[Pomp-commits] r1148 - www/vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Mar 24 15:19:19 CET 2015
Author: kingaa
Date: 2015-03-24 15:19:18 +0100 (Tue, 24 Mar 2015)
New Revision: 1148
Modified:
www/vignettes/pomp.pdf
www/vignettes/pompjss.R
www/vignettes/pompjss.Rnw
www/vignettes/pompjss.bib
www/vignettes/pompjss.pdf
Log:
- update vignette
Modified: www/vignettes/pomp.pdf
===================================================================
--- www/vignettes/pomp.pdf 2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pomp.pdf 2015-03-24 14:19:18 UTC (rev 1148)
@@ -10,7 +10,8 @@
É É@
-² Æ
!ÔWÖO ûpÀȨ<I¿HlÌFìJØSdGMDHv!§ÈÐ|º¯\@£1R
-EHv¿r)Á!9Û4SBGP Êd±0PA&ì©ÉÞÁÈÈ=t"W44eINaÕßþñ!Wõè`TpYÁ«ö|yVO'³j Êç¯FG8±ÍÉëßN+!ïáéüH|ÿ}qoQêÉ|vTWâÛû×%T`´)£*Ü.í7eùÍ-®7_o÷F§ÇâYõiRÍpùùüàKO¾ZÌÎÆ}ôêxt<_ÖËñbrZT^Oê)$<ç³å|
+EHv¿r)Á!9Û4SBGP Êd±0PA&ì©ÉÞÁÈÈ=t"W44eINaÕßþñ!Wõè`TpYÁ«ö|yVO'³j Êç¯FG8±ÍÉëßN+!ïáéüH|ÿ}qoQêÉ|vTWâÛû×%T``
+%Ì+Ý.í7eùÍ-®7_o÷F§ÇâYõiRÍpùùüàKO¾ZÌÎÆ}ôêxt<_ÖËñbrZT^Oê)$<ç³å|
|·Vèæg³Q>,ÅÏäÔÿÚ¦×1ÿ
7G¸6SsUç£Q|×ò±9X®æ_v|ô|äÇ=a|Mc|Ûl®6ǦÍPtÛ(¾m§µe¡\« k!y¾Ü Ñ^ñ±E֮͢cÓ¤áþFjø>\¿gù9ËzH|¸ZsÊZ3ÅpMàòåÈ&¶ÎGË]³\_³ÒM«6Õª«5X-c³Üªã>9V7x1yð"kî}ë³°åÝÍæ5YaðlU¬¨ÄÂ-ù¨ø¨ùÈõå£ã£çcà#ËcÍ&Ës,UËs,ϱ<6äXcyåñ%Ïò<Ëó,ϳ<ÏòX9ɳ<ZeÝÏêjݤÔÜLFwç¡-jÍÃÈï=©tª-íUËùÙb%|®í×D)4 åCÆc¼_Õ*_ÝQª>×úý÷Ý[g
x|8Y,Ág#i:ÇUïWKÚ\?½ûÑjA¦,&¦ÙÙtJð_Pí«íS+³ÖéüäôöéhüXnmN;8Ì)°òÙO[l
¬üÐÖgåÌXöBh¢êûìÕá¼ßìÛFUà ö]£ñ×±\vÖ'b{´}ðÕPúvkúö×è@H«¶«UwCPf P¾*ÜTìJ7åµÆ¤×"ÒS0Y1Wm8n×ÚÂM-ªkmá:Öv®Ãا¼¦M<5\'sÿÎÁf°ÆtñFH«dff*e]ï
hºYëÄ
@@ -31,7 +32,7 @@
:©í<Í*EôéÙ
m^ Óÿà Ú¾à ÑPÚ
é(û$ºÔw]®×ÜñÇò§vµ'zuàü2meJc2D`oiJ¢Y}3ɹä9mäg4{¶ìm·;l(az|
-itìEK&]3*MS(}þPíûkÈ"¿#cTQ#ñývÏüut9Èh1Mû ®iNLç ¦dsE£úS]úÊÁ)¾èGKGòàvMGÿR=¥rµ¶§N)Øå_¦¯>¦eQvâY]ô}ïn.5ZV¼r½?9<¬Õ´¦×ü2Þ[ßV½¾<ø]çåí8ß8hCühÌF±¶=èk÷¡WüÅ
zendstream
+itìEK&]3*MS(}þPíûkÈ"¿#cTQ#ñývÏüut9Èh1Mû ®iNLç ¦dsE£úS]úÊÁ)¾èGKGòàvMGÿR=¥rµ¶§N)Øå_¦¯>¦eQvâY]ô}ïn.5ZV¼r½?9<¬Õ´¦×ü2Þ[ßV½¾<ø]çåí8ß8hCühÌF±¶=èk÷¡Wü£öyîendstream
endobj
101 0 obj
<< /Subtype /XML /Type /Metadata /Length 1340 >>
@@ -40,12 +41,12 @@
<?adobe-xap-filters esc="CRLF"?>
<x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:iX='http://ns.adobe.com/iX/1.0/'>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-03-23T08:58:17-04:00</xmp:ModifyDate>
-<xmp:CreateDate>2015-03-23T08:58:17-04:00</xmp:CreateDate>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-03-24T10:07:19-04:00</xmp:ModifyDate>
