[Pomp-commits] r1148 - www/vignettes
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Mar 24 15:19:19 CET 2015
Author: kingaa
Date: 2015-03-24 15:19:18 +0100 (Tue, 24 Mar 2015)
New Revision: 1148
Modified:
www/vignettes/pomp.pdf
www/vignettes/pompjss.R
www/vignettes/pompjss.Rnw
www/vignettes/pompjss.bib
www/vignettes/pompjss.pdf
Log:
- update vignette
Modified: www/vignettes/pomp.pdf
===================================================================
--- www/vignettes/pomp.pdf 2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pomp.pdf 2015-03-24 14:19:18 UTC (rev 1148)
@@ -10,7 +10,8 @@
ÉŠ É@
-² ŒÆ“Ž
!ÔWÖO ûpÀȨ<I¿H’‰lÌF€‰ìJØS„dGMDHv!ƒ‡§ÈÐ|™º¯\@£1R
-EHv¿r)Á‚!9Û†4‹SBGP Êd±0PA&쩉ÉÞÁÈÈ=™t"W44eINaÕßþñ!ŸWõè`TpYÁ«ö„|yVO'³j ‡Êç¯FG8±ÍÉëßN+!ïáéüH|ÿ}–qoQêÉ|vTWâÛû×%T`´)£‹*Ü.í7eùÍ-®7_ˆo÷F§ÇâYõiRÍpùùüàKO¾ZÌÎÆ}ôê™xt<_ÖËñbrZ‹T”^Oê)$<žç³å|
+EHv¿r)Á‚!9Û†4‹SBGP Êd±0PA&쩉ÉÞÁÈÈ=™t"W44eINaÕßþñ!ŸWõè`TpYÁ«ö„|yVO'³j ‡Êç¯FG8±ÍÉëßN+!ïáéüH|ÿ}–qoQêÉ|vTWâÛû×%T``
+%Ì+Ý.í7eùÍ-®7_ˆo÷F§ÇâYõiRÍpùùüàKO¾ZÌÎÆ}ôê™xt<_ÖËñbrZ‹T”^Oê)$<žç³å|
|·Vèæg³šQ>,ÅÏäœÔ—ÿÚ¦×1ÿ…‰7G¸6SsUç£Q|×ò±9X®æ_v|ô|äÇ=a|Mc|›Ûl®’6ǦÍPtÛ(Ÿ¾mš§µe¡\« k!y¾Ü Ñ^ñ±EÖœ®Í¢cÓ¤áþFjø>‘\¿gù9ËzH|š¸ZsÊZ3ŒÅpMàòåÈ&¶’•ÎGË]³\_³ÒM«6Õª•«5X-c³Üªã>9V7xŸ1yð"kî}ë³°åÝ™Íæ5YœaðlU¬¨Ä“-ù¨ø¨ùÈõå£ã£çcà#ËcÍ&™Ës,UËs,ϱ<6‹äXžcyžåñ%Ïò<Ëó,ϳ<ÏòX9ɳ<ŸZeÝ›ÏêjݤÔÜLFw矡-jÍÃÈï=©tª-íUËùÙb%“†|®í×D)4 åCˆÆ“ˆc¼_Õ*_݈Qª>×úý÷Ý[g
x–|8Y,ÁŒg#”“i:ÇUïWKÚ\“?½ûÑjA¦,&¦ÙÙtJð_P‹‰í«íS+³ÖéüäôöéhüXnmN;8Ì)°òÙO[l
¬üÐÖgåÌXöBh¢êûìÕá¼ßìŠÛFU—à ö]£ñ×±™\vŠÖ'b{´}ðÕPúvkúö×è@–H«¶«UwCPf P¾*Ü”Tì‚J7况Ƥ×"Ò•S0Y1Wm8n×ÚÂM-ªkmá:Öv®Ãا¼¦Mžœ<5\'sÿÎÁf–°ÆtñFH«dŠf†f*e]ï…hºYëÄ
@@ -31,7 +32,7 @@
:©í<Í*„EôéÙ
m^ Óÿà Ú¾à ÑPÚ
é(û$ºÔw]®•×ÜñÇŽò§vµ'zuàü2meJc2D`oiJ¢Y}3ɹäŸ9mäg4{¶ìm·;l(az|
-itìEK&”]3*MS(}þPížûk‹È"¿#cTQ#ñý˜vÏüut9Èh1Mšû ®’iNLç ¦dsE£úS]úÊÁ)‚¾èGK„GòàvMGÿR=¥œrµ¶§N)Øå_¦¯>¦eQvâY]ô}ïn.5ZV—¼r½?9<¬ÕŒ´¦×‡ü2Þ[ßV½¾<ø]çåí—8ß8hCühÌF±¶=èk÷¡WüÅ…zendstream
+itìEK&”]3*MS(}þPížûk‹È"¿#cTQ#ñý˜vÏüut9Èh1Mšû ®’iNLç ¦dsE£úS]úÊÁ)‚¾èGK„GòàvMGÿR=¥œrµ¶§N)Øå_¦¯>¦eQvâY]ô}ïn.5ZV—¼r½?9<¬ÕŒ´¦×‡ü2Þ[ßV½¾<ø]çåí—8ß8hCühÌF±¶=èk÷¡Wü£öyîendstream
endobj
101 0 obj
<< /Subtype /XML /Type /Metadata /Length 1340 >>
@@ -40,12 +41,12 @@
<?adobe-xap-filters esc="CRLF"?>
<x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:iX='http://ns.adobe.com/iX/1.0/'>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-03-23T08:58:17-04:00</xmp:ModifyDate>
