[R-gregmisc-commits] r2060 - in pkg/gmodels: . R inst man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sun Jul 19 05:22:33 CEST 2015


Author: warnes
Date: 2015-07-19 05:22:30 +0200 (Sun, 19 Jul 2015)
New Revision: 2060

Modified:
   pkg/gmodels/DESCRIPTION
   pkg/gmodels/NAMESPACE
   pkg/gmodels/R/ci.R
   pkg/gmodels/R/est.mer.R
   pkg/gmodels/R/estimable.R
   pkg/gmodels/R/fit.contrast.R
   pkg/gmodels/R/to.est.R
   pkg/gmodels/inst/NEWS
   pkg/gmodels/man/ci.Rd
   pkg/gmodels/man/estimable.Rd
   pkg/gmodels/man/fit.contrast.Rd
Log:

- Removed references to 'mer' objects, sincel the nlme4 update is not backwards compatible with my code.
- Removed 'require' calls.


Modified: pkg/gmodels/DESCRIPTION
===================================================================
--- pkg/gmodels/DESCRIPTION	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/DESCRIPTION	2015-07-19 03:22:30 UTC (rev 2060)
@@ -8,7 +8,7 @@
         Program, of the NIH, National Cancer Institute, Center for
         Cancer Research under NCI Contract NO1-CO-12400.
 Maintainer: Gregory R. Warnes <greg at warnes.net>
-Description: Various R programming tools for model fitting
+Description: Various R programming tools for model fitting.
 Depends: R (>= 1.9.0)
 Suggests: gplots, gtools, Matrix, nlme, lme4 (>= 0.999999-0)
 Imports: MASS, gdata

Modified: pkg/gmodels/NAMESPACE
===================================================================
--- pkg/gmodels/NAMESPACE	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/NAMESPACE	2015-07-19 03:22:30 UTC (rev 2060)
@@ -14,19 +14,19 @@
        summary.glh.test
 )
 
-S3method(ci, default)
+S3method(ci, numeric)
 S3method(ci, binom)
 S3method(ci, lm)
 S3method(ci, lme)
-S3method(ci, mer)
+##S3method(ci, mer)
 S3method(ci, estimable)
 
 S3method(fit.contrast, lm)
 S3method(fit.contrast, lme)
-S3method(fit.contrast, mer)
+##S3method(fit.contrast, mer)
 
 S3method(estimable, default)
-S3method(estimable, mer)
+##S3method(estimable, mer)
 S3method(estimable, mlm)
 
 S3method(print, glh.test)

Modified: pkg/gmodels/R/ci.R
===================================================================
--- pkg/gmodels/R/ci.R	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/R/ci.R	2015-07-19 03:22:30 UTC (rev 2060)
@@ -3,7 +3,7 @@
 ci  <-  function(x, confidence=0.95,alpha=1-confidence,...)
   UseMethod("ci")
 
-ci.default <- function(x, confidence=0.95,alpha=1-confidence,na.rm=FALSE,...)
+ci.numeric <- function(x, confidence=0.95,alpha=1-confidence,na.rm=FALSE,...)
   {
     est <- mean(x, na.rm=na.rm)
     stderr <-  sd(x, na.rm=na.rm)/sqrt(nobs(x));
@@ -72,31 +72,31 @@
     retval
   }
 
-ci.mer <- function (x,
-                    confidence = 0.95,
-                    alpha = 1 - confidence,
-                    n.sim = 1e4,
-                    ...)
-{
-    x.effects <- x at fixef
-    n <- length(x.effects)
+## ci.mer <- function (x,
+##                     confidence = 0.95,
+##                     alpha = 1 - confidence,
+##                     n.sim = 1e4,
+##                     ...)
+## {
+##     x.effects <- x at fixef
+##     n <- length(x.effects)
 
-    retval <- gmodels:::est.mer(obj = x,
-                                cm = diag(n),
-                                beta0 = rep(0, n),
-                                conf.int = confidence,
-                                show.beta0 = FALSE,
-                                n.sim = n.sim)
+##     retval <- gmodels::est.mer(obj = x,
+##                                 cm = diag(n),
+##                                 beta0 = rep(0, n),
+##                                 conf.int = confidence,
+##                                 show.beta0 = FALSE,
+##                                 n.sim = n.sim)
 
