[Rcpp-devel] trying to insert a number as first element of already existing vector

Serguei Sokol serguei.sokol at gmail.com
Mon Dec 10 14:42:19 CET 2018


Le 10/12/2018 à 13:04, Jan van der Laan a écrit :
> Small addendum: A large part of the performance gain in my example comes 
> from using NumericVector instead of std::vector<double>. Which avoids a 
> conversion. An example using std::copy with Numeric vector runs in the 
> same time as the version using memcpy.

Yep.
Few more percents of mean cpu time can be saved by using "const &" trick :

// [[Rcpp::export]]
NumericVector mybar5(const NumericVector &x, const NumericVector &y) {
    NumericVector result(x.size() + y.size());
    std::memcpy(result.begin(), x.begin(), x.size()*sizeof(double));
    std::memcpy(result.begin()+x.size(), y.begin(), 
y.size()*sizeof(double));
    return result;
}

# output
Unit: microseconds
                       expr     min       lq     mean   median       uq 
     max
       c(testelem, testvec) 258.343 338.3110 418.0047 343.4450 378.7850 
3077.347
   mybar(testvec, testelem) 352.699 366.8770 498.3948 374.6635 450.4420 
3046.408
  mybar2(testvec, testelem) 334.820 348.3685 425.0098 354.7240 366.5270 
3024.128
  mybar3(testvec, testelem) 233.689 244.8640 315.7256 247.5180 255.0955 
2945.068
  mybar4(testvec, testelem) 232.083 241.9655 340.0751 245.0035 252.8260 
2934.312
  mybar5(testvec, testelem) 150.787 242.7685 285.4264 245.9465 254.1880 
2049.493

Serguei.