-<xmp:CreateDate>2015-03-23T08:58:17-04:00</xmp:CreateDate>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-03-24T10:07:19-04:00</xmp:ModifyDate>
+<xmp:CreateDate>2015-03-24T10:07:19-04:00</xmp:CreateDate>
<xmp:CreatorTool>Raph Levien</xmp:CreatorTool></rdf:Description>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9'/>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c'/>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
</rdf:RDF>
</x:xmpmeta>
@@ -587,20 +588,19 @@
ÚÛB,½œ4›,:/þŸìÃ`ŒÛ{¶@Û†ìj´7ç!þ+„nùx·ø’WïQendstream
endobj
1014 0 obj
-<< /Filter /FlateDecode /Length 1357 >>
+<< /Filter /FlateDecode /Length 1358 >>
stream
-xœ•WÛŽÛ6òè¯Ð[é"âŠÔ*ТiSi4Ù¸}É(%Ó^%’¨r°î×wHŠ’¼«-öÁKr8—3gíOA„I™¿ñ³j77·yœô&
-N›ObOƒñ£jƒöÆ"h„³Œ¦Áþ¸qWI@㳜iÎ0ey°o7ïÑ›-‰pˆWùIlCššu‚þêeÛµýsÿ‹qÈBp‘¦Ô8ŒcSV!ÍqNrØ;€§×\U÷p?)pQĈÆϽ3ŠhDRï*À £™ñ’,Ç,M‚0œÐ”9WûmžÀ=BÐ¥s
-ó=šb)@YÖŠH (Í|k¡üˆ‰Á”úP9"QŠê¡Y•àœæ>Ô»µêŠ7c,C¯º£P¢«<|$EG©ìb™›jÞ4—Ùè·RõÙD‰ƒ‡/7h~tIs$ £}ž~£d%´z½Z—µ+6w¹ÿ±-L¾)CBéZvkÕÆ9&¬‘E@¢8Œ·ûOü{»%šè%ÄhüAVdÅèÓp!Œâ®úõ¶!%îså÷Û±ýi¿y»” MRXR«/Ï ‹nýšá8-‚$-p’17÷ÃÐsscøŽU¸
-¡iн“°6ÉQ¯äQ
-,l.—ŸÁ•øQ„ã$’„â4!&>z)t¥ê~0
-yŠ]š`j2é·Â´V÷ò Û&ÚõÙ†ä‚lÀÆÿG¶~"ÛHúÝ¡¿¾˜-ô «{n&Ã}Ž—Ž·uhi1ª†Sâ
-šç¨(¾èA´ú¹ßÉÀ+P*Ô=·ÛMÔʃhô݉øEä‰ï îE=…7!8% ñðÞÞ¡ï¾õRc¨ãnë…hàÁ^‹ì}3ÛЯÚ^ªa-t\`ZÄ>²)TO(:)Þß×Õ¼ÅPûyè¤j'tÐA¼“
-t45CílQ%üù¢1ç²e³V4Aóý®‘ý Vk“»BqWW¢Ókb±h"éÏovCôn»e¼·P)´ã_ at GøZ³2œ0?hPg±¦ ÞêJ™^󺩻Ӥ{] g–Ì|w.Í`–Ó›˜¡AÎô7rò®“g˜ÆïUh&Ï<%)ÕŽY1Ü~M»2
-ªwÑŠnÐóH–—¾“„Ôç©š³`^»¨K½2(Û*@s·ÙýÞF"¹á3[M̼}§› jyg=ÕÝQÞ\Õ÷FÍuïGÙ4ë@œâ„dÓ“Í9Ç·ó¤ñ3Ì•Òv@9‰N(`ÿ¸¶:'ÎPí¹ôdVT@´ÒÈ>CW¢¢»ºïÅ0GH\¿ŽçnÞC}s>Õžv*·Ô`L2t®›ƒPÛÔH!KÐÏà ÊÚòaʾ:5òÔ
-Þ §,Gýœ8Ò
-ÌMxº>uK7J>kû£9Hž,e3g£R÷À]±È†:Sʇ¥?S_Õp½°Ë 5~˜SÍÕÒ·½5ŠÚ™‚zôY‰ðÚ>Aj| º«‡Ð‰õx211‹=«^a–«^M™îY"0{¢ƒìžxŸyNj©¹ &ãŶ/P×À¤E¶–uƒâf0¤º<É°oäðØGÿ¬FŠÀ´êŽÀZÿ- ÔÎÎmÀÈTÝ/Ü–ºæ–Q»¦Ë’AÛÆ’Ûú8[¦fù¨—ÓTì<çz©y³ LA[MÝb…]s4ó˜H “Ù<½$”Ù“å‡ëAƒÍkæ—b†!v6’ëº
-íÁŸîjM÷¨Ûx‚/«eç`¹R{ ¥è·ð<z¼à§Q’'ö—Mœ2÷vé»çÛÍ?¼„gendstream
+xœ•WÛŽÛ6òè¯Ð[é"âŠ%QZ4mŠ"ƒ&·/Ù¥dÚ«DRÖýúIݼ«-öÁKr8—3gíOA„IÙ¿á³l67·YœÌ&
+N›OâNƒá£l‚öÖ"
+h„Ó”&Áþ¸ñWI at c†yF‚$ã˜ò,Ø7›÷èÍ–D8Šr$Êâ$·!Mìš¡¿:Õt_mÿÜÿbò€œ' µãÇ”çAH3œ‘öàéµÐå=Üg9ÎóQö|tFH2ºJ0Hij=…$Í0OXŽM¸wµßfî‚.œS˜ïÑsHÊröPƒ 4«X5Þ˜Lé
+"G$JPÕ×ë±Îh6†z׋¾2}UŠz¨•§èU{”Z¶åIÐQi·Xæ¦ûJÔõe6ú0RöAò0—Y4?úÖ$R΄SŽ>Ï ¿Ñª”ÆH³^ÏÚ›ùÜÿØæ6ß„#©M¥ÚµjãžÈ" Q²íþÃÿ£ÝMôRôr0~„ ÏÓ|ði¹F1d¸æw´
+)ñÿØ+¿ßî¬íOûÍÛ
+¤h’Ü‘Zyx´p;Ž ¡)Ž“<`IŽYÊýÜ÷}÷ÍÍå;Öá6„¦A÷NÒ-Ø$CVdÙc8p°ù\þ}WâGŽY0Fqˆ^JSêªëmCžb—0LmÆýV˜ÖÈþ^ŒgÛD»î1ÛZ