-    retval <- retval[,
-                     c("Estimate", "Lower.CI", "Upper.CI", "Std. Error", "p value"),
-                     drop=FALSE
-                     ]
-    colnames(retval)[c(2:3, 5)] <- c("CI lower", "CI upper", "p-value")
-    rownames(retval) <- names(x.effects)
+##     retval <- retval[,
+##                      c("Estimate", "Lower.CI", "Upper.CI", "Std. Error", "p value"),
+##                      drop=FALSE
+##                      ]
+##     colnames(retval)[c(2:3, 5)] <- c("CI lower", "CI upper", "p-value")
+##     rownames(retval) <- names(x.effects)
 
-    retval
-}
+##     retval
+## }
 
 
 ci.estimable  <-  function(x,confidence=0.95,alpha=1-confidence,...)

Modified: pkg/gmodels/R/est.mer.R
===================================================================
--- pkg/gmodels/R/est.mer.R	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/R/est.mer.R	2015-07-19 03:22:30 UTC (rev 2060)
@@ -6,55 +6,55 @@
 # Created April 25, 2006
 # Updated 2012-04-19 for S4 version of lmer object
 
-est.mer <- function(obj, cm, beta0, conf.int, show.beta0, n.sim)
-{
+## est.mer <- function(obj, cm, beta0, conf.int, show.beta0, n.sim)
+## {
 
-  samp <- lme4:::mcmcsamp(obj, n.sim)
-  ##  samp.summ <- summary(samp)
+##   samp <- lme4:::mcmcsamp(obj, n.sim)
+##   ##  samp.summ <- summary(samp)
 
-  samp.cm <- t(cm %*% samp at fixef)
+##   samp.cm <- t(cm %*% samp at fixef)
 
-  # calculate requested statistics
-  est <- apply(samp.cm, 2, mean)
-  stderr <- apply(samp.cm, 2, sd)
-  
-  pval <- sapply(1:length(beta0),
-                 function(i){percentile(beta0[i], samp.cm[,i])})
-  pval <- ifelse(pval <= .5, 2*pval, 2*(1-pval))
+##   # calculate requested statistics
+##   est <- apply(samp.cm, 2, mean)
+##   stderr <- apply(samp.cm, 2, sd)
 
-  if(is.null(conf.int))
-    {
-      lower.ci <- NULL
-      upper.ci <- NULL
-    }
-  else
-    {
-      alpha <- 1-conf.int
-      samp.ci <- sapply(1:length(beta0),
-                        function(i)
-                        {
-                          quantile(samp.cm[,i], probs=c(alpha/2, 1-alpha/2))
-                        }
-                        )
+##   pval <- sapply(1:length(beta0),
+##                  function(i){percentile(beta0[i], samp.cm[,i])})
+##   pval <- ifelse(pval <= .5, 2*pval, 2*(1-pval))
 
-      lower.ci <- samp.ci[1,]
-      upper.ci <- samp.ci[2,]
-    }
+##   if(is.null(conf.int))
+##     {
+##       lower.ci <- NULL
+##       upper.ci <- NULL
+##     }
+##   else
+##     {
+##       alpha <- 1-conf.int
+##       samp.ci <- sapply(1:length(beta0),
+##                         function(i)
+##                         {
+##                           quantile(samp.cm[,i], probs=c(alpha/2, 1-alpha/2))
+##                         }
+##                         )
 
-  # return results
-  if(!show.beta0)
-    beta0 <- NULL
-  
-  samp.stats <- cbind('beta0' = beta0,
-                      'Estimate' = est,
-                      'Std. Error' = stderr,
-                      'p value' = pval,
-                      'Lower.CI' = lower.ci,
-                      'Upper.CI' = upper.ci)
+##       lower.ci <- samp.ci[1,]
+##       upper.ci <- samp.ci[2,]
+##     }
 
-  row.names(samp.stats) <- paste('(', apply(cm, 1, paste, collapse=" "),
-                                 ')', sep='')
-    
-  return(samp.stats)
-}
+##   # return results
+##   if(!show.beta0)
+##     beta0 <- NULL
 
+##   samp.stats <- cbind('beta0' = beta0,
+##                       'Estimate' = est,
+##                       'Std. Error' = stderr,
+##                       'p value' = pval,
+##                       'Lower.CI' = lower.ci,
+##                       'Upper.CI' = upper.ci)
+
+##   row.names(samp.stats) <- paste('(', apply(cm, 1, paste, collapse=" "),
+##                                  ')', sep='')
+
+##   return(samp.stats)
+## }
+

