[Rcpp-commits] r3600 - pkg/RcppEigen/vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu May 10 04:52:10 CEST 2012


Author: edd
Date: 2012-05-10 04:52:09 +0200 (Thu, 10 May 2012)
New Revision: 3600

Modified:
   pkg/RcppEigen/vignettes/RcppEigen-intro-nojss.Rnw
   pkg/RcppEigen/vignettes/response-to-referees.tex
Log:
added \hrule to code floats
noted that in response-to-referees draft


Modified: pkg/RcppEigen/vignettes/RcppEigen-intro-nojss.Rnw
===================================================================
--- pkg/RcppEigen/vignettes/RcppEigen-intro-nojss.Rnw	2012-05-09 12:51:42 UTC (rev 3599)
+++ pkg/RcppEigen/vignettes/RcppEigen-intro-nojss.Rnw	2012-05-10 02:52:09 UTC (rev 3600)
@@ -353,6 +353,7 @@
 from its transpose and returned to \proglang{R}.
 
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
     \noindent
     \ttfamily
@@ -365,6 +366,7 @@
     \hlstd{}\hlkwa{return\ }\hlstd{}\hlkwd{wrap}\hlstd{}\hlsym{(}\hlstd{At}\hlsym{);}\hlstd{}\hspace*{\fill}
     \normalfont
   %\end{quote}
+  \hrule
   \caption{\code{transCpp}: Transpose a matrix of integers.}
   \label{trans}
 \end{figure}
@@ -406,6 +408,7 @@
 cross-product of its two arguments.
 
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
   \noindent
   \ttfamily
@@ -418,6 +421,7 @@
   \normalfont
   \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{prodCpp}: Product and cross-product of two matrices.}
   \label{prod}
 \end{figure}
@@ -473,6 +477,7 @@
 multiple defaults to 1.  The code in Figure~\ref{crossprod} produces
 
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
     \noindent
     \ttfamily
@@ -492,6 +497,7 @@
     \normalfont
     \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{crossprodCpp}: Cross-product and transposed cross-product of a single matrix.}
   \label{crossprod}
 \end{figure}
@@ -526,6 +532,7 @@
 function, \code{AtA}, that returns the crossproduct matrix as shown in Figure~\ref{fig:incl}
 
 \begin{figure}[htb]
+  \hrule \smallskip
  %\begin{quote}
   \noindent
   \ttfamily
@@ -548,6 +555,7 @@
   \normalfont
   \normalsize
 %\end{quote}
+  \hrule
   \caption{The contents of the character vector, \code{incl}, that will preface \proglang{C++} code segments that follow.}
   \label{fig:incl}
 \end{figure}
@@ -572,6 +580,7 @@
 pass a numeric matrix, $\bm A$, not an integer matrix.
 
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
   \noindent
   \ttfamily
@@ -582,6 +591,7 @@
   \normalfont
   \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{cholCpp}: Cholesky decomposition of a cross-product.}
   \label{chol}
 \end{figure}
@@ -629,6 +639,7 @@
 Figure~\ref{cholDet}.
 
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
     \noindent
     \ttfamily
@@ -642,6 +653,7 @@
     \normalfont
     \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{cholDetCpp}: Determinant of a cross-product using
     the ``LLt'' and ``LDLt'' forms of the Cholesky decomposition.}
   \label{cholDet}
@@ -688,6 +700,7 @@
 \label{sec:LLtLeastSquares}
 