+ØøÿÈÖMdHŸ ;ôâ׳…éUy/ìdŒcŸ¡Ã¥M:ÀBšªá•„ø‚æ9Êsd.¦—y>î¤à(šN¸ŠÝ&jÔAÖæn‹¿Dü<‰ï îd=…—œFFxoïÐwߎc¨ãn;
+Ð`{-òèk˜¹Ø…~ÕtJ÷k¡ãÓ<#ÛB͈¢“Ý}UÎ[5ŸûVéfBä;UCG+à0ÔÞ•ê ž/s.:P6gEz˜ï·µêz½ZËÜŠ»ª”YpƒˆGI~³[àÈ9¢wÛõ(ý…J¡øû:"Öš•bÆÇY@½>Ë5®”鵨êª=í@º×ÊsfÉÌwçÂf1½‰)êÕL+¡h[u†iü^‡vòìS‘9í˜ÃïçÐÔ¹+Ó Ž.ÙöfÉâ2ÃwRú<Us|Ô®ê2V¯,Ê®
+hî6û¯ß»H$³|櫉ٷïtÓ @h§ª=ª›«úþèùîý¨êzýˆÌH:=ÙB|;Oš8Ã\i㶠”“l¥ök§sò\KÝœkHO5pàDD+‰Ü3t%*¦ºNösæûu<·óêêó©jÍ´ÃQ±¥c’¢sU¤Þ&V
+9CC<‹'(k#ú)3øêT«S#E+½¶ò=tsâÈÔ07áAšêÔ.Ýhõ¬^ìæ yªPõœeŒ
+Ówå"OjèL¡–þl}e-ÌÂ.…ÔÄaN5sVKßîÖ jgê1g-Ãk{†ôð<:@U[õ¡ëádbbL<¬z…Y:¬zµeúg‰ÀìÉZöª}â}æ98©”~ä‚ÚŒÛc¦&-²u¬ëµ°ƒ¡ôåI†]úÇ>ºgu?P¾¨ eP´ Öùo ¥fnuæ†@¦ò~á¶0M9·Œº5]–Ú6”ÜTÇÙ2±ËG½œ¦b7r®SFÔŠÀ4åÐ/VÑÖG;<‹‰2ÙÍÓ¹7KBÙ=U|¸4ؼf~!gb¿1áàò(„©ÊÐLð™ÎªÖtú'ø‰¢\v–+õø÷PŠDÏãˆü4bs¿lâ„û·ƒLß=ßnþÞ§„jendstream
endobj
1015 0 obj
<< /Filter /FlateDecode /Subtype /Type1C /Length 6295 >>
@@ -906,21 +906,25 @@
stream
xœµZÍsÛ6ŸéÑ…¦‡-´±@`wö&{趙n[Ïì!ÞMÑ[ŠTI*®ÿû} É’“ÖJr°H ?üðð>øû"Žä"Æÿîo¹½úúg“.xqõû•¤Ö…ûSnß^C©âEå™Ê×wW8tG±û·Ð=Žt’-Œ”Q¦óÅõöJìºínµ+Êߊûjyý+Îc„àÐ46‘ŒíÁPíúgAÿUg‘ÉÔb¥¾„žë«÷âm1Ë•J £µ¢h‹æq¨ÿF쇺½wO9©´üßõ¿Ÿèb+™G*5,ôzSÁ ó€ˆ/úaÄ'ÅÒŠa¬vÜǹ¨[ßOº©œôPsk"¥X,Èfž¢¡²(U6çNïÀÉ»ùwÕ–ÝštË`uRtmõÕ2MA3•‹aÖy½š1Ü,gÍ‹v=wX3lð:\BwûkUŽƒ_ŸÝ¿Ë¦·>Ò;§©~~ o®R¿¾Äæ9ˆMÄm€õº«xŠ•Ne¤ û"£<M%7„ŒJ`E©øP㔆¡‰(ø}n(‹¦ñ
â‡ÿu}õÓSßƱ±rÑŸç»=¦;‘ܪ(KÒE–ª(É’‰ä¸Z'ý¼Ä“ÜW±Š€sÀ÷âjžÓŽ=lêrƒ°Á±ÁJðÔ¥™ø°TøKf¢k>,%,;OEÅЈaW•õÝ#Ÿ R \5Cµo»Û¡êa
-†ÕÚõŒ¼+?)™¾+«aðƒ•£=˜P¬Ûªö}µÚ‘÷Ð&´Ù£=œ%ÂãvÉð7n ¤&10Eƒš9<¿Æ¢nh ‚E%ÀþYˆcµ€’}å` ÷õ’ˆa1„•UN’ŸÇð 9éë®ÜãjŠ±î‚.w]O©ïe¨•(éEÛ›Æùˆ•$:2:%¾e×c¿/G§?!u·oË•;r°å`€N,NkLFà_Û]ƒL“øHPÓƒ:4µÇll¤Í‰®„44ˆqÕE3 ¥ånöä(¦Éœ–ùÈ'AÑpÚ”P”{厛¿ üÔÕíPûúg§ÉÀÞƒ9<˜Ou¬Â“¬«m7¸÷V‹qÊЦy”èÄß$8äÆëÿOäXû§†$fY"Ý ›å+ì³Ò9õÔo¶»LùlÓ])uå‹órL—YB—E7XšÛ‰ëŽX/°¥p„,›P0’› |Ÿ±Ž’ü ý‘ëÙN—W@í~`Ë@Ά@O½Òx¸KM÷cñ¡^“vMEs¤7Ûaí
-D¸5OGFRãZpZ Ç0ÉÙÏêí¾™ÌRL·™Q’”ïÊM1ŒuéÚãT¬Ûb[ÃÝè_1<‚;³þ1©0T—Úg]i©±Q.%m‡Óú›,Á÷³ -ÍT¤3ÍgKÀìŠÝT³ýø¢«žîB6B9®×ß¿öÖüûŒ|À°0â]׎Õ|ß}Óy‘Í'NO®·»®‹¶$ÈnÐâf‰`Ç9Ý×C;±èš±»«qé ;IáoÊ`ë l¾+™9`3{ØZo?l<w1à Œ›n=Óofl*¾ëÚÃRscAn@ìm£ŠãìÕÜSÅRN)>¦3½P—„<Œ<DĶ¾» Äàñ©Ì0ÄɈۮ
-UE?¯LFUâ9Ÿ`¶³e™ñþ~©ˆ+9\Ìkv”öyÄCLÍ%
-E¡Ø¸ Ñ6—ÀTªÈ(†4=él.<kß½y÷&ˆ'w`ÂrÂi€>€òu»îëjïPQÏ(ãÏ I#u°^±Û–Ûòå&yIav¾»VÛb,7ÌÂ4~ö ÿ%þIðÿN|ü¹Ž¸ÎÁHòpí¼Äˆ–xP
-8dʹ…& µðx)Šàƾ˜°ù4”oÄÏÕ~[´3,g=° h2cû¹LflÁgOÃeóò.†g¦£Ø8ÓiC鱞.MýÛRÆŽ}M½éBøü›bÆí¿Kƒò2µ»õLÖÏ{¤Á+‡p!\3àp%˜iraÒMÝõ–£"ßÕP‡”*ÁAÞO±3“7âzF©?npùç:ÀFG<ý`¡¢¸}‘5TX@ˆŽªKHä‘ÓÖðQÝFÏ?çsú.ÎçtHå¦Ú×ThQ¨÷Óåÿ7ÿ+$n5Œá^øò37±±X‚%n‡—ÝEŒ¾„pB;‡_Ê }*vÍv"Ànb³ëg(¼ÝœK®œˆÓPERâ¥Nc˜Ú¹ÈB ùÁãø“ÖŠSZSZC)EJѧê0s*0Å‘€çNáH)Š¾îöS‹c×QöM¹Ì¥‘œø]ÓÎ%
