[Returnanalytics-commits] r2107 - pkg/PerformanceAnalytics/sandbox/Meucci/R
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Jul 4 23:48:55 CEST 2012
Author: mkshah
Date: 2012-07-04 23:48:55 +0200 (Wed, 04 Jul 2012)
New Revision: 2107
Modified:
pkg/PerformanceAnalytics/sandbox/Meucci/R/FullyFlexibleBayesNets.R
Log:
Commenting out unnecessary lines of code
Modified: pkg/PerformanceAnalytics/sandbox/Meucci/R/FullyFlexibleBayesNets.R
===================================================================
--- pkg/PerformanceAnalytics/sandbox/Meucci/R/FullyFlexibleBayesNets.R 2012-07-04 18:34:54 UTC (rev 2106)
+++ pkg/PerformanceAnalytics/sandbox/Meucci/R/FullyFlexibleBayesNets.R 2012-07-04 21:48:55 UTC (rev 2107)
@@ -92,36 +92,35 @@
# add lower-bound and upper-bound constraints
A_ = rbind( A_ , -eye(ncol(A_)) )
- b_ = rbind( b_ , rep( 0 , ncol(A_)) )
+ b_ = rbind( b_ , zeros( ncol(A_), 1) )
x0 = rep( 1/ncol( Aeq_ ) , ncol( Aeq_ ) )
# db_ = linprog( g_ , A_ , b_ , Aeq_ ,beq_ , lb_ , ub_ ) # MATLAB version
- optimResult = linp( E = Aeq_ , # matrix containing coefficients of equality constraints Ex=F
- F = beq_ , # vector containing the right-hand side of equality constraints
- G = -1*A_ , # matrix containint coefficients of the inequality constraints GX >= H
- H = -1*b_ , # vector containing the right-hand side of the inequality constraints
- Cost = -1*g_ , # vector containing the coefficients of the cost function
- ispos = FALSE )
+ # optimResult = linp( E = Aeq_ , # matrix containing coefficients of equality constraints Ex=F
+ # F = beq_ , # vector containing the right-hand side of equality constraints
+ # G = -1*A_ , # matrix containint coefficients of the inequality constraints GX >= H
+ # H = -1*b_ , # vector containing the right-hand side of the inequality constraints
+ # Cost = -1*g_ , # vector containing the coefficients of the cost function
+ # ispos = FALSE )
costFunction = function( x ) { matrix( x , nrow = 1 ) %*% matrix( -1*g_ , ncol = 1) }
+ gradient = function( x ) { -1*g_ }
optimResult = optim( par = x0 ,
fn = costFunction , # CHECK
- gr = -1*g_ ,
+ gr = gradient ,
method = "L-BFGS-B",
lower = lb_ ,
upper = ub_ ,
hessian = FALSE )
-
-
- library( linprog )
- optimResult2 = solveLP( E = Aeq_ , # numeric matrix containing coefficients of equality constraints Ex=F
- F = beq_ , # numeric vector containing the right-hand side of equality constraints
- G = -1*A_ , # numeric matrix containint coefficients of the inequality constraints GX >= H
- H = -1*b_ , # numeric vector containing the right-hand side of the inequality constraints
- Cost = -g_ , # numeric vector containing the coefficients of the cost function
- ispos = FALSE )
-
-
+
+ # library( linprog )
+ # optimResult2 = solveLP( E = Aeq_ , # numeric matrix containing coefficients of equality constraints Ex=F
+ # F = beq_ , # numeric vector containing the right-hand side of equality constraints
+ # G = -1*A_ , # numeric matrix containint coefficients of the inequality constraints GX >= H
+ # H = -1*b_ , # numeric vector containing the right-hand side of the inequality constraints
+ # Cost = -g_ , # numeric vector containing the coefficients of the cost function
+ # ispos = FALSE )
+
db_ = optimResult$X
db = db_[ 1:K ]
More information about the Returnanalytics-commits
mailing list