Modified: pkg/gmodels/R/estimable.R
===================================================================
--- pkg/gmodels/R/estimable.R	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/R/estimable.R	2015-07-19 03:22:30 UTC (rev 2060)
@@ -9,7 +9,7 @@
 {
   if (is.matrix(cm) || is.data.frame(cm))
     {
-      cm <- t(apply(cm, 1, .to.est, obj=obj)) 
+      cm <- t(apply(cm, 1, .to.est, obj=obj))
     }
   else if(is.list(cm))
     {
@@ -140,7 +140,7 @@
           dimnames(retval) <- list(rn, c("beta0", "Estimate", "Std. Error",
                                          "t value", "DF", "Pr(>|t|)"))
         }
-      
+
       if (!is.null(conf.int))
         {
           if (conf.int <=0 || conf.int >=1)
@@ -163,7 +163,7 @@
       if(!show.beta0) retval$beta0 <- NULL
 
       class(retval) <- c("estimable", class(retval))
-      
+
       return(retval)
     }
 }
@@ -211,74 +211,74 @@
   print(as.data.frame(retval))
 }
 
-estimable.mer <- function (obj, cm, beta0, conf.int=NULL, show.beta0,
-                           sim.mer=TRUE, n.sim=1000, ...)
-{
-  if (is.matrix(cm) || is.data.frame(cm))
-    {
-      cm <- t(apply(cm, 1, .to.est, obj=obj)) 
-    }
-  else if(is.list(cm))
-    {
-      cm <- matrix(.to.est(obj, cm), nrow=1)
-    }                                       
-  else if(is.vector(cm))
-    {
-      cm <- matrix(.to.est(obj, cm), nrow=1)
-    }
-  else
-    {
-      stop("'cm' argument must be of type vector, list, or matrix.")
-    }
+## estimable.mer <- function (obj, cm, beta0, conf.int=NULL, show.beta0,
+##                            sim.mer=TRUE, n.sim=1000, ...)
+## {
+##   if (is.matrix(cm) || is.data.frame(cm))
+##     {
+##       cm <- t(apply(cm, 1, .to.est, obj=obj))
+##     }
+##   else if(is.list(cm))
+##     {
+##       cm <- matrix(.to.est(obj, cm), nrow=1)
+##     }
+##   else if(is.vector(cm))
+##     {
+##       cm <- matrix(.to.est(obj, cm), nrow=1)
+##     }
+##   else
+##     {
+##       stop("'cm' argument must be of type vector, list, or matrix.")
+##     }
 
-  if(missing(show.beta0))
-    {
-      if(!missing(beta0))
-        show.beta0=TRUE
-      else
-        show.beta0=FALSE
-    }
+##   if(missing(show.beta0))
+##     {
+##       if(!missing(beta0))
+##         show.beta0=TRUE
+##       else
+##         show.beta0=FALSE
+##     }
 
 
-  if (missing(beta0))
-    {
-      beta0 = rep(0, ifelse(is.null(nrow(cm)), 1, nrow(cm)))
+##   if (missing(beta0))
+##     {
+##       beta0 = rep(0, ifelse(is.null(nrow(cm)), 1, nrow(cm)))
 
-    }
+##     }
 
-  if ("mer" %in% class(obj)) {                                      
-    if(sim.mer)                                                     
-      return(est.mer(obj=obj, cm=cm, beta0=beta0, conf.int=conf.int,
-                     show.beta0=show.beta0, n.sim=n.sim))           
-    
-    stat.name <- "mer"                                              
-    cf <- as.matrix(fixef(obj))                                      
-    vcv <- as.matrix(vcov(obj))                                      
-    df <- NA                                                         
-  }
-  else {
-    stop("obj is not of class mer")
-  }
+##   if ("mer" %in% class(obj)) {
+##     if(sim.mer)
+##       return(est.mer(obj=obj, cm=cm, beta0=beta0, conf.int=conf.int,
+##                      show.beta0=show.beta0, n.sim=n.sim))
 