-¦<!«SQªöRüД¾§ré7µõ&Ř+N3ˆÆLvt*í¾Â¬¾²‘Ì3—ËzëÔHsŒá)úÕt»À}ÆÕDM”ôÎ0{UN§;› pg¿Í¡O„Y„é6ÙAÌ{G¨æ)œÜ~KÚÖÎ&@$ˆ§Üéñ¾ic‡Âý´ò Añˆ¯¹ p_µ9øWSƒÁéï‰$àJY†¥ª
-ŒãK@ׂñ¼drŠ§ª
-7±$ÝuLIH§û–«L¢<+~¤Ÿ¹MÄ;øEÉÜÚOTfàÖ‚ZzÌ8ýYžÑ|ÝÐzrrc=3ÞFÚ=Ê©(›Eqêë ‰+ô„Y(òðëö›R¡—´x¾Šc"cåµ%|í^¶0>Á)”¹Ó7ád¶'95Æ9“œÇW®&ÎÊù1œôfq§¶€J-bÃU–‰ûŽX€²]ú'3ÚG‹W6‰¦â™µ¯t–cÚêi¶Í1ž†œÈ´)ÿ`ÅmÅyxÃÙÐnîv·¤ Ü^EY7µ+J¤6¬°ŒuÅEš„ćSM…Lã*ƒ¡ÄK;yp‚€Å)9'œK¬Rá„ ¶¦€w¤ïZ?·>lÀ‚Ä0m¬xš^ IŠ“ŠÆˆGß_Š²`ÎMÈýpuý÷÷€N`yàŸ³+‡™Z<’Eæ^Bç,ðkïÁ|u× £#ÈzÝvëÇÀ®ÞÅd|]1˜Y/‡jØ S"Õzí¯gƒ¨EÓM•‡USM1`¸cóœ!“³œ
-ë&úÊŽÓð®j'W“iänþ³ä¨úaîU¿}ÑàüÓþÁ™z œ3m*WQ¢Ø™~¼À—× §(”x2ÅÀ0mŽ®Á7Ý8L ¸¥r¢‹²8— %E… MêïÝwU1îÝ%)ÙbÁ pq‡q8eÕ§»/˼JíØ×·KId7bÎ š6«¨ôGE&m5Ùü‡ªÆW NB•Ap¦®ê°k9/5vâ+V}ê;E½<ëm/ tØà©Flè%°¤gHÀÀš˜ëØ¿TÕ4†
-»ëŠ®ØêÔñfÿÌ°ó´îô‰¥®3UØ.”¦›†ÝæÍ8î¾ùúk´ßQ¿‚«!Fî¾¢6%ÆÛë^RÓø-öp~v
-z·•hv51ç.%^l)Öv‘nä_àUæ*ÆØ]²sB‚lâî÷àÝ^¾ò‰Æª£i[Ô
-™>²‘M=Œ0—†Ëohümp2c?Hú붢QìÇM×_áSŒîvo˜ä$Àç®yÐ~„wVHr“RúxI˜©ÌBTNÜ~·»Õš®A/î¸Ìä<²©ºÇŒ;L}úx0tû~ös“##–Á?ÉÕo*ç'¾9úàæ5ÌFš+Ñî··EÊùÞ¦6=WŠé# .ß`ëÚ…*hWÝTn§Ê7‡:V™ïNYñ;ó±¯u@€žÜ¼à«IÅ}i#ÉtŠ$˜hê²õȃ&O£/fr’cyÌäÙÃu¥§$pa¨à,y3ƒ
-}Á&ÎP0SÝ·sÉL?)¿S…ú¸P¾¼ƒß\Èdá5iÁ/—À:sÎ`á¾¥ÏX-W¥ñá·C
-Ú_ÏB€S9ü‹’¸Jæ 2M{üKÅ`fG’œl·A ì? Ð1žüoìfc‹ÈÏCÖòÛìk¥‰#)óÒ6WV>á-kbÜÕóé85×®ø›.Š¡ŽÞ*RS`UxEþ*%Ý™‰¼C1}pvDèÀõ#Ⱦ-:àZ“wâfÒüÝɦjvs2qøw„½8²´®íC]Í^¯“lÌZ’—·§0Rsº/¯@ÆÛㆀYè”?g vuÞ÷r?V'
-‹I"pÈ‚-rß<܈“nd`‡À>Î_Ì¥Îùú®õ¢ëuüxå>á $†û0ÊÉÝœR_îã(:ÅAp0Þ'A@ÆŸ§Ìþ¢ÿ0ÍåÂK—Úsˆú›ÀÅw;%æÎ8Iy!„QRû@ôð˜/Ñ/O"™cé!söš=e2?]ý6ÌK”endstream
+†ÕÚõŒ¼+?)™¾+«aðƒ•£=˜P¬Ûªö}µÚ‘÷Ð&´Ù£=œ%ÂãvÉð7n ¤&10Eƒš9<¿Æ¢nh ‚E%ÀþYˆcµ€’}å` ÷õ’ˆa1„•UN’ŸÇð 9éë®ÜãjŠ±î‚.w]O©ïe¨•(éEÛ›Æùˆ•$:2:%¾e×c¿/G§?!u·oË•;r°å`€N,NkLFà_Û]ƒL“øHPÓƒ:4µÇll¤Í‰®„44ˆqÕE3 ¥ånöä(¦Éœ–ùÈ'AÑpÚ”P”{厛¿ üÔÕíPûúg§ÉÀÞƒ9<˜Ou¬Â“¬«m7¸÷V‹qÊЦy”èÄß$8äÆëÿOäXû§†$fY"Ý ›å+ì³Ò9õÔo¶»LùlÓ])uå‹órL—YB—E7XšÛ‰ëŽX/°¥p„,›P0’› |Ÿ±Ž’ü ý‘ëÙN—W@í~`Ë@Ά@O½Jðp!—š:îÆâC½&횊æH?n¶Ã2Ú:ˆpjžŽŒ¤Æµà´Ža’³Ÿ3ÔÛ}3™¥˜n2£$)#Þ•›bëҵǩX?¶Å¶†»Ñ¿2bxwf;ücRa¨.µÏZºÒ,Rc£\JÚ§õ6Y‚ïgAZš©HgšÏ–
+€Ù=,º©fûñE3V=Ý…l„r8\¯¿í5¬ù÷=ùa#`Ä»®«ù8¾)ú¦ó"šOœž\ow]?mHÝ ÅÍÁŽsº‡/‡vbÑ4!.bwWãÒ/ v’Âß”ÁÖØ|W2sÀfö°µÞ~ØxîbÀA7Ýz¦ßÌØT|×µ‡¤çÆ‚Ü€ØÛFÇÙ«¹§Š¥œS|Lfz¡. 3x"yˆˆm}wˆÁãS™aˆ“3·]ªŠ~^+˜ŒªÄs>ÁlgË2ãýýRWr¸˜×ì('ì󈇘šKŠB
+°q¢m.©T‘QizÒÙ\xÖ¾{óîMOîÀ„ä„Ó } åëvÝ×ÕÞ¡¢žPÆŸ@“Fê`½b·-·åËLò,’Âì„}w[¶ÅXn˜…iüìAÿKü“àÿœøøsqƒ‘äáÚy‰-ñ pÈ”sM jáñRÁ}1aói(߈Ÿ«ý¶hgXÎ"z`AÑdÆös™ÌØ‚Ïž†Ëæå]ÏLG±q¦Ó†>Òc<
+\ %šú·¥ŒûšzÓ…ðø7Ōۗåejw뙬Ÿ÷HƒWáB¸6fÀàJ0Óä"Â<¤šº?ê-GÿD&¾-«¡)U‚ƒ¼Ÿ"bg&oÄõŒR[Ü áòÏu€Ž,xúÁBEqû"k¨ °€U—È#§¬á'¢ºžÎçô]œÏéÊMµ
