[Pomp-commits] r1148 - www/vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Mar 24 15:19:19 CET 2015


Author: kingaa
Date: 2015-03-24 15:19:18 +0100 (Tue, 24 Mar 2015)
New Revision: 1148

Modified:
   www/vignettes/pomp.pdf
   www/vignettes/pompjss.R
   www/vignettes/pompjss.Rnw
   www/vignettes/pompjss.bib
   www/vignettes/pompjss.pdf
Log:
- update vignette

Modified: www/vignettes/pomp.pdf
===================================================================
--- www/vignettes/pomp.pdf	2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pomp.pdf	2015-03-24 14:19:18 UTC (rev 1148)
@@ -10,7 +10,8 @@
 ÉŠ É@
 -² ŒÆ“Ž
 !ÔWÖO ûpÀȨ<I¿H’‰lÌF€‰ìJØS„dGMDHv!ƒ‡§ÈÐ|™º¯\@£1R
-EHv¿r)Á‚!9Û†4‹SBGP Êd±0PA&쩉ÉÞÁÈÈ=™t"W44eINaÕßþñ!ŸWõè`TpYÁ«ö„|yVO'³j	‡Êç¯FG8±ÍÉëßN+!ïáéüH|ÿ}–qoQêÉ|vTWâÛû×%T`´)£‹*Ü.í7eùÍ-®7_ˆo÷F§ÇâYõiRÍpùùüàKO¾ZÌÎÆ}ôê™xt<_ÖËñbrZ‹T”^Oê)$<žç³å|
+EHv¿r)Á‚!9Û†4‹SBGP Êd±0PA&쩉ÉÞÁÈÈ=™t"W44eINaÕßþñ!ŸWõè`TpYÁ«ö„|yVO'³j	‡Êç¯FG8±ÍÉëßN+!ïáéüH|ÿ}–qoQêÉ|vTWâÛû×%T``
+%Ì+Ý.í7eùÍ-®7_ˆo÷F§ÇâYõiRÍpùùüàKO¾ZÌÎÆ}ôê™xt<_ÖËñbrZ‹T”^Oê)$<žç³å|
 |·Vèæg³šQ>,ÅÏäœÔ—ÿÚ¦×1ÿ…‰7G¸6SsUç£Q|×ò±9X®æ_v|ô|äÇ=a|Mc|›Ûl®’6ǦÍPtÛ(Ÿ¾mš§µe¡\« k!y¾Ü Ñ^ñ±EÖœ®Í¢cÓ¤áþFjø>‘\¿­gù9ËzH|š¸ZsÊZ3ŒÅpMàòåȍ&¶’•ÎGË]³\_³ÒM«6Õª•«5X-c³Üªã>9V7xŸ1yð"kî}덳°åÝ™Íæ5YœaðlU¬¨Ä“-ù¨ø¨ùÈõ­å£ã£çcà#ËcÍ&™Ës,UËs,ϱ<6‹äXžcyžåñ%Ïò<Ëó,ϳ<ÏòX9ɳ<ŸZeÝ›ÏêjݤÔÜLFw矡-jÍÃÈï=©tª-íUËùÙb%“†|®í×D)4 åCˆÆ“ˆc¼_Ր*_݈Qª>×úý÷Ý[g
 x–|8Y,ÁŒg#”“i:ÇUïWKÚ\“?½ûÑjA¦,&¦ÙÙtJð_P‹‰í«íS+³ÖéüäôöéhüXnmN;8Ì)°òÙO[l
