
+#' 		lwd=2, ypad=.01, clean="boudt", 
+#' 		show.horizontal=TRUE, lty=2, 
+#' 		main="... with Robust ModVaR and Line for Identifying Exceptions")
 #' 
+#' @rdname chart.BarVaR
+#' @export
 chart.BarVaR <- function (R, width = 0, gap = 12, 
-                            methods = c("none", "ModifiedVaR", "GaussianVaR", "HistoricalVaR", "StdDev", "ModifiedES", "GaussianES", "HistoricalES"), 
+                            methods = c("none", "ModifiedVaR", "GaussianVaR", 
+										"HistoricalVaR", "StdDev", "ModifiedES", 
+										"GaussianES", "HistoricalES"), 
                             p=0.95, 
                             clean = c("none", "boudt","geltner"), 
                             all = FALSE, 

Modified: pkg/PerformanceAnalytics/R/chart.Drawdown.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.Drawdown.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.Drawdown.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -18,16 +18,20 @@
 #' @param \dots any other passthru parameters
 #' @author Peter Carl
 #' @seealso
-#' 
-#' \code{\link{plot}} \cr \code{\link{chart.TimeSeries}} \cr
-#' \code{\link{findDrawdowns}} \cr \code{\link{sortDrawdowns}} \cr
-#' \code{\link{maxDrawdown}} \cr \code{\link{table.Drawdowns}} \cr
+#' \code{\link{plot}} \cr 
+#' \code{\link{chart.TimeSeries}} \cr
+#' \code{\link{findDrawdowns}} \cr 
+#' \code{\link{sortDrawdowns}} \cr
+#' \code{\link{maxDrawdown}} \cr 
+#' \code{\link{table.Drawdowns}} \cr
 #' \code{\link{table.DownsideRisk}}
 #' @keywords ts
 #' @examples
 #' 
 #' data(edhec)
-#' chart.Drawdown(edhec[,c(1,2)], main="Drawdown from Peak Equity Attained", legend.loc="bottomleft")
+#' chart.Drawdown(edhec[,c(1,2)], 
+#' 		main="Drawdown from Peak Equity Attained", 
+#' 		legend.loc="bottomleft")
 #' 
 chart.Drawdown <-
 function (R, geometric = TRUE, legend.loc = NULL, colorset = (1:12), ...)

Modified: pkg/PerformanceAnalytics/R/chart.Events.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.Events.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.Events.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -37,8 +37,14 @@
 #' data(managers)
 #' R = Drawdowns(managers[,2,drop=FALSE])
 #' n = table.Drawdowns(managers[,2,drop=FALSE])                          
-#' chart.Events(Drawdowns(managers[,2,drop=FALSE]), dates = n$Trough, prior=max(na.omit(n$"To Trough")), post=max(na.omit(n$Recovery)), lwd=2, colorset=redfocus, legend.loc=NULL, main = "Worst Drawdowns")
+#' chart.Events(Drawdowns(managers[,2,drop=FALSE]), 
+#' 		dates = n$Trough, 
+#' 		prior=max(na.omit(n$"To Trough")), 
+#' 		post=max(na.omit(n$Recovery)), 
+#' 		lwd=2, colorset=redfocus, legend.loc=NULL, 
+#' 		main = "Worst Drawdowns")
 #' 
+#' @export
 chart.Events <-
 function (R, dates, prior=12, post=12, main = NULL, xlab=NULL, ...)
 { # @author Peter Carl