+®©Ð¢þPï§ËÿoþWHÜjýðåg"nb!b±*KÜ/»‹} á„v¿”úTìš ìD€ÝÄ$f×?ÎPx»9:—\38-?¦¡Š¤ÄK
+œÆ00µr)…@óƒÇñ!'§´¦´†RŠ•¢:NÕaæT`Š#Ϝ‘R}Ýí§#Æ®£ì›r™#J#9ñ»¦JLyBV§¢T#ì¥ø )}OåÒo jëMŠ1ÿVœf>™ìèTÚ}…Y}e#™g.—õÖ©‘æÃSô6ªévûŒ9ª;ˆš(éaöªœNw6AàÎ~›CŸ³Óm²ƒ˜÷ŽPÍS8¹ý–´=¬9œM<€þ
+HO¹Óã}ÓÆ…ûiåA‚â_sà¾j+r*𮦃Óß1)HÀ•²KU;Ç–.€®ã5xÉäOUnbIºë˜’N÷ÿ,W™DyVüH?s›ˆwð‹’¹´Ÿ¨ÌÀ!´ô2˜ pú³<!£ùº¡õääÆzf¼´{”SQ6‹âÔ×Wè ³0:Qäá×í)6¥&B/iñ|ÇDÆ$ÊkKøÛ½l%`.|‚S(s§oÂÉlOrjŒs&93®\Mœ•óc8éÍâNm' •ZĆ«,<,÷± e»ô;O:g´¯lM)Ä3k_é,Ç´ÕÓl?šc<
+9‘iSþÁŠÛŠóð†³¡ÝÜínI9¸½Š²njW”HmX%`ëŠ#Š4 ‰§š
+<˜ÆUC‰—vòà‹RrN8—X¥ÂÿAmM!îHßµ~.n}Ø€‰aÚX)ð4½’'¾¿eÁœ›ûáêúïïÀòÀ%>gW3µx$‹>̽„ÎYà×Þƒù ë®AGGõºíÖ]¼‹Éøº4b0³&^Õ8°¦DªõÚ_ÏQ‹¦›*«¦šbÀpÇæ9C&g9&ÖMô•§á]ÕN®&ÓÈÝügÉQõÃÜ«~û¢Àù§ýƒ3õ 8gÚ.T®¢D±3üx/¯-@NQ(ñdŠ[a4Ú]ƒoº-.p˜@qKåD ep.A<.JŠ
+šÔß%ºïªbÜ»KR:†3Å‚AàâãpʪOw_–y•Ú±¯o—’ÈnÄ4mVQéŠLÚj²ùUŒ¯@„*ƒàL]Õa×r^jìÄW¬úÔ4vŠzyÖÛ^è°ÁSØÐK`IÏ€51×±©ªiv×]±Õ©ãÍþ™a7æiÝéK]gª,°3:](M7
+»Í›qÜ}óõ×h¿£~WCŒ>Ü}ElJŒ·×4¼¤¦3ð[ìáüì0.ôn;*ÑíjbÎ\J¼ØR¬í"ÝÈ¿À«ÌUŒ±»dç„ÙÄÝîÁ»½|åUGÒ¶¨2}d#!šza.
+—7ÞÐøÛàZeÆ~ô×mE
+¢Ø›®¾Â§7ÜíÞ0ÉI€!Îÿ\/ò ýï¬ä&¥ô9ð’$0S™…¨<œ¸ýn5v«5]ƒ^Üq!*˜ÉydSuw˜úôð`èöýìç&GF>,ƒ’«-ÞTÎO|
+rôÁÍk˜4W¢Ýoo+$Š”ó½Mmz®ÓG\¾Á2(ÖµTЮº#¨Ü&N•o1t¬2ß*²âwæc_ë€ =¹yÁW3’,ŠûÒF’é
+I0=ÐÔeê‘+LžF_Ìä$Çò˜É³‡ëJOIàÂPÁYòfú‚M,œ¡`¦º)nç’™~R~§
+õq¡|&x/¾¹ÉÂkÒ‚_.uæœÁÂ}KŸ±Z®$JãÃo‡´¿ž… ;¦rø%q•0ÌAdšöø—ŠÁÌŽ$9Ùn‚ Ø@¡c&<ùßØÍ:ÇŸ‡¬å·ÙÖJGRæ¥m®¬|Â[Öĸ«3æÓqj®]?ð7]C½U¤¦ÀªðŠüUJº3y‡búàìˆÐëF}[tÀµ&ïÄͤù»“MÕìæ&dâð
+î{qdi]Û‡ºš½^'Ù*
+˜µ$/ÿnOa¤æt^^Œ·Ç
+²Ð)Îìê¼ïå~¬N“Dà[ä¾y¸'?ÜÈÀ}œ¿˜Kóõ]ë5D×ëùñÊ}ÂAI!÷a”;’»9¥¾ÜÇQtŠƒà`2¼O‚€Œ?O™ýEÿašË…—.µ,æõ)6‹ïvJÌpþ’òB£¤öèá0_"¢_žD2ÇÒCæì5{Êd~ºú?XxK•endstream
endobj
1023 0 obj
<< /Filter /FlateDecode /Length 1949 >>
@@ -2603,14 +2607,11 @@
%ª¯{ÿPÆÉÙendstream
endobj
1091 0 obj
-<< /Type /XRef /Length 435 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1092 /ID [<213d0053ec1e0a53c3006db272349d0d><d9cc430f850fb088478d467450f98068>] >>
+<< /Type /XRef /Length 436 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1092 /ID [<1654c5e3a24271b3b3682c1ec6893f4a><0c9132f9484649268e66406e7f421aef>] >>
stream
-xœí—=(EqÀï}/ïz_®ï²P)e %¥Ê ؈z¢HÉG!¼Íöb 0’2I)õ ¥Ô[ÄFâŸÁ®ÿxÞðëtþçžsá>%?mY.|³<’°•Jü¶Ü˵Tì[»’^µKiҮ⽵”W÷»ê•Ò¤WåâÕõœz¥4éUuB¼J,«WJ“^5Œ‹WGIõJiÒ«Hxµ¯ßíJ£^uDÅ«í/õJiÒ«î˜xµ~§^)Mz5`‰Wñ>õJùF6R±VüqâÂô:X#ô/;œæ}C䛄iœFa?ù6*‡ÉD¨o€ò¿Ò.x—¸dBh7
-óïá4fõ
-ÿ=_„n)É8§t;ä´SjüÛ'0"~/ÒSfÙ¹3äë…Þ}XÅUÌJPF¼Â)a;¹Óà3sÇØd•þƒÂÌ+aF§]T³Û ü ÿ5SÄ·Ô”Én¡ú³¡¿69e“p«0‡
-]¾Iœ'zòFB-°™žçÔÜ=µäÙ-üû¾x;¾J¶ÍfíP/×ÚÎ<yÂIâW#Ã]y¶NŽõ$Çd?