+<xmp:CreateDate>2015-03-24T10:07:19-04:00</xmp:CreateDate>
<xmp:CreatorTool>Raph Levien</xmp:CreatorTool></rdf:Description>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9'/>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c'/>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
</rdf:RDF>
</x:xmpmeta>
@@ -587,20 +588,19 @@
ÚÛB,½4,:/þìÃ`Û{¶@Ûìj´7ç!þ+nùx·øWïQendstream
endobj
1014 0 obj
-<< /Filter /FlateDecode /Length 1357 >>
+<< /Filter /FlateDecode /Length 1358 >>
stream
-xWÛÛ6òè¯Ð[é"âÔ*ТiSi4Ù¸}É(%Ó^%¨r°î×wH¼«-öÁKr83gíOAI¿ñ³j77·yô&
-NObOñ£jöÆ"h³¦Áþ¸qWI@ã³iÎ0ey°o7ïÑ-pWùIlCuþêeÛµýsÿqÈBp¦Ô8cSV!ÍqNrØ;§×\U÷p?)pQÄÆϽ3hDRï*À £ñ,Ç,M0Ð9WûmÀ=BÐ¥s
-ó=b)@YÖH (Í|k¡üÁúP9"Qê¡Yàæ>Ô»µê7c,C¯º£P¢«<|$EG©ìbjÞ4Ùè·RõÙD/7h~tIs$ £}~£d%´z½Zµ+6w¹ÿ±-L¾)CBéZvkÕÆ9&¬E@¢8·ûOü{»%è%ÄhüAVdÅèÓp!â®úõ¶!%îså÷Û±ýi¿y» MRXR«/Ï nýá8-$-p17÷ÃÐsscøU¸
-¡iн°6ÉQ¯äQ
-,l.ÁøQã$â4!&>z)t¥ê~0
-y]`j2é·Â´V÷ò Û&ÚõÙälÀÆÿG¶~"ÛHúÝ¡¿¾-ô «{n&Ã}·uhi1ªSâ
-ç¨(¾èA´ú¹ßÉÀ+P*Ô=·ÛMÔÊhôÝøEäï îE=
7!8% ñðÞÞ¡ï¾õRc¨ãnë
hàÁ^ì}3ÛЯÚ^ªa-t\`ZÄ>²)TO(:)Þß×Õ¼ÅPûyè¤j'tÐA¼
-t45CílQ%üù¢1ç²e³V4Aóý®ý Vk»BqWW¢Ókb±h"éÏovCôn»e¼·P)´ã_ at GøZ³20?hPg±¦ ÞêJ^󺩻Ӥ{] gÌ|w.Í`Ó¡AÎô7rò®gÆïUh&Ï<%)ÕY1Ü~M»2
-ªwÑnÐóH¾Ô穳`^»¨K½2(Û*@s·ÙýÞF"¹á3[M̼}§ jyg=ÕÝQÞ\Õ÷FÍuïGÙ4ë@âdÓÍ9Ç·ó¤ñ3ÌÒv@9N(`ÿ¸¶:'ÎPí¹ôdVT@´ÒÈ>CW¢¢»ºïÅ0GH\¿çnÞC}s>Õv*·Ô`L2t®PÛÔH!KÐÏà ÊÚòaʾ:5òÔ
-Þ §,Gý8Ò
-ÌMxº>uK7J>kû£9H,e3g£R÷À]±È:SÊ¥?S_Õp½°Ë 5~SÍÕÒ·½5ÚÂzôYðÚ>Aj| º«Ðõx211=«^a«^MîY"0{¢ìxyNj©¹ &ãŶ/P×À¤E¶uâf0¤º<É°oäðØGÿ¬FÀ´êÀZÿ- ÔÎÎmÀÈTÝ/ܺæQ»¦ËAÛÆÛú8[¦fù¨ÓTì<çz©y³ LA[MÝb
]s4óH Ù<½$ÙåëAÍkæb!v6ëº
-íÁîjM÷¨Ûx/«eç`¹R{ ¥è·ð<z¼à§Q'öM2÷vé»çÛÍ?¼gendstream
+xWÛÛ6òè¯Ð[é"â%QZ4m"&·/Ù¥dÚ«DRÖýúIݼ«-öÁKr83gíOAIÙ¿á³l67·YÌ&
+NOâNá£löÖ"
+hÓ&Áþ¸ñWI at cyF$ãò,Ø7÷èÍD8r$Êâ$·!Mì¡¿:Õt_mÿÜÿbò' µãÇçAH3öàéµÐå=Üg9ÎóQö|tFH2ºJ0Hij=
$Í0OXM¸wµßfî.SïÑsHÊröP 4«X5ÞLé
+"G$JPÕ×ë±Îh6z×¾2}Uz¨§èU{Z¶åIÐQi·Xæ¦ûJÔõe6ú0RöAò0ÂY4?úÖ$RÎS>Ï ¿ÑªÆH³^ÏÚùÜÿØæ6ß#©M¥ÚµjãÈ" Q²íþÃÿ£ÝMôRôr0~ ÏÓ|ði¹F1d¸æw´
+)ñÿØ+¿ßî¬íOûÍÛ
+¤hÜZyx´p; ¡)<`IYÊýÜ÷}÷ÍÍå;Öá6¦A÷NÒ-Ø$CVdÙc8p°ù\þ}WâGY0FqÂ^JSêªëmCb0LmÆýVÖÈþ^gÛD»î1ÛZ
+ØøÿÈÖMdH ;ôâ׳
éUy/ìdc¡Ã¥M:ÀBªáøæ9Êsd.¦y>î¤à(N¸Ý&jÔAÖæn¿Dü<ï îd=
FFxoïÐwßc¨ãn;
+Ð`{-òèk¹Ø
~ÕtJ÷k¡ãÓ<#ÛBÍ¢Ý}UÎ[5ûVéfBä;UCG+à0ÔÞê /s.:P6gEzï·µêz½ZËÜ»ªYpGI~³[àÈ9¢wÛõ(ý
J¡øû:"ÖbÆÇY@½>Ë5®éµ¨êª=í@º×ÊsfÉÌwçÂf1½)êÕL+¡h[uiü^vòìS9íÃïçÐÔ¹+Ó .ÙöfÉâ2ÃwRú<Us|Ô®ê2V¯,Ê®
+hî6û¯ß»H$³|æ«Ù·ïtÓ @h§ª=ª«úþèùîý¨êzýÌH:=ÙB|;O8Ã\i㶠l¥ök§sò\KÝkHO5pàDD+Ü3t%*¦ºNösæûu<·óêêó©jÍ´ÃQ±¥c¢sU¤Þ&V
+9CC<'(k#ú)3øêT«S#E+½¶ò=tsâÈÔ07áAêÔ.Ýhõ¬^ìæ yªPõe
+Ówå"OjèL¡þl}e-ÌÂ.