-  if (is.null(rownames(cm)))
-    rn <- paste("(", apply(cm, 1, paste, collapse=" "),
-                ")", sep="")
-  else rn <- rownames(cm)
-  
-  ct <- cm %*% cf[, 1]
-  ct.diff <- cm %*% cf[, 1] - beta0
-  vc <- sqrt(diag(cm %*% vcv %*% t(cm)))
-  
-  retval <- cbind(hyp=beta0, est=ct, stderr=vc, "t value"=ct.diff/vc)
-  dimnames(retval) <- list(rn, c("beta0", "Estimate", "Std. Error",  
-                                 "t value"))
+##     stat.name <- "mer"
+##     cf <- as.matrix(fixef(obj))
+##     vcv <- as.matrix(vcov(obj))
+##     df <- NA
+##   }
+##   else {
+##     stop("obj is not of class mer")
+##   }
 
-  rownames(retval) <- make.unique(rownames(retval))
-  retval <- as.data.frame(retval)
-  if(!show.beta0) retval$beta0 <- NULL
+##   if (is.null(rownames(cm)))
+##     rn <- paste("(", apply(cm, 1, paste, collapse=" "),
+##                 ")", sep="")
+##   else rn <- rownames(cm)
 
-  class(retval) <- c("estimable", class(retval))
+##   ct <- cm %*% cf[, 1]
+##   ct.diff <- cm %*% cf[, 1] - beta0
+##   vc <- sqrt(diag(cm %*% vcv %*% t(cm)))
 
-  return(retval)
+##   retval <- cbind(hyp=beta0, est=ct, stderr=vc, "t value"=ct.diff/vc)
+##   dimnames(retval) <- list(rn, c("beta0", "Estimate", "Std. Error",
+##                                  "t value"))
 
-}
+##   rownames(retval) <- make.unique(rownames(retval))
+##   retval <- as.data.frame(retval)
+##   if(!show.beta0) retval$beta0 <- NULL
+
+##   class(retval) <- c("estimable", class(retval))
+
+##   return(retval)
+
+## }

Modified: pkg/gmodels/R/fit.contrast.R
===================================================================
--- pkg/gmodels/R/fit.contrast.R	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/R/fit.contrast.R	2015-07-19 03:22:30 UTC (rev 2060)
@@ -113,91 +113,90 @@
 fit.contrast.lme <- function(model, varname, coeff, showall=FALSE,
                             conf.int=NULL, df=FALSE, ...)
   {
-    require(nlme)
     fit.contrast.lm(model, varname, coeff, showall, conf.int, df)
   }
 
-# I made rather dramatic changes here and do all calculations in fit.contrast.mer rather than
-# fit.contrast.lm because of the simulation extras ... added sim.mer and n.sim to the parameter list
-fit.contrast.mer <- function(model, varname, coeff, showall=FALSE,
-                            conf.int=NULL, sim.mer=TRUE, n.sim=1000, ...)
-{
-  require(lme4)
+## # I made rather dramatic changes here and do all calculations in fit.contrast.mer rather than
+## # fit.contrast.lm because of the simulation extras ... added sim.mer and n.sim to the parameter list
+## fit.contrast.mer <- function(model, varname, coeff, showall=FALSE,
+##                             conf.int=NULL, sim.mer=TRUE, n.sim=1000, ...)
+## {
+##   require(lme4)
 
-  # make sure we have the NAME of the variable
-  if(!is.character(varname))
-     varname <- deparse(substitute(varname))
+##   # make sure we have the NAME of the variable
+##   if(!is.character(varname))
+##      varname <- deparse(substitute(varname))
 
-  # make coeff into a matrix
-  if(!is.matrix(coeff))
-    {
-       coeff <- matrix(coeff, nrow=1)
-     }
+##   # make coeff into a matrix
+##   if(!is.matrix(coeff))
+##     {
+##        coeff <- matrix(coeff, nrow=1)
+##      }
 
-  # make sure columns are labeled
-  if (is.null(rownames(coeff)))
-     {
-       rn <- vector(length=nrow(coeff))
-       for(i in 1:nrow(coeff))
-          rn[i] <- paste(" c=(",paste(coeff[i,],collapse=" "), ")")
-       rownames(coeff) <- rn
-     }
+##   # make sure columns are labeled
+##   if (is.null(rownames(coeff)))
+##      {
+##        rn <- vector(length=nrow(coeff))
+##        for(i in 1:nrow(coeff))
+##           rn[i] <- paste(" c=(",paste(coeff[i,],collapse=" "), ")")
+##        rownames(coeff) <- rn
+##      }
 
