[Rcpp-devel] Speed of RCppEigen Cholesky decomposition on sparse matrix
Serguei Sokol
serguei.sokol at gmail.com
Tue Nov 27 15:33:55 CET 2018
Le 26/11/2018 à 18:23, Hoffman, Gabriel a écrit :
> I am developing a statistical model and I have a prototype working in R
> code. I make extensive use of sparse matrices, so the R code is pretty
> fast, but hoped that using RCppEigen to evaluate the log-likelihood
> function could avoid a lot of memory copying and be substantially
> faster. However, in a simple example I am seeing that RCppEigen is
> 3-5x slower than standard R code for cholesky decomposition of a sparse
> matrix. This is the case on R 3.5.1 using RcppEigen_0.3.3.4.0 on both
> OS X and CentOS 6.9.
>
> Since this simple operation is so much slower it doesn't seem like
> using RCppEigen is worth it in this case. Is this an issue with BLAS,
> some libraries or compiler options, or is R code really the fastest
> option?
After few checks, it seems to be a test issue. Matrix package stores the
decomposition somewhere in attributes of the submitted matrix. So the
the repetitive calls requiring chol() decomposition are not really doing
the job. Instead, previously stored result is reused.
You can easily convince yourself by "modifying" the matrix C (and thus
invalidating previous decomposition) by doing something like "C + 0." :
system.time(replicate(10, chol( C )))
#utilisateur système écoulé
# 0.459 0.011 0.471
system.time(replicate(10, chol( C+0. )))
#utilisateur système écoulé
# 5.365 0.060 5.425
system.time(replicate(10, CholSparse( C+0. )))
#utilisateur système écoulé
# 3.627 0.035 3.665
On my machine, I have almost identical timing for CholSparse() with or
without C modification:
system.time(replicate(10, CholSparse( C )))
#utilisateur système écoulé
# 3.283 0.004 3.289
which proves that Eigen doesn't store the decomposition for future reuse
and redo the decomposition at each call on the same matrix.
Best,
Serguei.
>
>
> library(Matrix)
> library(inline)
>
> # construct sparse matrix
> #########################
>
> # construct a matrix C that is N x N with S total entries
> # set C = crossprod(X)
> N = 100000
> S = 1000000
> i = sample(1:1000, S, replace=TRUE)
> j = sample(1:1000, S, replace=TRUE)
> values = runif(S, 0, .3)
> X = sparseMatrix(i=i, j=j, x = values, symmetric=FALSE )
>
> C = as(crossprod(X), "dgCMatrix")
>
> # check sparsity fraction
> S / N^2
>
> # define RCppEigen code
> CholeskyCppSparse<-'
> using Rcpp::as;
> using Eigen::Map;
> using Eigen::SparseMatrix;
> using Eigen::MappedSparseMatrix;
> using Eigen::SimplicialLLT;
>
> // get data into RcppEigen
> const MappedSparseMatrix<double> Sigma(as<MappedSparseMatrix<double>
> >(Sigma_in));
>
> // compute Cholesky
> typedef SimplicialLLT<SparseMatrix<double> > SpChol;
> const SpChol Ch(Sigma);
> '
>
> CholSparse <- cxxfunction(signature(Sigma_in = "dgCMatrix"),
> CholeskyCppSparse, plugin = "RcppEigen")
>
> # compare times
> system.time(replicate(10, chol( C )))
> # output:
> # user system elapsed
> # 0.341 0.014 0.355
>
> system.time(replicate(10, CholSparse( C )))
> # output:
> # user system elapsed
> # 1.639 0.046 1.687
>
> sessionInfo()
>
> R version 3.5.1 (2018-07-02)
> Platform: x86_64-apple-darwin15.6.0 (64-bit)
> Running under: macOS 10.14
>
> Matrix products: default
> BLAS:
> /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
> LAPACK:
> /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
>
> locale:
> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
>
> attached base packages:
> [1] stats graphics grDevices datasets utils methods base
>
> other attached packages:
> [1] inline_0.3.15 Matrix_1.2-15
>
> loaded via a namespace (and not attached):
> [1] compiler_3.5.1 RcppEigen_0.3.3.4.0 Rcpp_1.0.0
> [4] grid_3.5.1 lattice_0.20-38
>
> Changing the size of the matrix and the number of entries does not
> change the relative times much
>
> Thanks,
> - Gabriel
>
>
> _______________________________________________
> Rcpp-devel mailing list
> Rcpp-devel at lists.r-forge.r-project.org
> https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
>
More information about the Rcpp-devel
mailing list