 ¬üÐÖgåÌXöBh¢êûìÕá¼ßìŠÛFU—à ö]£ñ×±™\vŠÖ'b{´}ðÕPúvkúö×è@–H«¶«UwCPf P¾*Ü”Tì‚J7况Ƥ×"Ò•S0Y1Wm8n×ÚÂM­-ªkmá:Öv®Ãا¼¦Mžœ<5\'sÿÎÁf–°ÆtñFH«dŠf†f*e]ï…hºYëÄ
@@ -31,7 +32,7 @@
 :©í<Í*„EôéÙ
 m^	Óÿà Ú¾à	ÑPÚ
 é(û$ºÔw]®•×ÜñÇŽò§vµ'zuàü2meJc2D`oiJ¢­Y}3ɹäŸ9mäg4{¶ìm·;l(az|
-itìEK&”]3*MS(}þPížûk‹È"¿#cTQ#ñý˜vÏüut9Èh1Mšû ®’iNLç ¦dsE£úS]úÊÁ)‚¾èGK„GòàvMGÿR=¥œrµ¶§N)Øå_¦¯>¦eQvâY]ô}ïn.5ZV—¼r½?9<¬ÕŒ´¦×‡ü2Þ[ßV½¾<ø]çåí—8ß8hCühÌF±¶=èk÷¡WüÅ…zendstream
+itìEK&”]3*MS(}þPížûk‹È"¿#cTQ#ñý˜vÏüut9Èh1Mšû ®’iNLç ¦dsE£úS]úÊÁ)‚¾èGK„GòàvMGÿR=¥œrµ¶§N)Øå_¦¯>¦eQvâY]ô}ïn.5ZV—¼r½?9<¬ÕŒ´¦×‡ü2Þ[ßV½¾<ø]çåí—8ß8hCühÌF±¶=èk÷¡Wü£öyîendstream
 endobj
 101 0 obj
 << /Subtype /XML /Type /Metadata /Length 1340 >>
@@ -40,12 +41,12 @@
 <?adobe-xap-filters esc="CRLF"?>
 <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
 <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:iX='http://ns.adobe.com/iX/1.0/'>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-03-23T08:58:17-04:00</xmp:ModifyDate>
-<xmp:CreateDate>2015-03-23T08:58:17-04:00</xmp:CreateDate>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-03-24T10:07:19-04:00</xmp:ModifyDate>
+<xmp:CreateDate>2015-03-24T10:07:19-04:00</xmp:CreateDate>
 <xmp:CreatorTool>Raph Levien</xmp:CreatorTool></rdf:Description>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9'/>
-<rdf:Description rdf:about='uuid:d2b4bd32-0978-11f0-0000-8a6fff06acb9' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c'/>
+<rdf:Description rdf:about='uuid:a1f18bbc-0a4b-11f0-0000-029d605e128c' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
 </rdf:RDF>