ÔÄaN5sVKßîÖ jgê1g-Ãk{ôð<:@U[õ¡ëádbbL<¬z
Y:¬zµeúgÀìÉZöª}â}æ98©~äÚÛc¦&-²u¬ëµ°¡ôåI]úÇ>ºgu?P¾¨ eP´ Öùo ¥fnuæ@¦ò~á¶0M9·º5]Ú6ÜTÇÙ2±ËG½¦b7r®SFÔÀ4åÐ/VÑÖG;<2ÙÍÓ¹7KBÙ=U|¸4ؼf~!gb¿1áàò(©ÊÐLðΪÖtú'ø¢\v+õø÷PDÏãü4bs¿lâû·Lß=ßnþÞ§jendstream
endobj
1015 0 obj
<< /Filter /FlateDecode /Subtype /Type1C /Length 6295 >>
@@ -906,21 +906,25 @@
stream
xµZÍsÛ6éÑ
¦-´±@`wö&{è¶n[Ïì!ÞMÑ[TI*®ÿû} ÉÖJr°H ?üðð>øû"ä"Æÿîo¹½úúg.î«xqõû¤Ö
ûSnß^C©âEåÊ×wW8tG±û·Ð=t-Q¦óÅõöJìºínµ+Êßûjyý+ÎcàÐ46íÁPíúgAÿUgÉÔb¥¾ë«÷âm1ËJ £µ¢hæq¨ÿF캽wO9©´üßõ¿èb+G*5,ôzSÁ ó/úaÄ'ÅÒa¬vÜǹ¨[ßOº©ôPsk"¥X,Èf¢¡²(U6çNïÀÉ»ùwÕÝtË`uRtmõÕ2MA3aÖy½1Ü,gÍv=wX3lð:\BwûkU_ݿ˦·>Ò;§©~~ o®R¿¾Äæ9MÄmõº«xNe¤ û"£<M%7J`E©øPã¡(ø}n(¦ñ
âÿu}õÓSßƱ±rÑç»=¦;ܪ(KÒEª(Éä¸Z'ý¼ÄÜW±sÀ÷âjÓ=lêr°Á±ÁJðÔ¥ø°TøKf¢k>,%,;OEÅÐaWõÝ# R \5Cµo»Û¡êa
-ÕÚõ¼+?)¾+«að£=P¬Ûªö}µÚ÷Ð&´Ù£=%ÂãvÉð7n ¤&10E9<¿Æ¢nh E%ÀþYcµ}å` ÷õa1UNÇð 9éë®Üãj±î.w]O©ïe¨(éEÛÆù$:2:%¾e×c¿/G§?!u·oË;r°å`N,NkLFà_Û]LøHPÓ:4µÇll¤Í®44qÕE3 ¥ånöä(¦ÉùÈ'AÑpÚP{å¿ üÔÕíPûúg§ÉÀÞ9<Ou¬Â¬«m7¸÷VqÊЦyèÄß$8äÆëÿOäXû§$fY"Ý å+ì³Ò9õÔo¶»LùlÓ])uåórLYBE7XÛëX/°¥p,P0 |±ü ýëÙNW@í~`Ë@Î@O½Òx¸KM÷cñ¡^vMEs¤7Ûaí
-D¸5OGFRãZpZ Ç0ÉÙÏêí¾ÌRL·QïÊM1uéÚãT¬Ûb[ÃÝè_1<;³þ1©0TÚg]i©±Q.%mÓú,Á÷³ -ÍT¤3ÍgKÀìÝT³ýø¢«îB6B9®×ß¿öÖüû|À°0â]×Õ|ß}ÓyÍ'NO®·»®¶$ÈnÐâf`Ç9ÝÃC;±è±»«qé ;IáoÊ`ë l¾+9`3{ØZo?l<w1à n=Óofl*¾ëÚÃRscAn@ìm£ãìÕÜSÅRN)>¦3½P<<DĶ¾» Äàñ©Ì0ÄÉÛ®
-UE?¯LFUâ9`¶³eñþ~©+9\ÌkvöyÄCLÍ%
-E¡Ø¸ Ñ6ÀTªÈ(4=él.<kß½y÷&'w`ÂrÂi>òu»îëjïPQÏ(ãÏ I#u°^±ÛÛòå&yIav¾»VÛb,7ÌÂ4~ö ÿ%þIðÿN|ü¹¸ÎÁHòpí¼ÄxP
-8dʹ
& µðx)àƾ°ù4oÄÏÕ~[´3,g=° h2cû¹LflÁgOÃeóò.g¦£Ø8ÓiCé±.MýÛRÆ}M½éBøübÆí¿Kò2µ»õLÖÏ{¤Á+p!\3àp%iraÒMÝõ£"ßÕP*ÁAÞO±37âzF©?npùç:ÀFG<ý`¡¢¸}5TX@ªKHäÓÖðQÝFÏ?çsú.ÎçtHå¦Ú×ThQ¨÷Óåÿ7ÿ+$n5á^øò37±±X%nÝE¾pB;_Ê }*vÍv"Ànb³ëg(¼ÝK®ÓPERâ¥NcÚ¹ÈB ùÁãøÖSZSZC)EJѧê0s*0ÅçNáH)¾îöSc×QöM¹Ì¥ø]ÓÎ%
-¦<!«SQªöRüо§ré7µõ&Å+N3ÆLvt*í¾Â¬¾²Ì3ËzëÔHsá)úÕt»À}ÆÕDMôÎ0{UN§; pg¿Í¡OYé6ÙAÌ{G¨æ)Ü~KÚÖÎ&@$§Üéñ¾icÂý´ò Añ¯¹ p_µ9øWSÁéï$àJY¥ª
-ãK@×ñ¼dr§ª
-7±$ÝuLIH§û«L¢<+~¤¹MÄ;øEÉÜÚOTfàÖZzÌ8ýYÑ|ÝÐzrrc=3ÞFÚ=Ê©(Eqêë +ôY(òðëöR¡´x¾c"cåµ%|í^¶0>Á)¹Ó7ád¶'95Æ9ÇW®&ÎÊù1ôfq§¶J-bÃUûX²]ú'3ÚGW6¦âµ¯tcÚêi¶Í1È´)ÿ`ÅmÅyxÃÙÐnîv·¤ Ü^EY7µ+J¤6¬°uÅEÄSM
Lã*¡ÄK;ypÅ)9'K¬Rá ¶¦w¤ïZ?·>lÀÄ0m¬x^ IÆGß_²`ÎMÈýpuý÷÷N`yà³+Z<Eæ^Bç,ðkïÁ|u× £#ÈzÝvëÇÀ®ÞÅd|]1Y/jØ S"Õzí¯g¨EÓMUSM1`¸có!³
-ë&úÊÓð®j'Wiänþ³ä¨úaîU¿}ÑàüÓþÁz 3m*WQ¢Ø~¼À× §(x2ÅÀ0m®Á7Ý8L ¸¥r¢²8 %E
MêïÝwU1îÝ%)ÃbÁ pqq8eÕ§»/˼JíØ×·KId7bÎ 6«¨ôGE&m5ÙüªÆW NBAp¦®ê°k9/5vâ+V}ê;E½<ëm/ tØà©Flè%°¤gHÀÀëØ¿TÕ4