-  # now convert into the proper form for the contrast matrix
-  cmat <- make.contrasts(coeff, ncol(coeff) )
-  cn <- paste(" C",1:ncol(cmat),sep="")
-  cn[1:nrow(coeff)] <- rownames(coeff)
-  colnames(cmat) <- cn
+##   # now convert into the proper form for the contrast matrix
+##   cmat <- make.contrasts(coeff, ncol(coeff) )
+##   cn <- paste(" C",1:ncol(cmat),sep="")
+##   cn[1:nrow(coeff)] <- rownames(coeff)
+##   colnames(cmat) <- cn
 
-  m <- model at call
+##   m <- model at call
 
-  if(is.null(m$contrasts))
-    m$contrasts <- list()
-  m$contrasts[[varname]] <- cmat
+##   if(is.null(m$contrasts))
+##     m$contrasts <- list()
+##   m$contrasts[[varname]] <- cmat
 
-  if(is.R())
-    r <- eval(m, parent.frame())
-  else
-    r <- eval(m)
-  # now return the correct elements ....
-  r.effects <- fixef(r)
-  n <- length(r.effects)
+##   if(is.R())
+##     r <- eval(m, parent.frame())
+##   else
+##     r <- eval(m)
+##   # now return the correct elements ....
+##   r.effects <- fixef(r)
+##   n <- length(r.effects)
 
-  if(sim.mer)
-  {
-    retval <- est.mer(obj = r, cm = diag(n), beta0 = rep(0, n),
-                       conf.int = conf.int, show.beta0 = FALSE,
-                       n.sim=n.sim)
-    rownames(retval) <- names(r.effects)
-  }else{
-    if(!is.null(conf.int))
-      warning("Confidence interval calculation for mer objects requires simulation -- use sim.mer = TRUE")
+##   if(sim.mer)
+##   {
+##     retval <- est.mer(obj = r, cm = diag(n), beta0 = rep(0, n),
+##                        conf.int = conf.int, show.beta0 = FALSE,
+##                        n.sim=n.sim)
+##     rownames(retval) <- names(r.effects)
+##   }else{
+##     if(!is.null(conf.int))
+##       warning("Confidence interval calculation for mer objects requires simulation -- use sim.mer = TRUE")
 
-    est <- fixef(r)
-    se  <- sqrt(diag(as.matrix(vcov(r))))
-    tval <- est/se
-    retval <- cbind(
-                    "Estimate"= est,
-                    "Std. Error"= se,
-                    "t-value"= tval
-                    )
-  }
+##     est <- fixef(r)
+##     se  <- sqrt(diag(as.matrix(vcov(r))))
+##     tval <- est/se
+##     retval <- cbind(
+##                     "Estimate"= est,
+##                     "Std. Error"= se,
+##                     "t-value"= tval
+##                     )
+##   }
 
-  if( !showall )
-  {
-    if( !is.R() && ncol(cmat)==1 )
-    {
-      retval <- retval[varname,,drop=FALSE]
-      rownames(retval) <- rn
-    }else{
-      rn <- paste(varname,rownames(coeff),sep="")
-      ind <- match(rn,rownames(retval))
-      retval <- retval[ind,,drop=FALSE]
-    }
-  }
+##   if( !showall )
+##   {
+##     if( !is.R() && ncol(cmat)==1 )
+##     {
+##       retval <- retval[varname,,drop=FALSE]
+##       rownames(retval) <- rn
+##     }else{
+##       rn <- paste(varname,rownames(coeff),sep="")
+##       ind <- match(rn,rownames(retval))
+##       retval <- retval[ind,,drop=FALSE]
+##     }
+##   }
 
-  return(retval)
-}
+##   return(retval)
+## }
 
 
 fit.contrast <- function(model, varname, coeff, ...)