 </x:xmpmeta>
                                                                         
@@ -587,20 +588,19 @@
 ÚÛB,½œ4›,:/þŸìÃ`ŒÛ{¶@Û†ìj´7ç!þ+„nùx·ø’WïQendstream
 endobj
 1014 0 obj
-<< /Filter /FlateDecode /Length 1357 >>
+<< /Filter /FlateDecode /Length 1358 >>
 stream
-xœ•WÛŽÛ6òè¯Ð[é"âŠÔ*ТiSi4Ù¸}É(%Ó^%’¨r°î×wHŠ’¼«-öÁKr8—3gíOA„I™¿ñ³j77·yœô&
-N›ObOƒñ£jƒöÆ"h„³Œ¦Áþ¸qWI@㳜iÎ0ey°o7ïÑ›-‰pˆWùIlCššu‚þêeÛµýsÿ‹qÈBp‘¦Ô8ŒcSV!ÍqNrØ;€§×\U÷p?)pQĈÆϽ3ŠhDRï*À £™ñ’,Ç,M‚0œÐ”9WûmžÀ=BÐ¥s
-ó=šb)@YÖŠH (Í|k¡üˆ‰Á”úP9"QŠê¡Y•àœæ>Ô»µêŠ7c­,C¯º£P¢«<|$EG©ìb™›jÞ4—Ùè·RõÙD‰ƒ‡/7h~t­Is$­	£}ž~£d%´z½Z—µ+6w¹ÿ±-L¾)CBéZvkÕÆ9&¬‘E@¢8Œ·ûOü{»%šè%ÄhüAVdÅèÓp!Œâ®úõ¶!%îså÷۝±ýi¿y»” MRXR«/Ï ‹nýšá8-‚$-p’17÷ÃÐsscøŽU¸
-¡iн“°6ÉQ¯äQ
-,l.—ŸÁ•øQ„ã$’„â4!&>z)t¥ê~0
-yŠ]š`j2é·Â´V÷ò Û&ÚõÙ†ä‚lÀÆÿG¶~"ÛHúÝ¡¿¾˜-ô «{n&Ï}Ž—Ž·uhi1ª†Sâ
-šç¨(¾èA´ú¹ßÉÀ+P*Ô=·ÛMÔʃhô݉øEä‰ï îE=…7!8%	ñðÞÞ¡ï¾õRc¨ãnë…hàÁ^‹ì}3ÛЯÚ^ªa-t\`ZÄ>²)TO(:)Þß×Õ¼ÅPûyè¤j'tÐA¼“
-t45CílQ%üù¢1ç²e³V4Aóý®‘ý Vk“»BqWW¢Ókb±h"éÏovCôn»e¼·P)´ã_ at GøZ³2œ0?hPg±¦ ÞêJ™^󺩻Ó¤{] g–Ì|w.Í`–Ó›˜¡AÎô7rò®“g˜ÆïUh&Ï<%)ÕŽY1Ü~M»2
-ªwÑŠnÐóH–—¾“„Ôç©š³`^»¨K½2(Û*@s·ÙýÞF"¹á3[M̼}§› jyg=ÕÝQÞ\Õ÷FÍuïGÙ4ë@œâ„dÓ“Í9Ç·ó¤ñ3Ì•Òv@9‰N(`ÿ¸¶:'΍Pí¹ôdVT@´ÒÈ>CW¢¢»ºïÅ0GH\¿ŽçnÞC}s>՝žv*·Ô`L2t®›ƒPÛÔH!KÐÏà	ÊÚòaÊ¾:5òÔ
-Þ	§­,Gýœ8Ò
-ÌMxº>uK7J>kû£9Hž,e3g£R÷À]±È†:Sʇ¥?S_Õp½°Ë 5~˜SÍ­ÕÒ·½5ŠÚ™‚zôY‰ðÚ>Aj| º«‡Ð‰õx211‹=«^a–«^M™îY"0{¢ƒìžxŸyNj©¹ &ãŶ/P×À¤E¶–uƒâf0¤º<É°oäðØGÿ¬FŠÀ´êŽÀZÿ- ÔέÎmÀÈTÝ/Ü–º­æ–Q»¦Ë’AÛÆ’Ûú8[¦fù¨—ÓTì<çz©y³ LA[MÝb…]s4ó˜H “Ù<½$”Ù“å‡ëAƒÍkæ—b†!v6’ëº
-íÁŸîjM÷¨Ûx‚/«eç`¹R{	¥è·ð<z¼à§Q’'ö—Mœ2÷vé»çÛÍ?¼„gendstream