+xœí–M(DQ€ß›É<ógüNÙPRÊ‚,LI©AY(vDe”üÂìì&’š•d!¥Fa¡ ¥”Ø‘˜óYØë.Ï[|Î=÷ÜóÞýÏeÉã²-+ß,—$l¥Ò ¿Ðåz:ö,‹]/nµKiÒ®’ýõ´W©=õJiÒ«Šñêz^½Ršôª&)^%WÔ+¥I¯"âÕÑ‹z¥4éU´G¼Jè»Ò¨WýâÕΗz¥4éUwL¼Ú¸S¯”&½´Ä«xŸz¥ü?c÷›éØ;'þ8qaf=¬z‰VÃBÏ0ù&aF%«ýp€|•#d¢ÔGàjšvá»Ä¥“B»QNÁ2œUÜ+þö|†ÊèLÆ9¥Û!«Â@ãß<¾Q¡ÿ“x‰žr–?K¾AèNÀjv]pV’ú3âUV™Ðÿ Û9‘7õ?qî8“¬ÑH˜}%Ì*`µ‹Êcf;ôߦfšø–šr™-p@&ô1ëLlæ1aˆç‘žÜH 6Ó󜚡«Ž<³ï‹ÛñT1m®0g—zÙk;œÈöM¿Ò!Æ^ÞÚÏ·uò¬&—d@
endstream
endobj
startxref
-280426
+280427
%%EOF
Modified: www/vignettes/pompjss.R
===================================================================
--- www/vignettes/pompjss.R 2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pompjss.R 2015-03-24 14:19:18 UTC (rev 1148)
@@ -361,15 +361,15 @@
## ----gompertz-multi-mif-table,echo=F,results="asis"----------------------
require(xtable)
options(
- xtable.sanitize.text.function=function(x)x,
- xtable.floating=FALSE
- )
+xtable.sanitize.text.function=function(x)x,
+xtable.floating=FALSE
+)
print(xtable(results.table,align="r|cccccc",digits=c(0,4,4,4,2,2,2)))
## ----gompertz-dprior1,tidy=F---------------------------------------------
hyperparams <- list(min = coef(gompertz)/10, max = coef(gompertz) * 10)
-## ----gompertz-dprior2----------------------------------------------------
+## ----gompertz-dprior2,tidy=FALSE-----------------------------------------
gompertz.dprior <- function (params, ..., log) {
f <- sum(dunif(params, min = hyperparams$min, max = hyperparams$max,
log = TRUE))
@@ -427,11 +427,11 @@
rm(pmcmc1,save.seed,tic,toc)
})
-## ----pmcmc-diagnostics,results="hide",fig.show="hide",echo=F-------------
-gelman.diag(pmcmc.traces)
-gelman.plot(pmcmc.traces)
-autocorr.plot(pmcmc.traces[[1]])
-hist(rle(unlist(pmcmc.traces[,"r"]))$length)
+## ----pmcmc-diagnostics,results="hide",fig.show="hide",echo=F,eval=F------
+## gelman.diag(pmcmc.traces)
+## gelman.plot(pmcmc.traces)
+## autocorr.plot(pmcmc.traces[[1]])
+## hist(rle(unlist(pmcmc.traces[,"r"]))$length)
## ----pmcmc-plot,echo=F,eval=T,results="hide",cache=TRUE------------------
op <- par(mar=c(4,3.5,0,1),mfcol=c(3,2),mgp=c(2.5,1,0),cex.axis=1.5,cex.lab=2)
@@ -465,14 +465,12 @@
Tr = exp(r);
Tsigma = exp(sigma);
Tphi = exp(phi);
- TN_0 = exp(N_0);
-"
+ TN_0 = exp(N_0);"
par.inv.trans <- "
Tr = log(r);
Tsigma = log(sigma);
Tphi = log(phi);
- TN_0 = log(N_0);
-"
+ TN_0 = log(N_0);"
## ----ricker-pomp,tidy=F--------------------------------------------------
pomp(data = data.frame(time = seq(0, 50, by = 1), y = NA),
@@ -548,19 +546,19 @@
})
## ----ricker-mif-calc,eval=FALSE,tidy=FALSE-------------------------------
-## mf <- mif(ricker,start=guess,Nmif=100,Np=1000,transform=TRUE,
-## cooling.fraction=0.95^50,var.factor=2,ic.lag=3,
-## rw.sd=c(r=0.1,sigma=0.1,phi=0.1),max.fail=50)
-## mf <- continue(mf,Nmif=500,max.fail=20)
+## mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+## cooling.fraction = 0.95^50, var.factor = 2, ic.lag = 3,
+## rw.sd=c(r = 0.1, sigma = 0.1, phi = 0.1), max.fail = 50)
+## mf <- continue(mf, Nmif = 500, max.fail = 20)
## ----ricker-mif-eval,echo=F,eval=T,cache=F,results="hide"----------------
bake("ricker-mif.rda",{
save.seed <- .Random.seed
set.seed(718086921L)
- mf <- mif(ricker,start=guess,Nmif=100,Np=1000,transform=TRUE,
- cooling.fraction=0.95^50,var.factor=2,ic.lag=3,
- rw.sd=c(r=0.1,sigma=0.1,phi=0.1),max.fail=50)
- mf <- continue(mf,Nmif=500,max.fail=20)
+ mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+ cooling.fraction = 0.95^50, var.factor = 2, ic.lag = 3,
+ rw.sd=c(r = 0.1, sigma = 0.1, phi = 0.1), max.fail = 50)
+ mf <- continue(mf, Nmif = 500, max.fail = 20)
.Random.seed <<- save.seed
})
Modified: www/vignettes/pompjss.Rnw
===================================================================
--- www/vignettes/pompjss.Rnw 2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pompjss.Rnw 2015-03-24 14:19:18 UTC (rev 1148)
@@ -31,6 +31,8 @@
\Crefname{appendix}{Appendix}{Appendices}
\crefname{algorithm}{Algorithm}{Algorithms}
\Crefname{algorithm}{Algorithm}{Algorithms}
+\crefname{section}{Section}{Sections}
+\Crefname{section}{Section}{Sections}
\crefname{AlgoLine}{line}{lines}
\Crefname{AlgoLine}{Line}{Lines}
@@ -218,6 +220,7 @@
%% Note that you should use the \pkg{}, \proglang{} and \code{} commands.
\section {Introduction}
+
A partially observed Markov process (POMP) model consists of incomplete and noisy measurements of a latent, unobserved Markov process.
The far-reaching applicability of this class of models has motivated much software development \citep{commandeur11}.
It has been a challenge to provide a software environment that can effectively handle broad classes of POMP models and take advantage of the wide range of statistical methodologies that have been proposed for such models.
@@ -265,7 +268,8 @@
Finally, \cref{sec:conclusion} discusses extensions and applications of \pkg{pomp}.
-\section[POMP models and their representation in pomp]{POMP models and their representation in \pkg{pomp}}\label{sec:background}
+\section[POMP models and their representation in pomp]{POMP models and their representation in \pkg{pomp}}
+\label{sec:background}
Let $\theta$ be a $p$-dimensional real-valued parameter, $\theta\in\R^p$.