 \begin{figure}[tbh]
+  \hrule \smallskip
   %\begin{quote}
   \noindent
   \ttfamily
@@ -713,6 +726,7 @@
   \normalfont
   \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{lltLSCpp}: Least squares using the Cholesky decomposition.}
   \label{lltLS}
 \end{figure}
@@ -819,6 +833,7 @@
 % const VectorXd      se(QR.matrixQR().topRows(p).triangularView<Upper>()
 %                        .solve(MatrixXd::Identity(p,p)).rowwise().norm());
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
     \noindent
     \ttfamily
@@ -833,6 +848,7 @@
     \mbox{}
     \normalfont
     \normalsize
+    \hrule
     \caption{\code{QRLSCpp}: Least squares using the unpivoted QR decomposition.}
     \label{QRLS}
   %\end{quote}
@@ -937,6 +953,7 @@
   \bm X^+=\bm V\bm D_1^+\bm U_1^\prime .
 \end{displaymath}
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
   \noindent
   \ttfamily
@@ -950,6 +967,7 @@
   \normalfont
   \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{DplusCpp}: Create the diagonal $\bm d^+$ of the pseudo-inverse, $\bm D_1^+$, from the array of singular values, $\bm d$.}
   \label{Dplus}
 \end{figure}
@@ -977,6 +995,7 @@
 With these definitions the code for least squares using the singular
 value decomposition can be written as in Figure~\ref{SVDLS}.
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
     \noindent
     \ttfamily
@@ -991,6 +1010,7 @@
     \normalfont
     \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{SVDLSCpp}: Least squares using the SVD.}
   \label{SVDLS}
 \end{figure}
@@ -1044,6 +1064,7 @@
 With these definitions one can adapt much of the code from the SVD
 method for the eigendecomposition, as shown in Figure~\ref{SymmEigLS}.
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
     \noindent
     \ttfamily
@@ -1057,6 +1078,7 @@
     \normalfont
     \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{SymmEigLSCpp}: Least squares using the eigendecomposition.}
   \label{SymmEigLS}
 \end{figure}
@@ -1112,6 +1134,7 @@
 \end{displaymath}
 The vector $\bm Q^\prime\bm y$ is called the ``effects'' vector in \proglang{R}.
 \begin{figure}[htb]
+  \hrule \smallskip
   %\begin{quote}
     \noindent
     \ttfamily
@@ -1145,6 +1168,7 @@
     \normalfont
     \normalsize
   %\end{quote}
+  \hrule
   \caption{\code{ColPivQRLSCpp}: Least squares using the pivoted QR decomposition.}
   \label{ColPivQRLS}
 \end{figure}

Modified: pkg/RcppEigen/vignettes/response-to-referees.tex
===================================================================
--- pkg/RcppEigen/vignettes/response-to-referees.tex	2012-05-09 12:51:42 UTC (rev 3599)
+++ pkg/RcppEigen/vignettes/response-to-referees.tex	2012-05-10 02:52:09 UTC (rev 3600)
@@ -228,20 +228,21 @@
   have point, though, inasmuch as figures 4 and 5 really flow into each
   other, and have no visual separator. For the infamous book draft, I gave up
   on what I had suggested to you here and just went with (the latex package)
-  listings.   
+  listings.   [Follow-up 9 May] I just added a set of horizontal rules to each
+  of the floats.  Take a look and see if you think that that makes it better.
 }
 
 
 \pointRaised{Comment 2}{
   It might better to re-order the subsections of Section 4 as follows: \\
-  * Least squares using the ``LLt'' Cholesky \\
-  * Least squares using the unpivoted QR decomposition\\
-  * Least squares using the SVD \\
-  * Least squares using the eigendecomposition \\
-  * Handling the ranking-deficient case \\
-    a) using column-pivoted QR decomposition \\
-    b) Using SVD \\
-  * Comparative speed 
+  -- Least squares using the ``LLt'' Cholesky \\
+  -- Least squares using the unpivoted QR decomposition\\
+  -- Least squares using the SVD \\
+  -- Least squares using the eigendecomposition \\
+  -- Handling the ranking-deficient case \\
+  \phantom{---} a) using column-pivoted QR decomposition \\
+  \phantom{---} b) Using SVD \\
+  -- Comparative speed 
 }
 \reply{
   But the SVD and eigendecomposition methods are set up to handle



More information about the Rcpp-commits mailing list