-»ë®ØêÔñfÿÌ°ó´îô¥®3UØ.¦ÝæÍ8î¾ùúk´ßQ¿«!Fî¾¢6%ÆÛë^RÓø-öp~v
-z·hv51ç.%^l)Övnä_àUæ*ÆØ]²sBlâî÷àÝ^¾òƪ£i[Ô
->²M=0Ëohümp2c?Hú붢QìÇM×_áSîvoä$Àç®yÐ~wVHrRúxI©ÌBTNÜ~·»Õ®A/î¸Ìä<²©ºÇ;L}úx0tû~ös##Á?ÉÕo*ç'¾9úàæ5ÌF+Ñî··EÊùÞ¦6=Wé# .ß`ëÚ
*hWÝTn§Ê7:VïNYñ;ó±¯u@ܼà«IÅ}i#Ét$hê²õÈ&O£/frcyÌäÙÃu¥§$pa¨à,y3
-}Á&ÎP0SÝ·sÉL?)¿S
ú¸P¾¼ß\Èdá5iÁ/À:sÎ`á¾¥ÏX-W¥ñá·C
-Ú_ÏBS9ü¸Jæ 2M{üKÅ`fGl·A ì? Ð1üoìfcÈÏCÖòÛìk¥#)óÒ6WV>á-kbÜÕóé85×®ø.¡Þ*RS`UxEþ*%ݼC1}pvDèÀõ#Ⱦ-:àZwâfÒüÝɦjvs2qøw½8²´®íC]Í^¯lÌZ·§0Rsº/¯@ÆÛãYè?g vuÞ÷r?V'
-I"pÈ-rß<Ünd`À>Î_Ì¥Îùú®õ¢ëuüxå>á $û0ÊÉÝR_îã(:ÅAp0Þ'A@ƧÌþ¢ÿ0ÍåÂKÚsúÀÅw;%æÎ8Iy!QRû@ôð/Ñ/O"cé!sö=e2?]ý6ÌKendstream
+ÕÚõ¼+?)¾+«að£=P¬Ûªö}µÚ÷Ð&´Ù£=%ÂãvÉð7n ¤&10E9<¿Æ¢nh E%ÀþYcµ}å` ÷õa1UNÇð 9éë®Üãj±î.w]O©ïe¨(éEÛÆù$:2:%¾e×c¿/G§?!u·oË;r°å`N,NkLFà_Û]LøHPÓ:4µÇll¤Í®44qÕE3 ¥ånöä(¦ÉùÈ'AÑpÚP{å¿ üÔÕíPûúg§ÉÀÞ9<Ou¬Â¬«m7¸÷VqÊЦyèÄß$8äÆëÿOäXû§$fY"Ý å+ì³Ò9õÔo¶»LùlÓ])uåórLYBE7XÛëX/°¥p,P0 |±ü ýëÙNW@í~`Ë@Î@O½Jðp!:îÆâC½&íæH?n¶Ã2Ú:pj¤Æµà´a³3ÔÛ}3¥n2£$)#ÞbëҵǩX?¶Å¶»Ñ¿2bxwf;ücRa¨.µÏZºÒ,Rc£\JÚ§õ6YïgAZ©HgÏ
+Ù=,º©fûñE3V=Ý
lr8\¯¿í5¬ù÷=ùa#`Ä»®«ù8¾)ú¦ó"O\ow]?mHÝ ÅÍÁsº/vbÑ4!.bwWãÒ/ vÂßÁÖØ|W2sÀfö°µÞ~ØxîbÀA7Ýz¦ßÌØT|×µ¤çÆÜØÛFÇÙ«¹§¥S|Lfz¡. 3x"ym}wÁãSa3·]ª~^+ªÄs>ÁlgË2ãýýRWr¸×ì('ìóKB
+°q¢m.©TQizÒÙ\xÖ¾{óîMOîÀäÓ } åëvÝ×ÕÞ¡¢PÆ@Fê`½b·-·åËLò,Âì}w[¶ÅXn
iüìAÿKüàÿøøsqäáÚy-ñ pÈsM jáñRÁ}1aói(ß«ý¶hgXÎ"z`AÑdÆösÌØÏËæå]ÏLG±q¦Ó>Òc<
+\ %ú·¥ûzÓ
ðø7ÅÛåejwë¬÷HWáB¸6fÀàJ0Óä"Â<¤º?ê-GÿD&¾-«¡)U¼"bg&oÄõR[Ü áòÏu,xúÁBEqû"k¨ °UÈ#§¬á'¢ºÎçô]ÏéÊMµ
+®©Ð¢þPï§ËÿoþWHÜjýðåg"nb!b±*KÜ/»} áv¿úTì ìDÝÄ$f×?ÎPx»9:\38-?¦¡¤ÄK
+Æ00µr)
@óÇñ!'§´¦´R¢:NÕaæT`#ÏÂR}Ýí§#Æ®£ìr#J#9ñ»¦JLyBV§¢T#ì¥ø )}OåÒo jëM1ÿVf>ìèTÚ}
Y}e#g.õÖ©æÃSô6ªévû9ª;(éaöªNw6AàÎ~C³Óm²÷PÍS8¹ý´=¬9M<þ
+HO¹Óã}ÓÆ
ûiåAâ_sà¾j+r*ð®¦Óß1)HÀ²KU;Ç.®ã5xÉäOUnbIºëN÷ÿ,WDyVüH?swð¹´¨ÌÀ!´ô2 pú³<!£ùº¡õääÆzf¼´{SQ6âÔ×Wè ³0:Qäá×í)6¥&B/iñ|ÇDÆ$ÊkKøÛ½l%`.|S(s§oÂÉlOrjs&93®\Móc8éÍâNm' ZÄ«,<,÷± e»ô;O:g´¯lM)Ä3k_é,Ç´ÕÓl?c<
+9iSþÁÛóð³¡ÝÜínI9¸½²njWHmX%`ë#4 §
+<ÆUCvòàRrN8X¥ÂÿAmM!îHßµ~.n}ØaÚX)ð4½'¾¿eÁûáêúïïÀòÀ%>gW3µx$>̽ÎYà×Þù ë®AGGõºíÖ]¼Éøº4b0³&^Õ8°¦DªõÚ_ÏQ¦*«¦bÀpÇæ9C&g9&ÖMô§á]ÕN®&ÓÈÝügÉQõÃÜ«~û¢Àù§ý3õ 8gÚ.T®¢D±3üx/¯-@NQ(ñd[a4Ú]oº-.p@qKåD ep.A<.J
+Ôß%ºïªbÜ»KR:3ÅAàâãpʪOw_yÚ±¯oÈnÄ4mVQéLÚj²ùU¯@*àL]Õa×r^jìÄW¬úÔ4vzyÖÛ^è°ÁSØÐK`IÏ51×±©ªiv×]±Õ©ãÍþa7æiÝéK]gª,°3:](M7
+»ÍqÜ}óõ×h¿£~WC>Ü}ElJ·×4¼¤¦3ð[ìáüì0.ôn;*ÑíjbÎ\J¼ØR¬í"ÝÈ¿À«ÌU±»dçÙÄÝîÁ»½|åUGÒ¶¨2}d#!za.