For each value of $\theta$, let $\{X(t\giventh\theta),t\in T\}$ be a Markov process,
@@ -286,7 +290,8 @@
Note that this formalism allows the transition density, $f_{X_{n}|X_{n-1}}$, and measurement density, $f_{Y_{n}|X_{n}}$, to depend explicitly on $n$.
-\subsection{Implementation of POMP models}\label{sec:implementation}
+\subsection{Implementation of POMP models}
+\label{sec:implementation}
\pkg{pomp} is fully object-oriented:
in the package, a POMP model is represented by an S4 object \citep{Chambers1998,genolini08} of \class{pomp}.
@@ -295,30 +300,32 @@
\Cref{tab:notation} gives the mathematical notation corresponding to the elementary methods that can be executed on a \class{pomp} object.
\begin{table}[t]
- \begin{tabular}{llll}
-\hline
-Method &Argument to the &Mathematical terminology \\
-& \code{pomp} constructor & \\
-\hline
-\code{rprocess} &\code{rprocess} &Simulate from $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
-\code{dprocess} &\code{dprocess} &Evaluate $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
-\code{rmeasure} &\code{rmeasure} &Simulate from $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
-\code{dmeasure} &\code{dmeasure} &Evaluate $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
-\code{rprior} &\code{rprior} &Simulate from the prior distribution $\pi(\theta)$\\
-\code{dprior} &\code{dprior} &Evaluate the prior density $\pi(\theta)$\\
-\code{init.state} &\code{initializer} &Simulate from $f_{X_0}( x_0 \giventh \theta)$\\
-\code{timezero} &\code{t0} &$t_0$\\
-\code{time} &\code{times} &$t_{1:N}$\\
-\code{obs} &\code{data} &$y^*_{1:N}$\\
-\code{states} & --- &$x_{0:N}$\\
-\code{coef} &\code{params} &$\theta$\\
-\hline
-\end{tabular}
-\caption{
- Constituent methods for \class{pomp} objects and their translation into mathematical notation for POMP models.
- For example, the \code{rprocess} method is set using the \code{rprocess} argument to the \code{pomp} constructor function.
-}
-\label{tab:notation}
+ \begin{center}
+ \begin{tabular}{llll}
+ \hline
+ Method &Argument to the &Mathematical terminology \\
+ & \code{pomp} constructor & \\
+ \hline
+ \code{rprocess} &\code{rprocess} &Simulate from $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
+ \code{dprocess} &\code{dprocess} &Evaluate $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
+ \code{rmeasure} &\code{rmeasure} &Simulate from $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
+ \code{dmeasure} &\code{dmeasure} &Evaluate $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
+ \code{rprior} &\code{rprior} &Simulate from the prior distribution $\pi(\theta)$\\
+ \code{dprior} &\code{dprior} &Evaluate the prior density $\pi(\theta)$\\
+ \code{init.state} &\code{initializer} &Simulate from $f_{X_0}( x_0 \giventh \theta)$\\
+ \code{timezero} &\code{t0} &$t_0$\\
+ \code{time} &\code{times} &$t_{1:N}$\\
+ \code{obs} &\code{data} &$y^*_{1:N}$\\
+ \code{states} & --- &$x_{0:N}$\\
+ \code{coef} &\code{params} &$\theta$\\
+ \hline
+ \end{tabular}
+ \end{center}
+ \caption{
+ Constituent methods for \class{pomp} objects and their translation into mathematical notation for POMP models.
+ For example, the \code{rprocess} method is set using the \code{rprocess} argument to the \code{pomp} constructor function.
+ \label{tab:notation}
+ }
\end{table}
The \code{rprocess}, \code{dprocess}, \code{rmeasure}, and \code{dmeasure} arguments specify the transition probabilities $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$ and measurement densities $f_{Y_n|X_n}(y_n\given x_n\giventh \theta)$.
@@ -365,7 +372,8 @@
The \code{covar} argument in the \pkg{pomp} constructor allows for time-varying covariates measured at times specified in the \code{tcovar} argument.
A example using covariates is given in \cref{sec:EpidemicModel}.
-\section{Methodology for POMP models}\label{sec:methods}
+\section{Methodology for POMP models}
+\label{sec:methods}
Data analysis typically involves identifying regions of parameter space within which a postulated model is statistically consistent with the data.
Additionally, one frequently desires to assess the relative merits of alternative models as explanations of the data.
@@ -384,59 +392,59 @@
Though \pkg{pomp} has sufficient flexibility to encode arbitrary POMP models and methods and therefore also provides a platform for the development of novel POMP inference methodology,
\pkg{pomp}'s development to date has focused on plug-and-play methods.
However, the package developers welcome contributions and collaborations to further expand \pkg{pomp}'s functionality in non-plug-and-play directions also.
-In the remainder of this Section, we describe and discuss several inference methods, all currently implemented in the package.
+In the remainder of this section, we describe and discuss several inference methods, all currently implemented in the package.
\begin{table}[t]
-\begin{tabular}{l|p{0.35\linewidth}|p{0.35\linewidth}}
-\multicolumn{3}{l}{\bf (a) Plug-and-play \rule[-2mm]{0mm}{4mm} }\tabularnewline
-\hline
-&Frequentist & Bayesian \tabularnewline
-\hline
-Full information&
-Iterated filtering (\code{mif}, \cref{sec:mif}) \raggedright
-&PMCMC (\code{pmcmc}, \cref{sec:pmcmc}) \raggedright \tabularnewline
-\hline
-Feature-based
-&Nonlinear forecasting (\code{nlf}, \cref{sec:nlf}), \raggedright
-&ABC (\code{abc}, \cref{sec:abc}) \raggedright \tabularnewline
-&synthetic likelihood (\code{probe.match}, \cref{sec:probe}) \raggedright
-& \tabularnewline
-\hline
-\multicolumn{3}{c}{}\tabularnewline
-\multicolumn{3}{l}{\bf (b) Not plug-and-play \rule[-2mm]{0mm}{4mm}} \tabularnewline
-\hline
-& Frequentist & Bayesian \tabularnewline
-\hline
-Full information
-& EM and Monte~Carlo~EM, \raggedright
-& MCMC \raggedright \tabularnewline
-& Kalman filter \raggedright
-& \tabularnewline
-\hline
-Feature-based
-&Trajectory matching (\code{traj.match}), \raggedright
-& Extended Kalman filter \tabularnewline
-&extended Kalman filter, \raggedright
-& \tabularnewline
-&Yule-Walker equations \raggedright
-& \tabularnewline
-\hline
-\end{tabular}
-\caption{
- Inference methods for POMP models.
- For those currently implemented in \pkg{pomp}, function name and a reference for description are provided in parentheses.
- Standard Expectation-Maximization (EM) and Markov chain Monte~Carlo (MCMC) algorithms are not plug-and-play since they require evaluation of $f_{X_n|X_{n-1}}(x_n\given x_{n-1}\giventh\theta)$.
- The Kalman filter and extended Kalman filter are not plug-and-play since they cannot be implemented based on a model simulator.