Modified: pkg/PerformanceAnalytics/R/chart.Histogram.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.Histogram.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.Histogram.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -14,18 +14,24 @@
 #' 
 #' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
 #' asset returns
-#' @param breaks one of: \itemize{ \item a vector giving the breakpoints
-#' between histogram cells, \item a single number giving the number of cells
-#' for the histogram, \item a character string naming an algorithm to compute
-#' the number of cells (see \sQuote{Details}), \item a function to compute the
-#' number of cells.  } In the last three cases the number is a suggestion only.
+#' @param breaks one of: 
+#' \itemize{ 
+#'  \item a vector giving the breakpoints between histogram cells, 
+#'  \item a single number giving the number of cells for the histogram, 
+#'  \item a character string naming an algorithm to compute the number of cells (see \sQuote{Details}), 
+#'  \item a function to compute the number of cells.  
+#' } 
+#' For the last three the number is a suggestion only.
 #' see \code{\link[graphics]{hist}} for details, default "FD"
-#' @param methods what to graph, one or more of: \itemize{ \itemadd.density to
-#' display the density plot \itemadd.normal to display a fitted normal
-#' distibution line over the mean \itemadd.centered to display a fitted normal
-#' line over zero \itemadd.rug to display a rug of the observations
-#' \itemadd.risk to display common risk metrics \itemadd.qqplot to display a
-#' small qqplot in the upper corner of the histogram plot }
+#' @param methods what to graph, one or more of: 
+#' \itemize{ 
+#'   \item add.density to display the density plot 
+#'   \item add.normal  to display a fitted normal distibution line over the mean 
+#'   \item add.centered to display a fitted normal line over zero 
+#'   \item add.rug to display a rug of the observations
+#'   \item add.risk to display common risk metrics 
+#'   \item add.qqplot to display a small qqplot in the upper corner of the histogram plot 
+#' }
 #' @param p confidence level for calculation, default p=.99
 #' @param probability logical; if TRUE, the histogram graphic is a
 #' representation of frequencies, the counts component of the result; if FALSE,
@@ -73,25 +79,66 @@
 #'     data(edhec)
 #'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE])
 #' 
-#'     # version with more breaks and the standard close fit density distribution
-#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], breaks=40, methods = c("add.density", "add.rug") )
+#'     # version with more breaks and the 
+#' 	   # standard close fit density distribution
+#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], 
+#' 			breaks=40, methods = c("add.density", "add.rug") )
 #' 
-#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.density", "add.normal") )
+#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], 
+#' 			methods = c( "add.density", "add.normal") )
 #' 
-#'     # version with just the histogram and normal distribution centered on 0
-#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.density", "add.centered") )
+#'     # version with just the histogram and 
+#'     # normal distribution centered on 0
+#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], 
+#' 			methods = c( "add.density", "add.centered") )
 #' 
-#'     # add a rug to the previous plot for more granularity on precisely where the distribution fell
-#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.centered", "add.density", "add.rug") )
+#'     # add a rug to the previous plot 
+#' 	   # for more granularity on precisely where the distribution fell
+#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], 
+#' 			methods = c( "add.centered", "add.density", "add.rug") )
 #' 
-#'     # now show a qqplot to give us another view on how normal the data are
-#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c( "add.centered", "add.density", "add.rug", "add.qqplot") )
+#'     # now show a qqplot to give us another view 
+#'     # on how normal the data are
+#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], 
+#' 			methods = c("add.centered","add.density","add.rug","add.qqplot"))
 #' 
-#'     # add risk measure(s) to show where those are in relation to observed returns
-#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], methods = c("add.density", "add.centered", "add.rug", "add.risk") )
+#'     # add risk measure(s) to show where those are 
+#' 	   # in relation to observed returns
+#'     chart.Histogram(edhec[,'Equity Market Neutral',drop=FALSE], 
+#' 			methods = c("add.density","add.centered","add.rug","add.risk"))
 #' 
+#' @export
 chart.Histogram <-
-function(R, breaks="FD", main = NULL, xlab = "Returns", ylab = "Frequency", methods = c("none","add.density", "add.normal", "add.centered", "add.cauchy", "add.sst", "add.rug", "add.risk", "add.qqplot"), show.outliers = TRUE, colorset = c("lightgray", "#00008F", "#005AFF", "#23FFDC", "#ECFF13", "#FF4A00", "#800000"), border.col = "white", lwd = 2, xlim = NULL, ylim = NULL, element.color="darkgray", note.lines = NULL, note.labels = NULL, note.cex = 0.7, note.color = "darkgray", probability = FALSE, p = 0.95, cex.axis = 0.8, cex.legend = 0.8, cex.lab = 1, cex.main = 1, xaxis=TRUE, yaxis=TRUE, ...)
+function(R, 
+		breaks="FD", 
+		main = NULL, 
+		xlab = "Returns", 
+		ylab = "Frequency", 
+		methods = c("none","add.density","add.normal", 
+					"add.centered","add.cauchy","add.sst",
+					"add.rug","add.risk","add.qqplot"), 
+		show.outliers = TRUE, 
+		colorset = c("lightgray","#00008F","#005AFF",
+					"#23FFDC","#ECFF13","#FF4A00","#800000"), 
+		border.col = "white", 
+		lwd = 2, 
+		xlim = NULL, 
+		ylim = NULL, 
+		element.color="darkgray", 
+		note.lines = NULL, 
+		note.labels = NULL, 
+		note.cex = 0.7, 
+		note.color = "darkgray", 
+		probability = FALSE, 
+		p = 0.95, 
+		cex.axis = 0.8, 
+		cex.legend = 0.8, 
+		cex.lab = 1, 
+		cex.main = 1, 
+		xaxis=TRUE, 
+		yaxis=TRUE, 
+		...
+)
 { # @author Peter Carl
 