+7ÞÐøÛàZeÆ~ô×mE
+¢Ø®¾Â§7ÜíÞ0ÉI!Îÿ\/ò ýï¬ä&¥ô9ð$0S
¨<¸ýn5v«5]^Üq!*ÉydSuwúôð`èöýìç&GF>,«-ÞTÎO|
+rôÁÍk4W¢Ýoo+$ó½Mmz®ÓG\¾Á2(ÖµTЮº#¨Ü&No1t¬2ß*²âwæc_ë =¹yÁW3,ûÒFé
+I0=ÐÔeê+LF_Ìä$ÇòɳëJOIàÂPÁYòfúM,¡`¦º)nç~R~§
+õq¡|&x/¾¹ÉÂkÒ_.uæÁÂ}K±Z®$JãÃo´¿
;¦rø%q0ÌAdöøÁÌ$9Ùn Ø@¡c&<ùßØÍ:Ǭå·ÙÖJGRæ¥m®¬|Â[Öĸ«3æÓqj®]?ð7]C½U¤¦ÀªðüUJº3ybúàìÐëF}[tÀµ&ïÄͤù»MÕìæ&dâð
+î{qdi]Ûº½^'Ù*
+µ$/ÿnOa¤æt^^·Ç
+²Ð)Îìê¼ïå~¬NDà[ä¾y¸'?ÜÈÀ}¿Kóõ]ë5D×ëùñÊ}ÂAI!÷a;»9¥¾ÜÇQtà`2¼O?OýEÿaË
.µ,æõ)6ïvJÌpþòB£¤öèá0_"¢_D2ÇÒCæì5{Êd~ºú?XxKendstream
endobj
1023 0 obj
<< /Filter /FlateDecode /Length 1949 >>
@@ -2603,14 +2607,11 @@
%ª¯{ÿPÆÉÙendstream
endobj
1091 0 obj
-<< /Type /XRef /Length 435 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1092 /ID [<213d0053ec1e0a53c3006db272349d0d><d9cc430f850fb088478d467450f98068>] >>
+<< /Type /XRef /Length 436 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1092 /ID [<1654c5e3a24271b3b3682c1ec6893f4a><0c9132f9484649268e66406e7f421aef>] >>
stream
-xí=(EqÀï}/ïz_®ï²P)e %¥Ê Øz¢HÉG!¼Íöb 02I)õ ¥Ô[ÄFâÁ®ÿxÞðëtþçsá>%?mY.|³<°Jü¶Ü˵Tì[»^µKiҮ⽵W÷»êÒ¤WåâÕõz¥4éUuB¼J,«WJ^5WGIõJiÒ«Hxµ¯ßíJ£^uDÅ«í/õJiÒ«îxµ~§^)Mz5`Wñ>õJùF6R±VüqâÂô:X#ô/;æ}CäiFa?ù6*ÉD¨oò¿Ò.x¸dBh7
-óïá4fõ
-ÿ=_n)É8§t;ä´SjüÛ'0"~/ÒSfÙ¹3äë
Þ}XÅUÌJPF¼Â)a;¹Óà3sÇØdþÂÌ+aF§]T³Û ü ÿ5SÄ·ÔÉn¡ú³¡¿69ep«0
-]¾I'zòFB-°çÔÜ=µäÙ-üû¾x;¾J¶ÍfíP/×ÚÎ<yÂIâW#Ã]y¶Nõ$Çd?
+xíM(DQßÉ<ógüNÙPRÊ,LI©AY(vDeüÂìì&d!¥Fa¡ ¥ØóYØë.Ï[|Î=÷ÜóÞýÏeÉã²-+ß,$l¥Ò ¿Ðåz:ö,]/nµKiÒ®ýõ´W©=õJiÒ«ñêz^½Rôª&)^%WÔ+¥I¯"âÕÑz¥4éU´G¼Jè»Ò¨WýâÕÎz¥4éUwL¼Ú¸S¯&½´Ä«xz¥ü?c÷éØ;'þ8qaf=¬zVÃBÏ0ù&aF%«ýp|#d¢ÔGàjvá»Ä¥B»QNÁ2UÜ+þö|ÊèLÆ9¥Û!«Â@ãß<¾Q¡ÿxr?K¾AèNÀjv]pVú3âUVÐÿ Û97õ?qî8¬ÑH}%Ì*`µÊcf;ôߦfør-p@&ô1ëLlæ1açÜH 6Óó¡«<³ïÛñT1m®0gzÙk;ÈöM¿Ò!Æ^ÞÚÏ·uò¬&d@
endstream
endobj
startxref
-280426
+280427
%%EOF
Modified: www/vignettes/pompjss.R
===================================================================
--- www/vignettes/pompjss.R 2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pompjss.R 2015-03-24 14:19:18 UTC (rev 1148)
@@ -361,15 +361,15 @@
## ----gompertz-multi-mif-table,echo=F,results="asis"----------------------
require(xtable)
options(
- xtable.sanitize.text.function=function(x)x,
- xtable.floating=FALSE
- )
+xtable.sanitize.text.function=function(x)x,
+xtable.floating=FALSE
+)
print(xtable(results.table,align="r|cccccc",digits=c(0,4,4,4,2,2,2)))
## ----gompertz-dprior1,tidy=F---------------------------------------------
hyperparams <- list(min = coef(gompertz)/10, max = coef(gompertz) * 10)
-## ----gompertz-dprior2----------------------------------------------------
+## ----gompertz-dprior2,tidy=FALSE-----------------------------------------
gompertz.dprior <- function (params, ..., log) {
f <- sum(dunif(params, min = hyperparams$min, max = hyperparams$max,
log = TRUE))
@@ -427,11 +427,11 @@
rm(pmcmc1,save.seed,tic,toc)
})
-## ----pmcmc-diagnostics,results="hide",fig.show="hide",echo=F-------------
-gelman.diag(pmcmc.traces)
-gelman.plot(pmcmc.traces)
-autocorr.plot(pmcmc.traces[[1]])
-hist(rle(unlist(pmcmc.traces[,"r"]))$length)
+## ----pmcmc-diagnostics,results="hide",fig.show="hide",echo=F,eval=F------
+## gelman.diag(pmcmc.traces)
+## gelman.plot(pmcmc.traces)
+## autocorr.plot(pmcmc.traces[[1]])
+## hist(rle(unlist(pmcmc.traces[,"r"]))$length)
## ----pmcmc-plot,echo=F,eval=T,results="hide",cache=TRUE------------------
op <- par(mar=c(4,3.5,0,1),mfcol=c(3,2),mgp=c(2.5,1,0),cex.axis=1.5,cex.lab=2)
@@ -465,14 +465,12 @@
Tr = exp(r);
Tsigma = exp(sigma);
Tphi = exp(phi);
- TN_0 = exp(N_0);
-"
+ TN_0 = exp(N_0);"
par.inv.trans <- "
Tr = log(r);
Tsigma = log(sigma);
Tphi = log(phi);
- TN_0 = log(N_0);
-"
+ TN_0 = log(N_0);"
## ----ricker-pomp,tidy=F--------------------------------------------------
pomp(data = data.frame(time = seq(0, 50, by = 1), y = NA),
@@ -548,19 +546,19 @@
})
## ----ricker-mif-calc,eval=FALSE,tidy=FALSE-------------------------------
-## mf <- mif(ricker,start=guess,Nmif=100,Np=1000,transform=TRUE,
-## cooling.fraction=0.95^50,var.factor=2,ic.lag=3,
-## rw.sd=c(r=0.1,sigma=0.1,phi=0.1),max.fail=50)
-## mf <- continue(mf,Nmif=500,max.fail=20)
+## mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+## cooling.fraction = 0.95^50, var.factor = 2, ic.lag = 3,
