[Returnanalytics-commits] r1994 - in pkg/PerformanceAnalytics: R man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Jun 7 17:31:34 CEST 2012
Author: matthieu_lestel
Date: 2012-06-07 17:31:33 +0200 (Thu, 07 Jun 2012)
New Revision: 1994
Modified:
pkg/PerformanceAnalytics/R/DownsideDeviation.R
pkg/PerformanceAnalytics/man/DownsideDeviation.Rd
Log:
update in DownsideDeviation documentation for the html version
Modified: pkg/PerformanceAnalytics/R/DownsideDeviation.R
===================================================================
--- pkg/PerformanceAnalytics/R/DownsideDeviation.R 2012-06-07 12:14:48 UTC (rev 1993)
+++ pkg/PerformanceAnalytics/R/DownsideDeviation.R 2012-06-07 15:31:33 UTC (rev 1994)
@@ -6,7 +6,7 @@
#' Downside deviation, similar to semi deviation, eliminates positive returns
#' when calculating risk. Instead of using the mean return or zero, it uses
#' the Minimum Acceptable Return as proposed by Sharpe (which may be the mean
-#' historical return or zero). It measures the the variability of underperformance
+#' historical return or zero). It measures the variability of underperformance
#' below a minimum targer rate. The downside variance is the square of the downside
#' potential.
#'
@@ -17,11 +17,14 @@
#'
#'
#' \deqn{ DownsideDeviation(R , MAR)= \delta_{MAR} = \sqrt{\sum^{n}_{t=1}\frac{
-#' min[(R_{t} - MAR), 0]^2}{n}}}
+#' min[(R_{t} - MAR), 0]^2}{n}}} {DownsideDeviation(R, MAR) = sqrt(1/n * sum(t=1..n)
+#' ((min(R(t)-MAR, 0))^2))}
#'
-#' \deqn{ DownsideVariance(R, MAR) = \sum^{n}_{t=1}\frac{min[(R_{t} - MAR), 0]^2} {n}}
+#' \deqn{ DownsideVariance(R, MAR) = \sum^{n}_{t=1}\frac{min[(R_{t} - MAR), 0]^2} {n}}
+#' {DownsideVariance(R, MAR) = 1/n * sum(t=1..n)((min(R(t)-MAR, 0))^2)}
#'
-#' \deqn{DownsidePotential(R, MAR) = \sum^{n}_{t=1}\frac{min[(R_{t} - MAR), 0]} {n}}
+#' \deqn{DownsidePotential(R, MAR) = \sum^{n}_{t=1}\frac{min[(R_{t} - MAR), 0]} {n}}
+#' {DownsidePotential(R, MAR) = 1/n * sum(t=1..n)(min(R(t)-MAR, 0))}
#'
#' where \eqn{n} is either the number of observations of the entire series or
#' the number of observations in the subset of the series falling below the
@@ -83,7 +86,8 @@
#'
#' #with data used in Bacon 2008
#'
-#' portfolio_return <- c(0.3,2.6,1.1,-1.0,1.5,2.5,1.6,6.7,-1.4,4.0,-0.5,8.1,4.0,-3.7,-6.1,1.7,-4.9,-2.2,7.0,5.8,-6.5,2.4,-0.5,-0.9)
+#' portfolio_return <- c(0.3,2.6,1.1,-1.0,1.5,2.5,1.6,6.7,-1.4,4.0,-0.5,8.1,4.0,-3.7,
+#' -6.1,1.7,-4.9,-2.2,7.0,5.8,-6.5,2.4,-0.5,-0.9)
#' MAR = 0.5
#' DownsideDeviation(portfolio_return, MAR) #expected 2.55
#' DownsidePotential(portfolio_return, MAR) #expected 1.37
Modified: pkg/PerformanceAnalytics/man/DownsideDeviation.Rd
===================================================================
--- pkg/PerformanceAnalytics/man/DownsideDeviation.Rd 2012-06-07 12:14:48 UTC (rev 1993)
+++ pkg/PerformanceAnalytics/man/DownsideDeviation.Rd 2012-06-07 15:31:33 UTC (rev 1994)
@@ -34,9 +34,9 @@
positive returns when calculating risk. Instead of using
the mean return or zero, it uses the Minimum Acceptable
Return as proposed by Sharpe (which may be the mean
- historical return or zero). It measures the the
- variability of underperformance below a minimum targer
- rate. The downside variance is the square of the downside
+ historical return or zero). It measures the variability
+ of underperformance below a minimum targer rate. The
+ downside variance is the square of the downside
potential.
To calculate it, we take the subset of returns that are
@@ -47,12 +47,18 @@
\deqn{ DownsideDeviation(R , MAR)= \delta_{MAR} =
\sqrt{\sum^{n}_{t=1}\frac{ min[(R_{t} - MAR), 0]^2}{n}}}
+ {DownsideDeviation(R, MAR) = sqrt(1/n * sum(t=1..n)
+ ((min(R(t)-MAR, 0))^2))}
\deqn{ DownsideVariance(R, MAR) =
\sum^{n}_{t=1}\frac{min[(R_{t} - MAR), 0]^2} {n}}
+ {DownsideVariance(R, MAR) = 1/n *
+ sum(t=1..n)((min(R(t)-MAR, 0))^2)}
\deqn{DownsidePotential(R, MAR) =
\sum^{n}_{t=1}\frac{min[(R_{t} - MAR), 0]} {n}}
+ {DownsidePotential(R, MAR) = 1/n *
+ sum(t=1..n)((min(R(t)-MAR, 0)))}
where \eqn{n} is either the number of observations of the
entire series or the number of observations in the subset
@@ -95,7 +101,8 @@
\examples{
#with data used in Bacon 2008
-portfolio_return <- c(0.3,2.6,1.1,-1.0,1.5,2.5,1.6,6.7,-1.4,4.0,-0.5,8.1,4.0,-3.7,-6.1,1.7,-4.9,-2.2,7.0,5.8,-6.5,2.4,-0.5,-0.9)
+portfolio_return <- c(0.3,2.6,1.1,-1.0,1.5,2.5,1.6,6.7,-1.4,4.0,-0.5,8.1,4.0,-3.7,
+-6.1,1.7,-4.9,-2.2,7.0,5.8,-6.5,2.4,-0.5,-0.9)
MAR = 0.5
DownsideDeviation(portfolio_return, MAR) #expected 2.55
DownsidePotential(portfolio_return, MAR) #expected 1.37
More information about the Returnanalytics-commits
mailing list