[Returnanalytics-commits] r2154 - pkg/PerformanceAnalytics/sandbox/Meucci/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Fri Jul 13 12:24:09 CEST 2012
Author: mkshah
Date: 2012-07-13 12:24:08 +0200 (Fri, 13 Jul 2012)
New Revision: 2154
Modified:
pkg/PerformanceAnalytics/sandbox/Meucci/R/InvariantProjection.R
Log:
Correcting documentation mistakes
Modified: pkg/PerformanceAnalytics/sandbox/Meucci/R/InvariantProjection.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/R/InvariantProjection.R 2012-07-13 10:23:33 UTC (rev 2153)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/R/InvariantProjection.R 2012-07-13 10:24:08 UTC (rev 2154)
@@ -6,7 +6,7 @@
#'
#' Note the first central moment defined as expectation.
#'
-#' #' \deqn{\tilde{ \mu } ^ {\big(n\big)} _{X} \equiv E \big\{ X^{n} \big\},
+#' \deqn{\tilde{ \mu } ^ {\big(n\big)} _{X} \equiv E \big\{ X^{n} \big\},
#' \\ \mu ^{ \big(n\big) }_{X} \equiv \sum_0^{n-1} \big(-1\big)^{n-k} \mu ^{n-k}_{X} \tilde{ \mu }^{k}_{X} + \tilde{ \mu }_{X}^{n} }
#'
#' @param mu_ the raw (multi-period) non-central moment of Y-t
@@ -42,9 +42,8 @@
#' We do so recursively by the identity in formula (24) which follows from applying (21) and re-arranging terms
#'
#' \deqn{ \tilde{ \mu } ^{ \big(n\big) }_{Y}
-#' \\ \equiv \kappa^{ \big(n\big) }_{Y} + \sum_{k=1}^{n-1} %BPremoved $ $^{n-1}
-#' C_{k-1}
-#' \\ \kappa_{Y}^{ \big(k\big) } \tilde{ \mu } ^{n-k}_{Y} }
+#' \equiv \kappa^{ \big(n\big) }_{Y} + \sum_{k=1}^{n-1} (n-1)C_{k-1}
+#' \kappa_{Y}^{ \big(k\big) } \tilde{ \mu } ^{n-k}_{Y} }
#'
#' @param ka cumulants of Y
#' @return mu_ the raw non-central moments of Y
@@ -78,7 +77,7 @@
#' and from the definition of the first cumulant in (17). The we apply recursively the identity
#' in formula (21). See Kendall and Stuart (1969)
#'
-#' \deqn{ \kappa^{ \big(n\big) }_{X} \equiv \tilde{ \mu } ^{ \big(n\big) }_{X} - \sum_{k=1}^{n-1} $^{n-1} C_{k-1}$ \kappa_{X}^{ \big(k\big) } \tilde{ \mu } ^{n-k}_{X} }
+#' \deqn{ \kappa^{ \big(n\big) }_{X} \equiv \tilde{ \mu } ^{ \big(n\big) }_{X} - \sum_{k=1}^{n-1} (n-1)C_{k-1} \kappa_{X}^{ \big(k\big) } \tilde{ \mu } ^{n-k}_{X} }
#'
#' @param mu_ non-central moments of the invariant X-t
#' @return ka cumulants of X-t
More information about the Returnanalytics-commits
mailing list