+## rw.sd=c(r = 0.1, sigma = 0.1, phi = 0.1), max.fail = 50)
+## mf <- continue(mf, Nmif = 500, max.fail = 20)
## ----ricker-mif-eval,echo=F,eval=T,cache=F,results="hide"----------------
bake("ricker-mif.rda",{
save.seed <- .Random.seed
set.seed(718086921L)
- mf <- mif(ricker,start=guess,Nmif=100,Np=1000,transform=TRUE,
- cooling.fraction=0.95^50,var.factor=2,ic.lag=3,
- rw.sd=c(r=0.1,sigma=0.1,phi=0.1),max.fail=50)
- mf <- continue(mf,Nmif=500,max.fail=20)
+ mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+ cooling.fraction = 0.95^50, var.factor = 2, ic.lag = 3,
+ rw.sd=c(r = 0.1, sigma = 0.1, phi = 0.1), max.fail = 50)
+ mf <- continue(mf, Nmif = 500, max.fail = 20)
.Random.seed <<- save.seed
})
Modified: www/vignettes/pompjss.Rnw
===================================================================
--- www/vignettes/pompjss.Rnw 2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pompjss.Rnw 2015-03-24 14:19:18 UTC (rev 1148)
@@ -31,6 +31,8 @@
\Crefname{appendix}{Appendix}{Appendices}
\crefname{algorithm}{Algorithm}{Algorithms}
\Crefname{algorithm}{Algorithm}{Algorithms}
+\crefname{section}{Section}{Sections}
+\Crefname{section}{Section}{Sections}
\crefname{AlgoLine}{line}{lines}
\Crefname{AlgoLine}{Line}{Lines}
@@ -218,6 +220,7 @@
%% Note that you should use the \pkg{}, \proglang{} and \code{} commands.
\section {Introduction}
+
A partially observed Markov process (POMP) model consists of incomplete and noisy measurements of a latent, unobserved Markov process.
The far-reaching applicability of this class of models has motivated much software development \citep{commandeur11}.
It has been a challenge to provide a software environment that can effectively handle broad classes of POMP models and take advantage of the wide range of statistical methodologies that have been proposed for such models.
@@ -265,7 +268,8 @@
Finally, \cref{sec:conclusion} discusses extensions and applications of \pkg{pomp}.
-\section[POMP models and their representation in pomp]{POMP models and their representation in \pkg{pomp}}\label{sec:background}
+\section[POMP models and their representation in pomp]{POMP models and their representation in \pkg{pomp}}
+\label{sec:background}
Let $\theta$ be a $p$-dimensional real-valued parameter, $\theta\in\R^p$.
For each value of $\theta$, let $\{X(t\giventh\theta),t\in T\}$ be a Markov process,
@@ -286,7 +290,8 @@
Note that this formalism allows the transition density, $f_{X_{n}|X_{n-1}}$, and measurement density, $f_{Y_{n}|X_{n}}$, to depend explicitly on $n$.
-\subsection{Implementation of POMP models}\label{sec:implementation}
+\subsection{Implementation of POMP models}
+\label{sec:implementation}
\pkg{pomp} is fully object-oriented:
in the package, a POMP model is represented by an S4 object \citep{Chambers1998,genolini08} of \class{pomp}.
@@ -295,30 +300,32 @@
\Cref{tab:notation} gives the mathematical notation corresponding to the elementary methods that can be executed on a \class{pomp} object.
\begin{table}[t]
- \begin{tabular}{llll}
-\hline
-Method &Argument to the &Mathematical terminology \\
-& \code{pomp} constructor & \\
-\hline
-\code{rprocess} &\code{rprocess} &Simulate from $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
-\code{dprocess} &\code{dprocess} &Evaluate $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
-\code{rmeasure} &\code{rmeasure} &Simulate from $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
-\code{dmeasure} &\code{dmeasure} &Evaluate $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
-\code{rprior} &\code{rprior} &Simulate from the prior distribution $\pi(\theta)$\\
-\code{dprior} &\code{dprior} &Evaluate the prior density $\pi(\theta)$\\
-\code{init.state} &\code{initializer} &Simulate from $f_{X_0}( x_0 \giventh \theta)$\\
-\code{timezero} &\code{t0} &$t_0$\\
-\code{time} &\code{times} &$t_{1:N}$\\
-\code{obs} &\code{data} &$y^*_{1:N}$\\
-\code{states} & --- &$x_{0:N}$\\
-\code{coef} &\code{params} &$\theta$\\
-\hline
-\end{tabular}
-\caption{
- Constituent methods for \class{pomp} objects and their translation into mathematical notation for POMP models.