Modified: pkg/gmodels/R/to.est.R
===================================================================
--- pkg/gmodels/R/to.est.R	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/R/to.est.R	2015-07-19 03:22:30 UTC (rev 2060)
@@ -5,12 +5,13 @@
 
 .to.est <- function(obj, params)
 {
-  if('lme' %in% class(obj) | 'mer' %in% class(obj))
+  ## if('lme' %in% class(obj) | 'mer' %in% class(obj))
+  ##   {
+  ##     eff.obj <- fixef(obj)
+  ##   }
+  ## else
+  if('geese' %in% class(obj))
     {
-      eff.obj <- fixef(obj)
-    }
-  else if('geese' %in% class(obj))
-    {
       eff.obj <- obj$beta
     }
   else
@@ -45,10 +46,10 @@
                   )
         }
 
-      if(is.list(params))                    
-        est[names(params)] <- unlist(params) 
-      else                                   
-        est[names(params)] <- params         
+      if(is.list(params))
+        est[names(params)] <- unlist(params)
+      else
+        est[names(params)] <- params
     }
 
   return(est)

Modified: pkg/gmodels/inst/NEWS
===================================================================
--- pkg/gmodels/inst/NEWS	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/inst/NEWS	2015-07-19 03:22:30 UTC (rev 2060)
@@ -8,7 +8,11 @@
   interval, which is *conservative* due to the discrete nature of the
   binomial distribution.
 
+Other Changes:
 
+- Support for lme4 objects has been removed due to incompatible
+  changes to the lme4 package.
+
 Version 2.16.0 - 2014-07-24
 ---------------------------
 

Modified: pkg/gmodels/man/ci.Rd
===================================================================
--- pkg/gmodels/man/ci.Rd	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/man/ci.Rd	2015-07-19 03:22:30 UTC (rev 2060)
@@ -2,25 +2,27 @@
 %
 \name{ci}
 \alias{ci}
-\alias{ci.default}
+\alias{ci.numeric}
 \alias{ci.binom}
 \alias{ci.lm}
 \alias{ci.lme}
-\alias{ci.mer}
+%\alias{ci.mer}
 \alias{ci.estimable}
 \title{Compute Confidence Intervals}
 \description{ Compute and display confidence intervals for model
   estimates.  Methods are provided for the mean of a numeric vector
   \code{ci.default}, the probability of a binomial vector
-  \code{ci.binom}, and for \code{lm}, \code{lme}, and \code{mer} objects are
+  \code{ci.binom}, and for \code{lm}, and \code{lme}
+  %, and \code{mer}
+  objects are
   provided. }
 \usage{
   ci(x, confidence=0.95, alpha=1 - confidence, ...)
-  \method{ci}{default}(x, confidence=0.95, alpha=1-confidence, na.rm=FALSE, ...)
+  \method{ci}{numeric}(x, confidence=0.95, alpha=1-confidence, na.rm=FALSE, ...)
   \method{ci}{binom}(x, confidence=0.95, alpha=1-confidence, ...)
   \method{ci}{lm}(x, confidence=0.95, alpha=1-confidence, ...)
   \method{ci}{lme}(x, confidence=0.95, alpha=1-confidence, ...)
-  \method{ci}{mer}(x, confidence=0.95, alpha=1-confidence, n.sim=10000, ...)
+  %\method{ci}{mer}(x, confidence=0.95, alpha=1-confidence, n.sim=10000, ...)
   \method{ci}{estimable}(x, confidence=0.95, alpha=1-confidence, ...)
 }
 \arguments{
@@ -30,7 +32,7 @@
   \item{na.rm}{boolean indicating whether missing values should be
     removed. Defaults to \code{FALSE}.}
   \item{\dots}{Arguments for methods}
-  \item{n.sim}{Number of samples to take in \code{mcmcsamp}.}
+%  \item{n.sim}{Number of samples to take in \code{mcmcsamp}.}
 }
 \details{
   \code{ci.binom} computes binomial confidence intervals using the
@@ -67,13 +69,13 @@
 reg  <-  lm(Area ~ Population, data=as.data.frame(state.x77))
 ci(reg)
 
-%\dontrun{
 # mer example
-library(lme4)
-fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy)
+library(nlme)
+Orthodont$AgeGroup <- gtools::quantcut(Orthodont$age)
+fm2 <- lme(distance ~ Sex + AgeGroup, data = Orthodont,random=~1|Subject)
 ci(fm2)
-%}
 