     # DESCRIPTION:

Modified: pkg/PerformanceAnalytics/R/chart.QQPlot.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.QQPlot.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.QQPlot.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -48,7 +48,9 @@
 #' the current setting of 'cex'.
 #' @param \dots any other passthru parameters to the distribution function
 #' @author John Fox, ported by Peter Carl
-#' @seealso \code{\link[stats]{qqplot}} \cr \code{\link[car]{qq.plot}} \cr
+#' @seealso 
+#' \code{\link[stats]{qqplot}} \cr 
+#' \code{\link[car]{qq.plot}} \cr
 #' \code{\link{plot}}
 #' @references main code forked/borrowed/ported from the excellent: \cr Fox,
 #' John (2007) \emph{car: Companion to Applied Regression} \cr

Modified: pkg/PerformanceAnalytics/R/chart.Regression.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.Regression.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.Regression.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -45,7 +45,11 @@
 #' @examples
 #' 
 #' data(managers)
-#' chart.Regression(managers[, 1:2, drop = FALSE], managers[, 8, drop = FALSE], Rf = managers[, 10, drop = FALSE], excess.returns = TRUE, fit = c("loess", "linear"), legend.loc = "topleft")
+#' chart.Regression(managers[, 1:2, drop = FALSE], 
+#' 		managers[, 8, drop = FALSE], 
+#' 		Rf = managers[, 10, drop = FALSE], 
+#' 		excess.returns = TRUE, fit = c("loess", "linear"), 
+#' 		legend.loc = "topleft")
 #' 
 chart.Regression <-
 function (Ra, Rb, Rf = 0, excess.returns = FALSE, reference.grid = TRUE, main = "Title", ylab=NULL, xlab=NULL, xlim = NA, colorset = 1:12, symbolset = 1:12, element.color = "darkgray", legend.loc = NULL, ylog = FALSE, fit = c("loess", "linear", "conditional", "quadratic"), span = 2/3, degree = 1, family = c("symmetric", "gaussian"),  ylim = NA, evaluation = 50, legend.cex= 0.8, cex = 0.8, lwd = 2, ...)

Modified: pkg/PerformanceAnalytics/R/chart.RelativePerformance.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.RelativePerformance.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.RelativePerformance.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -35,7 +35,10 @@
 #' @examples
 #' 
 #' data(managers)
-#' chart.RelativePerformance(managers[, 1:6, drop=FALSE], managers[, 8, drop=FALSE], colorset=rich8equal, legend.loc="bottomright", main="Relative Performance to S&P")
+#' chart.RelativePerformance(managers[, 1:6, drop=FALSE], 
+#' 		managers[, 8, drop=FALSE], 
+#' 		colorset=rich8equal, legend.loc="bottomright", 
+#' 		main="Relative Performance to S&P")
 #' 
 chart.RelativePerformance <-
 function (Ra, Rb, main = "Relative Performance", xaxis = TRUE, colorset = (1:12), legend.loc = NULL, ylog = FALSE, elementcolor = "darkgray", lty = 1, cex.legend=.7, ...)

Modified: pkg/PerformanceAnalytics/R/chart.RollingCorrelation.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.RollingCorrelation.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.RollingCorrelation.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -22,7 +22,10 @@
 #' 
 #' # First we get the data
 #' data(managers)
-#' chart.RollingCorrelation(managers[, 1:6, drop=FALSE], managers[, 8, drop=FALSE], colorset=rich8equal, legend.loc="bottomright", width=24, main = "Rolling 12-Month Correlation")
+#' chart.RollingCorrelation(managers[, 1:6, drop=FALSE], 
+#' 		managers[, 8, drop=FALSE], 
+#' 		colorset=rich8equal, legend.loc="bottomright", 
+#' 		width=24, main = "Rolling 12-Month Correlation")
 #' 
 chart.RollingCorrelation <-
 function (Ra, Rb, width = 12, xaxis = TRUE, legend.loc = NULL, colorset = (1:12), na.pad = FALSE, ...)