> 
> Jan
> 
> 
> 
> On 10-12-18 12:28, Jan van der Laan wrote:
>>
>> For performance memcpy is probably fastest. This gives the same 
>> performance a c().
>>
>> // [[Rcpp::export]]
>> NumericVector mybar3(NumericVector x, double firstelem) {
>>    NumericVector result(x.size() + 1);
>>    result[0] = firstelem;
>>    std::memcpy(result.begin()+1, x.begin(), x.size()*sizeof(double));
>>    return result;
>> }
>>
>>
>> Or a more general version concatenating vector of arbitrary lengths:
>>
>>
>> // [[Rcpp::export]]
>> NumericVector mybar4(NumericVector x, NumericVector y) {
>>    NumericVector result(x.size() + y.size());
>>    std::memcpy(result.begin(), x.begin(), x.size()*sizeof(double));
>>    std::memcpy(result.begin()+x.size(), y.begin(), 
>> y.size()*sizeof(double));
>>    return result;
>> }
>>
>>
>>
>>  > n=1E7
>>  > testvec = c(1,seq_len(n))
>>  > testelem <- 7
>>  > microbenchmark(c(testelem, testvec), mybar(testvec,testelem),
>> +   mybar2(testvec,testelem),
>> +   mybar3(testvec,testelem),
>> +   mybar4(testvec,testelem)
>> +   )
>> Unit: milliseconds
>>                        expr       min        lq      mean    median   
>> uq        max neval
>>        c(testelem, testvec)  36.48577  36.93754  41.10550  43.76742 
>> 44.20709  46.09741   100
>>    mybar(testvec, testelem) 102.54042 103.21756 106.88749 104.32033 
>> 110.31527 119.55512   100
>>   mybar2(testvec, testelem)  95.64696  96.19447 100.24691 102.61380 
>> 103.58189 109.28290   100
>>   mybar3(testvec, testelem)  36.45794  36.87915  40.43486  37.18063 
>> 43.49643  95.49049   100
>>   mybar4(testvec, testelem)  36.51334  37.05409  41.39680  43.20627 
>> 43.57958  94.95482   100
>>
>>
>> Best,
>> Jan
>>
>>
>>
>> On 10-12-18 12:10, Serguei Sokol wrote:
>>> Le 09/12/2018 à 09:35, Mark Leeds a écrit :
>>>> Hi All: I wrote below and it works but I have a strong feeling 
>>>> there's a better way to do it.
>>> If performance is an issue, you can save few percents of cpu time by 
>>> using std::copy() instead of explicit for loop. Yet, for this 
>>> operation R's c() remains the best bet. It is more then twice faster 
>>> than both Rcpp versions below:
>>>
>>> #include <Rcpp.h>
>>> using namespace Rcpp;
>>>
>>> // [[Rcpp::export]]
>>> std::vector<double> mybar(const std::vector<double>& x, double 
>>> firstelem) {
>>>    std::vector<double> tmp(x.size() + 1);
>>>    tmp[0] = firstelem;
>>>    for (int i = 1; i < (x.size()+1); i++)
>>>      tmp[i] = x[i-1];
>>>    return tmp;
>>> }
>>> // [[Rcpp::export]]
>>> std::vector<double> mybar2(const std::vector<double>& x, double 
>>> firstelem) {
>>>    std::vector<double> tmp(x.size() + 1);
>>>    tmp[0] = firstelem;
>>>    std::copy(x.begin(), x.end(), tmp.begin()+1);
>>>    return tmp;
>>> }
>>>
>>> /*** R
>>> library(microbenchmark)
>>> n=100000
>>> testvec = c(1,seq_len(n))
>>> testelem <- 7
>>> microbenchmark(c(testelem, testvec), mybar(testvec,testelem), 
>>> mybar2(testvec,testelem))
>>> */
>>>
>>> # Ouput
>>> Unit: microseconds
>>>                        expr     min       lq      mean   
>>> median        uq
>>>        c(testelem, testvec) 247.098 248.5655  444.8657 257.3300  
>>> 630.7725
>>>    mybar(testvec, testelem) 594.978 622.3560 1226.5683 637.0230 
>>> 1386.8385
>>>   mybar2(testvec, testelem) 576.191 604.7565 1029.2124 616.1055 
>>> 1351.6740
>>>         max neval
>>>    7587.977   100
>>>   22149.605   100
>>>   11651.831   100
>>>
>>>
>>> Best,
>>> Serguei.
>>>
>>>> I looked on the net and found some material from back in ~2014 about 
>>>> concatenating
>>>> vectors but I didn't see anything final about it. Thanks for any 
>>>> insights.
>>>>
>>>> Also, the documentation for Rcpp is beyond incredible (thanks to 
>>>> dirk, romain, kevin and all the other people I'm leaving out )  but 
>>>> is there a general methodology for finding equivalents of R 
>>>> functions. For example, if I want a cumsum function in Rcpp, how do 
>>>> I know whether to use the stl with accumulate or if there's already 
>>>> one built in so
>>>> that I just call cumsum.
>>>>
>>>> Thanks.
>>>>
>>>> #=======================================================
>>>>
>>>> #include <Rcpp.h>
>>>> using namespace Rcpp;
>>>>
>>>> // [[Rcpp::export]]
>>>> std::vector<double> mybar(const std::vector<double>& x, double 
>>>> firstelem) {
>>>>    std::vector<double> tmp(x.size() + 1);
>>>>    tmp[0] = firstelem;
>>>>    for (int i = 1; i < (x.size()+1); i++)
>>>>      tmp[i] = x[i-1];
>>>>    return tmp;
>>>> }
>>>>
>>>> /*** R
>>>>
>>>> testvec = c(1,2,3)
>>>> testelem <- 7
>>>> mybar(testvec,testelem)
>>>>
>>>> */
>>>>
>>>> #===============================
>>>> # OUTPUT FROM RUNNING ABOVE
>>>> #=================================
>>>>  > testvec <-  c(1,2,3)
>>>>  > testelem <- 7
>>>>  > mybar(testvec,testelem)
>>>> [1] 7 1 2 3
>>>>  >
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>> _______________________________________________
>>>> Rcpp-devel mailing list
>>>> Rcpp-devel at lists.r-forge.r-project.org
>>>> https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
>>>>
>>>
>>> _______________________________________________
>>> Rcpp-devel mailing list
>>> Rcpp-devel at lists.r-forge.r-project.org
>>> https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
>> _______________________________________________
>> Rcpp-devel mailing list
>> Rcpp-devel at lists.r-forge.r-project.org
>> https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
> 



More information about the Rcpp-devel mailing list