 
+
 }
 \keyword{ regression }

Modified: pkg/gmodels/man/estimable.Rd
===================================================================
--- pkg/gmodels/man/estimable.Rd	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/man/estimable.Rd	2015-07-19 03:22:30 UTC (rev 2060)
@@ -3,27 +3,29 @@
 \name{estimable}
 \alias{estimable}
 \alias{estimable.default}
-\alias{estimable.mer}
+%\alias{estimable.mer}
 \alias{estimable.mlm}
 %\alias{.wald}
 %\alias{.to.est}
 \title{Contrasts and estimable linear functions of model coefficients}
 \description{
   Compute and test contrasts and other estimable linear
-  functions of model coefficients for for lm, glm, lme, mer, and geese
-  objects
+  functions of model coefficients for for lm, glm, lme, %mer,
+  and geese objects
 }
 \usage{
 estimable(obj, cm, beta0, conf.int=NULL,  show.beta0, ...)
 \method{estimable}{default} (obj, cm, beta0, conf.int=NULL, show.beta0, joint.test=FALSE, ...)
-\method{estimable}{mer}(obj, cm, beta0, conf.int=NULL,
-               show.beta0, sim.mer=TRUE, n.sim=1000, ...) 
+%\method{estimable}{mer}(obj, cm, beta0, conf.int=NULL,
+%               show.beta0, sim.mer=TRUE, n.sim=1000, ...)
 \method{estimable}{mlm}(obj, cm, beta0, conf.int=NULL,  show.beta0, ...)
 %.wald(obj, cm,beta0=rep(0, ifelse(is.null(nrow(cm)), 1, nrow(cm))))
 %.to.est(obj, params)
 }
 \arguments{
-   \item{obj}{Regression (lm, glm, lme, mer, mlm) object. }
+  \item{obj}{Regression (lm, glm, lme,
+    %mer,
+    mlm) object. }
    \item{cm}{Vector, List, or Matrix specifying estimable linear functions or
      contrasts.  See below for details.}
    \item{beta0}{Vector of null hypothesis values}
@@ -37,12 +39,12 @@
    \item{show.beta0}{Logical value. If TRUE a column for beta0 will be
      included in the output table.  Defaults to TRUE when beta0 is
      specified, FALSE otherwise.}
-   \item{sim.mer}{Logical value. If TRUE p-values and confidence
-     intervals will be estimated using \code{mcmcsamp}.
-   }
-   \item{n.sim}{Number of MCMC samples to take in
-     \code{mcmcsamp}.
-   }
+   %% \item{sim.mer}{Logical value. If TRUE p-values and confidence
+   %%   intervals will be estimated using \code{mcmcsamp}.
+   %% }
+   %% \item{n.sim}{Number of MCMC samples to take in
+   %%   \code{mcmcsamp}.
+   %% }
    \item{...}{ignored}
 }
 \details{
@@ -61,12 +63,12 @@
   subset of) the model parameters, and each row should contain the
   corresponding coefficient to be applied.  Model parameters which are
   not present in the set of column names of \code{cm} will be set to zero.
-  
+
   The estimates and their variances are obtained by applying the
   contrast matrix (generated from) \code{cm} to the model estimates
   variance-covariance matrix.  Degrees of freedom are obtained from the
   appropriate model terms.
-  
+
   The user is responsible for ensuring that the specified
   linear functions are meaningful.
 
@@ -91,10 +93,10 @@
   the beta0 value (optional, see \code{show.beta0} above), estimated
   coefficients, standard errors, t values, degrees of freedom, two-sided
   p-values, and the lower and upper endpoints of the
-  1-alpha confidence intervals. 
+  1-alpha confidence intervals.
 }
 \author{
-  BXC (Bendix Carstensen) \email{bxc\@novonordisk.com}, 
+  BXC (Bendix Carstensen) \email{bxc\@novonordisk.com},
   Gregory R. Warnes \email{greg at warnes.net},
   Soren Hojsgaard \email{sorenh at agrsci.dk}, and
   Randall C Johnson \email{rjohnson at ncifcrf.gov}
@@ -142,11 +144,11 @@
 # Sepal.Width by Species interaction terms.
 data(iris)
 lm1  <- lm (Sepal.Length ~ Sepal.Width + Species + Sepal.Width:Species, data=iris)
-glm1 <- glm(Sepal.Length ~ Sepal.Width + Species + Sepal.Width:Species, data=iris, 
+glm1 <- glm(Sepal.Length ~ Sepal.Width + Species + Sepal.Width:Species, data=iris,
             family=quasipoisson("identity"))
 
 cm <- rbind(
-            'Setosa vs. Versicolor'   = c(0, 0, 1, 0, 1, 0), 
+            'Setosa vs. Versicolor'   = c(0, 0, 1, 0, 1, 0),
             'Setosa vs. Virginica'    = c(0, 0, 0, 1, 0, 1),
             'Versicolor vs. Virginica'= c(0, 0, 1,-1, 1,-1)
             )

