[Returnanalytics-commits] r2093 - in pkg/PerformanceAnalytics: R man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Fri Jun 29 22:56:58 CEST 2012
Author: matthieu_lestel
Date: 2012-06-29 22:56:57 +0200 (Fri, 29 Jun 2012)
New Revision: 2093
Added:
pkg/PerformanceAnalytics/R/OmegaSharpeRatio.R
pkg/PerformanceAnalytics/man/OmegaSharpeRatio.Rd
Log:
OmegaSharpeRatio with examples and documentation
Added: pkg/PerformanceAnalytics/R/OmegaSharpeRatio.R
===================================================================
--- pkg/PerformanceAnalytics/R/OmegaSharpeRatio.R (rev 0)
+++ pkg/PerformanceAnalytics/R/OmegaSharpeRatio.R 2012-06-29 20:56:57 UTC (rev 2093)
@@ -0,0 +1,73 @@
+#' Omega-Sharpe ratio of the return distribution
+#'
+#' The omega ratio is a conversion of the omega ratio to a ranking statistic
+#' in familiar form to the Sharpe ratio.
+#'
+#' To calculate the Omega-Sharpe ration we subtract the target (or Minimum
+#' Acceptable Returns (MAR)) return from the portfolio return and we divide
+#' it by the opposite of the Downside Deviation.
+#'
+#' \deqn{OmegaSharpeRatio(R,MAR) = \frac{r_p - r_t}{\sum^n_{t=1}\frac{max(r_t - r_i, 0)}{n}}}
+#' {OmegaSharpeRatio(R,MAR) = (Rp - Rt) / -DownsidePotential(R,MAR)}
+#'
+#' where \eqn{n} is the number of observations of the entire series
+#'
+#' @aliases OmegaSharpeRatio
+#' @param R an xts, vector, matrix, data frame, timeSeries or zoo object of
+#' asset returns
+#' @param MAR Minimum Acceptable Return, in the same periodicity as your
+#' returns
+#' @param method one of "full" or "subset", indicating whether to use the
+#' length of the full series or the length of the subset of the series below
+#' the MAR as the denominator, defaults to "subset"
+#' @param \dots any other passthru parameters
+#' @author Matthieu Lestel
+#' @references Carl Bacon, \emph{Practical portfolio performance measurement
+#' and attribution}, second edition 2008, p.95
+#'
+#' @keywords ts multivariate distribution models
+#' @examples
+#'
+#' data(portfolio_bacon)
+#' MAR = 0.5
+#' print(OmegaSharpeRatio(portfolio_bacon, MAR)) #expected 0.29
+#'
+#' MAR = 0
+#' data(managers)
+#' print(OmegaSharpeRatio(managers['1996'], MAR))
+#' print(OmegaSharpeRatio(managers['1996',1], MAR)) #expected 3.60
+#'
+#' @export
+
+OmegaSharpeRatio <-
+function (R, MAR = 0, ...)
+{
+ R0 <- R
+ R = checkData(R, method="matrix")
+
+ if (ncol(R)==1 || is.null(R) || is.vector(R)) {
+ R = na.omit(R)
+ r = subset(R, R > MAR)
+
+ if(!is.null(dim(MAR))){
+ if(is.timeBased(index(MAR))){
+ MAR <-MAR[index(r)] #subset to the same dates as the R data
+ }
+ else{
+ MAR = mean(checkData(MAR, method = "vector"))
+ # we have to assume that Ra and a vector of Rf passed in for MAR both cover the same time period
+ }
+ }
+ result = (UpsideRisk(R,MAR,stat="potential") - DownsidePotential(R,MAR))/(DownsidePotential(R,MAR))
+ reclass(result, R0)
+ return(result)
+ }
+ else {
+ R = checkData(R)
+ result = apply(R, MARGIN = 2, OmegaSharpeRatio, MAR = MAR, ...)
+ result<-t(result)
+ colnames(result) = colnames(R)
+ rownames(result) = paste("OmegaSharpeRatio (MAR = ",MAR,"%)", sep="")
+ return(result)
+ }
+}
\ No newline at end of file
Added: pkg/PerformanceAnalytics/man/OmegaSharpeRatio.Rd
===================================================================
--- pkg/PerformanceAnalytics/man/OmegaSharpeRatio.Rd (rev 0)
+++ pkg/PerformanceAnalytics/man/OmegaSharpeRatio.Rd 2012-06-29 20:56:57 UTC (rev 2093)
@@ -0,0 +1,60 @@
+\name{OmegaSharpeRatio}
+\alias{OmegaSharpeRatio}
+\title{Omega-Sharpe ratio of the return distribution}
+\usage{
+ OmegaSharpeRatio(R, MAR = 0, ...)
+}
+\arguments{
+ \item{R}{an xts, vector, matrix, data frame, timeSeries
+ or zoo object of asset returns}
+
+ \item{MAR}{Minimum Acceptable Return, in the same
+ periodicity as your returns}
+
+ \item{method}{one of "full" or "subset", indicating
+ whether to use the length of the full series or the
+ length of the subset of the series below the MAR as the
+ denominator, defaults to "subset"}
+
+ \item{\dots}{any other passthru parameters}
+}
+\description{
+ The omega ratio is a conversion of the omega ratio to a
+ ranking statistic in familiar form to the Sharpe ratio.
+}
+\details{
+ To calculate the Omega-Sharpe ration we subtract the
+ target (or Minimum Acceptable Returns (MAR)) return from
+ the portfolio return and we divide it by the opposite of
+ the Downside Deviation.
+
+ \deqn{OmegaSharpeRatio(R,MAR) = \frac{r_p -
+ r_t}{\sum^n_{t=1}\frac{max(r_t - r_i, 0)}{n}}}
+ {OmegaSharpeRatio(R,MAR) = (Rp - Rt) /
+ -DownsidePotential(R,MAR)}
+
+ where \eqn{n} is the number of observations of the entire
+ series
+}
+\examples{
+data(portfolio_bacon)
+MAR = 0.5
+print(OmegaSharpeRatio(portfolio_bacon, MAR)) #expected 0.29
+
+MAR = 0
+data(managers)
+print(OmegaSharpeRatio(managers['1996'], MAR))
+print(OmegaSharpeRatio(managers['1996',1], MAR)) #expected 3.60
+}
+\author{
+ Matthieu Lestel
+}
+\references{
+ Carl Bacon, \emph{Practical portfolio performance
+ measurement and attribution}, second edition 2008, p.95
+}
+\keyword{distribution}
+\keyword{models}
+\keyword{multivariate}
+\keyword{ts}
+
More information about the Returnanalytics-commits
mailing list