- For example, the \code{rprocess} method is set using the \code{rprocess} argument to the \code{pomp} constructor function.
-}
-\label{tab:notation}
+ \begin{center}
+ \begin{tabular}{llll}
+ \hline
+ Method &Argument to the &Mathematical terminology \\
+ & \code{pomp} constructor & \\
+ \hline
+ \code{rprocess} &\code{rprocess} &Simulate from $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
+ \code{dprocess} &\code{dprocess} &Evaluate $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
+ \code{rmeasure} &\code{rmeasure} &Simulate from $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
+ \code{dmeasure} &\code{dmeasure} &Evaluate $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
+ \code{rprior} &\code{rprior} &Simulate from the prior distribution $\pi(\theta)$\\
+ \code{dprior} &\code{dprior} &Evaluate the prior density $\pi(\theta)$\\
+ \code{init.state} &\code{initializer} &Simulate from $f_{X_0}( x_0 \giventh \theta)$\\
+ \code{timezero} &\code{t0} &$t_0$\\
+ \code{time} &\code{times} &$t_{1:N}$\\
+ \code{obs} &\code{data} &$y^*_{1:N}$\\
+ \code{states} & --- &$x_{0:N}$\\
+ \code{coef} &\code{params} &$\theta$\\
+ \hline
+ \end{tabular}
+ \end{center}
+ \caption{
+ Constituent methods for \class{pomp} objects and their translation into mathematical notation for POMP models.
+ For example, the \code{rprocess} method is set using the \code{rprocess} argument to the \code{pomp} constructor function.
+ \label{tab:notation}
+ }
\end{table}
The \code{rprocess}, \code{dprocess}, \code{rmeasure}, and \code{dmeasure} arguments specify the transition probabilities $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$ and measurement densities $f_{Y_n|X_n}(y_n\given x_n\giventh \theta)$.
@@ -365,7 +372,8 @@
The \code{covar} argument in the \pkg{pomp} constructor allows for time-varying covariates measured at times specified in the \code{tcovar} argument.
A example using covariates is given in \cref{sec:EpidemicModel}.
-\section{Methodology for POMP models}\label{sec:methods}
+\section{Methodology for POMP models}
+\label{sec:methods}
Data analysis typically involves identifying regions of parameter space within which a postulated model is statistically consistent with the data.
Additionally, one frequently desires to assess the relative merits of alternative models as explanations of the data.
@@ -384,59 +392,59 @@
Though \pkg{pomp} has sufficient flexibility to encode arbitrary POMP models and methods and therefore also provides a platform for the development of novel POMP inference methodology,
\pkg{pomp}'s development to date has focused on plug-and-play methods.
However, the package developers welcome contributions and collaborations to further expand \pkg{pomp}'s functionality in non-plug-and-play directions also.
-In the remainder of this Section, we describe and discuss several inference methods, all currently implemented in the package.
+In the remainder of this section, we describe and discuss several inference methods, all currently implemented in the package.
\begin{table}[t]
-\begin{tabular}{l|p{0.35\linewidth}|p{0.35\linewidth}}
-\multicolumn{3}{l}{\bf (a) Plug-and-play \rule[-2mm]{0mm}{4mm} }\tabularnewline
-\hline
-&Frequentist & Bayesian \tabularnewline
-\hline
-Full information&
-Iterated filtering (\code{mif}, \cref{sec:mif}) \raggedright
-&PMCMC (\code{pmcmc}, \cref{sec:pmcmc}) \raggedright \tabularnewline
-\hline
-Feature-based
-&Nonlinear forecasting (\code{nlf}, \cref{sec:nlf}), \raggedright
-&ABC (\code{abc}, \cref{sec:abc}) \raggedright \tabularnewline
-&synthetic likelihood (\code{probe.match}, \cref{sec:probe}) \raggedright
-& \tabularnewline
-\hline
-\multicolumn{3}{c}{}\tabularnewline
-\multicolumn{3}{l}{\bf (b) Not plug-and-play \rule[-2mm]{0mm}{4mm}} \tabularnewline
-\hline
-& Frequentist & Bayesian \tabularnewline
-\hline
-Full information
-& EM and Monte~Carlo~EM, \raggedright
-& MCMC \raggedright \tabularnewline
-& Kalman filter \raggedright
-& \tabularnewline
-\hline
-Feature-based
-&Trajectory matching (\code{traj.match}), \raggedright
-& Extended Kalman filter \tabularnewline
-&extended Kalman filter, \raggedright
-& \tabularnewline
-&Yule-Walker equations \raggedright
-& \tabularnewline
-\hline
-\end{tabular}
-\caption{
- Inference methods for POMP models.
- For those currently implemented in \pkg{pomp}, function name and a reference for description are provided in parentheses.
- Standard Expectation-Maximization (EM) and Markov chain Monte~Carlo (MCMC) algorithms are not plug-and-play since they require evaluation of $f_{X_n|X_{n-1}}(x_n\given x_{n-1}\giventh\theta)$.
- The Kalman filter and extended Kalman filter are not plug-and-play since they cannot be implemented based on a model simulator.
- The Kalman filter provides the likelihood for a linear, Gaussian model.
- The extended Kalman filter employs a local linear Gaussian approximation which can be used for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate Bayesian inference (by adding the parameters to the state vector).
- The Yule-Walker equations for ARMA models provide an example of a closed-form method of moments estimator.