Modified: pkg/gmodels/man/fit.contrast.Rd
===================================================================
--- pkg/gmodels/man/fit.contrast.Rd	2015-07-19 02:34:45 UTC (rev 2059)
+++ pkg/gmodels/man/fit.contrast.Rd	2015-07-19 03:22:30 UTC (rev 2060)
@@ -4,7 +4,7 @@
 \alias{fit.contrast}
 \alias{fit.contrast.lm}
 \alias{fit.contrast.lme}
-\alias{fit.contrast.mer}
+%\alias{fit.contrast.mer}
 \title{Compute and test arbitrary contrasts for regression objects}
 \description{
  Compute and test arbitrary contrasts for regression objects.
@@ -15,12 +15,12 @@
              conf.int=NULL, df=FALSE, ...)
 \method{fit.contrast}{lme}(model, varname, coeff, showall=FALSE,
              conf.int=NULL, df=FALSE, ...)
-\method{fit.contrast}{mer}(model, varname, coeff, showall=FALSE,
-             conf.int=NULL, sim.mer = TRUE, n.sim = 1000, ...)
+%\method{fit.contrast}{mer}(model, varname, coeff, showall=FALSE,
+%             conf.int=NULL, sim.mer = TRUE, n.sim = 1000, ...)
 }
 \arguments{
   \item{model}{regression (lm,glm,aov,lme) object for which the
-    contrast(s) will be computed.} 
+    contrast(s) will be computed.}
   \item{varname}{variable name}
   \item{coeff}{vector or matrix specifying contrasts (one per row).}
   \item{showall}{return all regression coefficients. If \code{TRUE}, all
@@ -34,12 +34,12 @@
   \item{df}{boolean indicating whether to return a column containing the
     degrees of freedom.}
   \item{\dots}{optional arguments provided by methods.}
-  \item{sim.mer}{Logical value. If TRUE p-values and confidence
-    intervals will be estimated using \code{mcmcsamp}. This option only takes effect for mer
-    objects.}
-  \item{n.sim}{Number of samples to use in \code{mcmcsamp}.}
+%  \item{sim.mer}{Logical value. If TRUE p-values and confidence
+%    intervals will be estimated using \code{mcmcsamp}. This option only takes effect for mer
+%    objects.}
+%  \item{n.sim}{Number of samples to use in \code{mcmcsamp}.}
   }
-  
+
 \details{
   Computes the specified contrast(s) by re-fitting the model with the
   appropriate arguments.  A contrast of the form \code{c(1,0,0,-1)}
@@ -51,7 +51,7 @@
   containing the degrees of freedom is included.  If \code{conf.int} is
   specified lower and upper confidence limits are also returned.}
 \references{Venables & Ripley, Section 6.2}
-  
+
 \author{ Gregory R. Warnes \email{greg at warnes.net}}
 
 \seealso{ \code{\link{lm}}, \code{\link{contrasts}},
@@ -83,7 +83,7 @@
 sum(-1/2*gm[1], -1/2*gm[2], 1/2*gm[3], 1/2*gm[4])
 
 # mean of 1st group vs mean of 2nd, 3rd and 4th groups
-fit.contrast(reg, x, c( -3/3,  1/3,  1/3,  1/3) ) 
+fit.contrast(reg, x, c( -3/3,  1/3,  1/3,  1/3) )
 # estimate should be equal to:
 sum(-3/3*gm[1], 1/3*gm[2], 1/3*gm[3], 1/3*gm[4])
 
@@ -138,10 +138,10 @@
                                         "2 vs 3" = 2 ) ) )
 
 
-# example for lme 
+# example for lme
 library(nlme)
 data(Orthodont)
-fm1 <- lme(distance ~ Sex, data = Orthodont,random=~1|Subject) 
+fm1 <- lme(distance ~ Sex, data = Orthodont,random=~1|Subject)
 
 # Contrast for sex.  This example is equivalent to standard treatment
 # contrast.



More information about the R-gregmisc-commits mailing list