Modified: pkg/PerformanceAnalytics/R/chart.RollingPerformance.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.RollingPerformance.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.RollingPerformance.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -24,8 +24,14 @@
 #' 
 #' data(edhec)
 #' chart.RollingPerformance(edhec[, 1:3], width = 24)
-#' chart.RollingPerformance(edhec[, 1:3], FUN = 'mean', width = 24, colorset = rich8equal, lwd = 2, legend.loc = "topleft", main = "Rolling 24-Month Mean Return")
-#' chart.RollingPerformance(edhec[, 1:3], FUN = 'SharpeRatio.annualized', width = 24, colorset = rich8equal, lwd = 2, legend.loc = "topleft", main = "Rolling 24-Month Sharpe Ratio")
+#' chart.RollingPerformance(edhec[, 1:3], 
+#' 		FUN = 'mean', width = 24, colorset = rich8equal, 
+#' 		lwd = 2, legend.loc = "topleft", 
+#' 		main = "Rolling 24-Month Mean Return")
+#' chart.RollingPerformance(edhec[, 1:3], 
+#' 		FUN = 'SharpeRatio.annualized', width = 24, 
+#' 		colorset = rich8equal, lwd = 2, legend.loc = "topleft", 
+#' 		main = "Rolling 24-Month Sharpe Ratio")
 #' 
 chart.RollingPerformance <- function (R, width = 12, FUN = "Return.annualized", ..., na.pad = TRUE, ylim=NULL, main=NULL)
 { # @author Peter Carl

Modified: pkg/PerformanceAnalytics/R/chart.RollingQuantileRegression.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.RollingQuantileRegression.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.RollingQuantileRegression.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -1,3 +1,4 @@
+#' @rdname chart.RollingRegression
 chart.RollingQuantileRegression <-
 function (Ra, Rb, width = 12, Rf = 0, attribute = c("Beta", "Alpha", "R-Squared"), main=NULL, na.pad = TRUE, ...)
 { # @author Peter Carl, Brian Peterson

Modified: pkg/PerformanceAnalytics/R/chart.RollingRegression.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.RollingRegression.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.RollingRegression.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -43,13 +43,20 @@
 #' 
 #' # First we load the data
 #' data(managers)
-#' chart.RollingRegression(managers[, 1, drop=FALSE], managers[, 8, drop=FALSE], Rf = .04/12)
-#' charts.RollingRegression(managers[, 1:6], managers[, 8, drop=FALSE], Rf = .04/12, colorset = rich6equal, legend.loc="topleft")
+#' chart.RollingRegression(managers[, 1, drop=FALSE], 
+#' 		managers[, 8, drop=FALSE], Rf = .04/12)
+#' charts.RollingRegression(managers[, 1:6], 
+#' 		managers[, 8, drop=FALSE], Rf = .04/12, 
+#' 		colorset = rich6equal, legend.loc="topleft")
 #' dev.new()
-#' chart.RollingQuantileRegression(managers[, 1, drop=FALSE], managers[, 8, drop=FALSE], Rf = .04/12)
+#' chart.RollingQuantileRegression(managers[, 1, drop=FALSE], 
+#' 		managers[, 8, drop=FALSE], Rf = .04/12)
 #' # not implemented yet
-#' #charts.RollingQuantileRegression(managers[, 1:6], managers[, 8, drop=FALSE], Rf = .04/12, colorset = rich6equal, legend.loc="topleft")
+#' #charts.RollingQuantileRegression(managers[, 1:6], 
+#' 		managers[, 8, drop=FALSE], Rf = .04/12, 
+#' 		colorset = rich6equal, legend.loc="topleft")
 #' 
+#' @export
 chart.RollingRegression <-
 function (Ra, Rb, width = 12, Rf = 0, attribute = c("Beta", "Alpha", "R-Squared"), main=NULL, na.pad = TRUE, ...)
 { # @author Peter Carl

Modified: pkg/PerformanceAnalytics/R/chart.SnailTrail.R
===================================================================
--- pkg/PerformanceAnalytics/R/chart.SnailTrail.R	2012-05-23 15:47:57 UTC (rev 1954)
+++ pkg/PerformanceAnalytics/R/chart.SnailTrail.R	2012-05-23 16:38:16 UTC (rev 1955)
@@ -50,7 +50,12 @@
 #' @examples
 #' 
 #' data(managers)
-#' chart.SnailTrail(managers[,c("HAM2","SP500 TR"),drop=FALSE], width=36, stepsize=12, colorset=c('red','orange'),add.names="firstandlast", rf=.04/12, main="Trailing 36-month Performance Calc'd Every 12 Months")
+#' chart.SnailTrail(managers[,c("HAM2","SP500 TR"),drop=FALSE], 
+#' 		width=36, stepsize=12, 
+#' 		colorset=c('red','orange'),
+#' 		add.names="firstandlast", 
+#' 		rf=.04/12, 
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/returnanalytics -r 1955


More information about the Returnanalytics-commits mailing list