-}
-\label{tab:methods}
+ \begin{tabular}{l|p{0.35\linewidth}|p{0.35\linewidth}}
+ \multicolumn{3}{l}{\bf (a) Plug-and-play \rule[-2mm]{0mm}{4mm} }\tabularnewline
+ \hline
+ &Frequentist & Bayesian \tabularnewline
+ \hline
+ Full information&
+ Iterated filtering (\code{mif}, \cref{sec:mif}) \raggedright
+ &PMCMC (\code{pmcmc}, \cref{sec:pmcmc}) \raggedright \tabularnewline
+ \hline
+ Feature-based
+ &Nonlinear forecasting (\code{nlf}, \cref{sec:nlf}), \raggedright
+ &ABC (\code{abc}, \cref{sec:abc}) \raggedright \tabularnewline
+ &synthetic likelihood (\code{probe.match}, \cref{sec:probe}) \raggedright
+ & \tabularnewline
+ \hline
+ \multicolumn{3}{c}{}\tabularnewline
+ \multicolumn{3}{l}{\bf (b) Not plug-and-play \rule[-2mm]{0mm}{4mm}} \tabularnewline
+ \hline
+ & Frequentist & Bayesian \tabularnewline
+ \hline
+ Full information
+ & EM and Monte~Carlo~EM, \raggedright
+ & MCMC \raggedright \tabularnewline
+ & Kalman filter \raggedright
+ & \tabularnewline
+ \hline
+ Feature-based
+ &Trajectory matching (\code{traj.match}), \raggedright
+ & Extended Kalman filter \tabularnewline
+ &extended Kalman filter, \raggedright
+ & \tabularnewline
+ &Yule-Walker equations \raggedright
+ & \tabularnewline
+ \hline
+ \end{tabular}
+ \caption{
+ Inference methods for POMP models.
+ For those currently implemented in \pkg{pomp}, function name and a reference for description are provided in parentheses.
+ Standard Expectation-Maximization (EM) and Markov chain Monte~Carlo (MCMC) algorithms are not plug-and-play since they require evaluation of $f_{X_n|X_{n-1}}(x_n\given x_{n-1}\giventh\theta)$.
+ The Kalman filter and extended Kalman filter are not plug-and-play since they cannot be implemented based on a model simulator.
+ The Kalman filter provides the likelihood for a linear, Gaussian model.
+ The extended Kalman filter employs a local linear Gaussian approximation which can be used for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate Bayesian inference (by adding the parameters to the state vector).
+ The Yule-Walker equations for ARMA models provide an example of a closed-form method of moments estimator.
+ }
+ \label{tab:methods}
\end{table}
+\subsection{The likelihood function and sequential Monte Carlo}
+\label{sec:pfilter}
-\subsection{The likelihood function and sequential Monte Carlo}\label{sec:pfilter}
-
%%%% PFILTER PSEUDOCODE
\begin{algorithm}[ht]
\caption{\textbf{Sequential Monte Carlo (SMC, or particle filter)}:
@@ -541,9 +549,11 @@
In particular, if all the particle weights are equal then \cref{alg:systematic} has the appropriate behavior of leaving the particles unchanged.
As pointed out by \citep{douc05}, stratified resampling performs better than multinomial sampling and \cref{alg:systematic} is in practice comparable in performance to stratified resampling and somewhat faster.
+\pagebreak
%%% ITERATED FILTERING
-\subsection{Iterated filtering}\label{sec:mif}
+\subsection{Iterated filtering}
+\label{sec:mif}
% MIF PSEUDOCODE
\begin{algorithm}[h]
@@ -631,7 +641,8 @@
This approach has been used in a variety of previously proposed POMP methodologies \citep{kitagawa98,janeliu01,wan00} but iterated filtering is distinguished by having theoretical justification for convergence to the maximum likelihood estimate \citep{ionides11}.
-\subsection{Particle Markov chain Monte Carlo}\label{sec:pmcmc}
+\subsection{Particle Markov chain Monte Carlo}
+\label{sec:pmcmc}
%% PMCMC PSEUDOCODE
\begin{algorithm}[h]
@@ -680,7 +691,8 @@
In part because it gains only a single likelihood evaluation from each particle-filtering operation, PMCMC can be computationally relatively inefficient \citep{bhadra10,ionides15}.
Nevertheless, its invention introduced the possibility of full-information plug-and-play Bayesian inferences in some situations where they had been unavailable.
-\subsection{Synthetic likelihood of summary statistics}\label{sec:probe}
+\subsection{Synthetic likelihood of summary statistics}
+\label{sec:probe}
%%%%% SYNTHETIC LIKELIHOOD EVALUATION ALGORITHM
\begin{algorithm}
@@ -823,7 +835,8 @@
the package supports alternative choices of proposal distribution.
-\subsection{Nonlinear forecasting} \label{sec:nlf}
+\subsection{Nonlinear forecasting}
+\label{sec:nlf}
%%%%% NLF QUASI LIKELIHOOD ALGORITHM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{algorithm}[h]
@@ -904,9 +917,12 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Model construction and data analysis: simple examples} \label{sec:examples}
+%% \clearpage
+\section{Model construction and data analysis: Simple examples}
+\label{sec:examples}
-\subsection{A first example: the Gompertz model}\label{sec:gompertz:setup}
+\subsection{A first example: The Gompertz model}
+\label{sec:gompertz:setup}
The plug-and-play methods in \pkg{pomp} were designed to facilitate data analysis based on complicated models, but we will first demonstrate the basics of \pkg{pomp} using simple discrete-time models, the Gompertz and Ricker models for population growth \citep{Reddingius1971,Ricker1954}.
The Ricker model will be introduced in \cref{sec:ricker:setup} and used in \cref{sec:ricker:probe.match}; the remainder of \cref{sec:examples} will use the Gompertz model.
@@ -1129,7 +1145,8 @@
The latter approach has the advantage of allowing one to estimate the Monte Carlo error itself;
we will demonstrate this in \cref{sec:gompertz:mif}.
-\subsection{Maximum likelihood estimation via iterated filtering}\label{sec:gompertz:mif}
+\subsection{Maximum likelihood estimation via iterated filtering}
+\label{sec:gompertz:mif}
Let us use the iterated filtering approach described in \cref{sec:mif} to obtain an approximate maximum likelihood estimate for the data in \code{gompertz}.
Since the parameters of \cref{eq:gompertz1,eq:gompertz-obs} are constrained to be positive, when estimating, we transform them to a scale on which they are unconstrained.
@@ -1283,6 +1300,16 @@
In this case, we see that the \code{mif} procedure is successfully maximizing the likelihood up to an error of about 0.1 log units.
\begin{table}
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/pomp -r 1148
More information about the pomp-commits
mailing list