- The Kalman filter provides the likelihood for a linear, Gaussian model.
- The extended Kalman filter employs a local linear Gaussian approximation which can be used for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate Bayesian inference (by adding the parameters to the state vector).
- The Yule-Walker equations for ARMA models provide an example of a closed-form method of moments estimator.
-}
-\label{tab:methods}
+ \begin{tabular}{l|p{0.35\linewidth}|p{0.35\linewidth}}
+ \multicolumn{3}{l}{\bf (a) Plug-and-play \rule[-2mm]{0mm}{4mm} }\tabularnewline
+ \hline
+ &Frequentist & Bayesian \tabularnewline
+ \hline
+ Full information&
+ Iterated filtering (\code{mif}, \cref{sec:mif}) \raggedright
+ &PMCMC (\code{pmcmc}, \cref{sec:pmcmc}) \raggedright \tabularnewline
+ \hline
+ Feature-based
+ &Nonlinear forecasting (\code{nlf}, \cref{sec:nlf}), \raggedright
+ &ABC (\code{abc}, \cref{sec:abc}) \raggedright \tabularnewline
+ &synthetic likelihood (\code{probe.match}, \cref{sec:probe}) \raggedright
+ & \tabularnewline
+ \hline
+ \multicolumn{3}{c}{}\tabularnewline
+ \multicolumn{3}{l}{\bf (b) Not plug-and-play \rule[-2mm]{0mm}{4mm}} \tabularnewline
+ \hline
+ & Frequentist & Bayesian \tabularnewline
+ \hline
+ Full information
+ & EM and Monte~Carlo~EM, \raggedright
+ & MCMC \raggedright \tabularnewline
+ & Kalman filter \raggedright
+ & \tabularnewline
+ \hline
+ Feature-based
+ &Trajectory matching (\code{traj.match}), \raggedright
+ & Extended Kalman filter \tabularnewline
+ &extended Kalman filter, \raggedright
+ & \tabularnewline
+ &Yule-Walker equations \raggedright
+ & \tabularnewline
+ \hline
+ \end{tabular}
+ \caption{
+ Inference methods for POMP models.
+ For those currently implemented in \pkg{pomp}, function name and a reference for description are provided in parentheses.
+ Standard Expectation-Maximization (EM) and Markov chain Monte~Carlo (MCMC) algorithms are not plug-and-play since they require evaluation of $f_{X_n|X_{n-1}}(x_n\given x_{n-1}\giventh\theta)$.
+ The Kalman filter and extended Kalman filter are not plug-and-play since they cannot be implemented based on a model simulator.
+ The Kalman filter provides the likelihood for a linear, Gaussian model.
+ The extended Kalman filter employs a local linear Gaussian approximation which can be used for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate Bayesian inference (by adding the parameters to the state vector).
+ The Yule-Walker equations for ARMA models provide an example of a closed-form method of moments estimator.
+ }
+ \label{tab:methods}
\end{table}
+\subsection{The likelihood function and sequential Monte Carlo}
+\label{sec:pfilter}
-\subsection{The likelihood function and sequential Monte Carlo}\label{sec:pfilter}
-
%%%% PFILTER PSEUDOCODE
\begin{algorithm}[ht]
\caption{\textbf{Sequential Monte Carlo (SMC, or particle filter)}:
@@ -541,9 +549,11 @@
In particular, if all the particle weights are equal then \cref{alg:systematic} has the appropriate behavior of leaving the particles unchanged.
As pointed out by \citep{douc05}, stratified resampling performs better than multinomial sampling and \cref{alg:systematic} is in practice comparable in performance to stratified resampling and somewhat faster.
+\pagebreak
%%% ITERATED FILTERING
-\subsection{Iterated filtering}\label{sec:mif}
+\subsection{Iterated filtering}
+\label{sec:mif}
% MIF PSEUDOCODE
\begin{algorithm}[h]
@@ -631,7 +641,8 @@
This approach has been used in a variety of previously proposed POMP methodologies \citep{kitagawa98,janeliu01,wan00} but iterated filtering is distinguished by having theoretical justification for convergence to the maximum likelihood estimate \citep{ionides11}.
-\subsection{Particle Markov chain Monte Carlo}\label{sec:pmcmc}
+\subsection{Particle Markov chain Monte Carlo}
+\label{sec:pmcmc}
%% PMCMC PSEUDOCODE
\begin{algorithm}[h]
@@ -680,7 +691,8 @@
In part because it gains only a single likelihood evaluation from each particle-filtering operation, PMCMC can be computationally relatively inefficient \citep{bhadra10,ionides15}.
Nevertheless, its invention introduced the possibility of full-information plug-and-play Bayesian inferences in some situations where they had been unavailable.
-\subsection{Synthetic likelihood of summary statistics}\label{sec:probe}
+\subsection{Synthetic likelihood of summary statistics}
+\label{sec:probe}
%%%%% SYNTHETIC LIKELIHOOD EVALUATION ALGORITHM
\begin{algorithm}
@@ -823,7 +835,8 @@
the package supports alternative choices of proposal distribution.
-\subsection{Nonlinear forecasting} \label{sec:nlf}
+\subsection{Nonlinear forecasting}
+\label{sec:nlf}
%%%%% NLF QUASI LIKELIHOOD ALGORITHM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{algorithm}[h]
@@ -904,9 +917,12 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Model construction and data analysis: simple examples} \label{sec:examples}
+%% \clearpage
+\section{Model construction and data analysis: Simple examples}
+\label{sec:examples}
-\subsection{A first example: the Gompertz model}\label{sec:gompertz:setup}
+\subsection{A first example: The Gompertz model}
+\label{sec:gompertz:setup}
The plug-and-play methods in \pkg{pomp} were designed to facilitate data analysis based on complicated models, but we will first demonstrate the basics of \pkg{pomp} using simple discrete-time models, the Gompertz and Ricker models for population growth \citep{Reddingius1971,Ricker1954}.
The Ricker model will be introduced in \cref{sec:ricker:setup} and used in \cref{sec:ricker:probe.match}; the remainder of \cref{sec:examples} will use the Gompertz model.
@@ -1129,7 +1145,8 @@
The latter approach has the advantage of allowing one to estimate the Monte Carlo error itself;
we will demonstrate this in \cref{sec:gompertz:mif}.
-\subsection{Maximum likelihood estimation via iterated filtering}\label{sec:gompertz:mif}
+\subsection{Maximum likelihood estimation via iterated filtering}
+\label{sec:gompertz:mif}
Let us use the iterated filtering approach described in \cref{sec:mif} to obtain an approximate maximum likelihood estimate for the data in \code{gompertz}.
Since the parameters of \cref{eq:gompertz1,eq:gompertz-obs} are constrained to be positive, when estimating, we transform them to a scale on which they are unconstrained.
@@ -1283,6 +1300,16 @@
In this case, we see that the \code{mif} procedure is successfully maximizing the likelihood up to an error of about 0.1 log units.
\begin{table}
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/pomp -r 1148
More information about the pomp-commits
mailing list