+xœ•WÛŽÛ6òè¯Ð[é"âŠ%QZ4mŠ"­ƒ&·/Ù¥dÚ«DRÖýúIݼ«-öÁKr8—3gíOA„IÙ¿á³l67·YœÌ&
+N›OâNƒá£l‚öÖ"
+h„Ó”&Áþ¸ñWI at c†yF‚$ã˜ò,Ø7›÷èÍ–D8Šr$ʏâ$·!Mìš¡¿:Õt_mÿÜÿbò€œ'	µãÇ”çAH3œ‘öàéµÐå=Üg9ÎóQö|tFH2ºJ0Hij=…$Í0OXŽM¸wµßfî‚.œS˜ïÑsHÊröPƒ 4«X5ށ˜Lé
+"G$JPÕ×ë±Îh6†z׋¾2}UŠz¨•§èU{”Z¶åIÐQi·Xæ¦ûJÔõe6ú­0RöAò0—Y4?úÖ$R΄SŽ>Ï ¿Ñª”ÆH³^­ÏÚ›ùÜÿØæ6ß„#©M¥ÚµjãžÈ" Q²íþÃÿ£ÝMôRôr0~„ ÏÓ|ði¹F1d¸æw´
+)ñÿØ+¿ßî¬íOûÍÛ
+¤h’Ü‘Zyx´p;Ž ¡)Ž“<`IŽYÊýÜ÷}÷Í͍å;Öá6„¦A÷NÒ-Ø$CVdÙc8p°ù\þ}WâGŽY0Fqˆ^JSêªëmCžb—0LmÆýV˜ÖÈþ^ŒgÛD»î1ېZ
+ØøÿÈÖMdHŸ ;ôâ׳…éUy/ìdŒcŸ¡Ã¥M:ÀBšªá•„ø‚æ9Êsd.¦—y>î¤à(šN¸ŠÝ&jÔAÖæn‹¿Dü<‰ï îd=…—œFFxoïÐwߎc¨ãn;
+Ð`{-òèk˜¹Ø…~ÕtJ÷k¡ãÓ<#ÛB͈¢“Ý}UÎ[5ŸûVéfBä;UCG+à0ÔÞ•ê ž/s.:P6gEz˜ï·µêz½ZːÜŠ»ª”­YpƒˆGI~³[àÈ9¢wÛõ(ý…J¡øû:"Öš•bÆÇY@½>Ë5­®”鵨êª=í@º×ÊsfÉÌwçÂf1½‰)êÕL+¡h[u†iü^‡vòìS‘9í˜ÃïçÐÔ¹+Ó Ž.ÙöfÉâ2ÃwRú<Us|Ô®ê2V¯,Ê®
+hî6û¯ß»H$³|櫉ٷïtÓ @h§ª=ª›«úþèùîý¨êzýˆÌH:=ÙB|;Oš8Ã\i㶠”“l¥ök§sò\KÝœkHO5pàDD+‰Ü3t%*¦­ºNösæûu<·óêêó©jÍ´ÃQ±¥c’¢sU¤Þ&V
+9CC<‹'(k#ú)3øêT«S#E+½¶ò=tsâÈÔ07áAšêÔ.Ýhõ¬^ìæ yªPõœeŒ
+Ówå"OjèL¡–þl}e-ÌÂ.…ÔÄaN5sVKßîÖ jgê1g-Ãk{†ôð<:@U[õ¡ëádbbL<¬z…Y:¬zµeúg‰ÀìÉZöª}â}æ98©”~ä‚ÚŒÛc¦&-²u¬ëµ°ƒ¡ôåI†]­úÇ>ºgu?P¾¨ eP´ Öùo ¥fnuæ†@¦ò~á¶0M9·Œº5]–Ú6”ÜTÇÙ2±ËG½œ¦b7r®SFÔŠÀ4åÐ/VÑÖG;<‹‰2ÙÍÓ¹7KBÙ=U|¸4ؼf~!gb¿1áàò(„©ÊÐLð™ÎªÖtú'ø‰¢\v–+õø÷PŠDÏãˆü4bs¿lâ„û·ƒLß=ßnþÞ§„jendstream
 endobj
 1015 0 obj
 << /Filter /FlateDecode /Subtype /Type1C /Length 6295 >>
@@ -906,21 +906,25 @@
 stream
 xœµZÍsÛ6ŸéÑ…¦‡-´±@`wö&{趙n[Ïì!ÞMÑ[ŠTI*®ÿû} 	É’“ÖJr°H ?üðð>øû"Žä"Æÿîo¹½úúg“.xqõû•¤Ö…ûSnß^C©âEå™Ê×wW8tG±û·Ð=Žt’-Œ”Q¦óÅõöJìºínµ+Êߊûjyý+Îc„àÐ46‘ŒíÁPíúgAÿUg‘ÉÔb¥¾„žë«÷âm1Ë•J £µ¢h‹æq¨ÿF쇺½wO9©´üßõ¿Ÿèb+™G*5,ôzSÁ	ó€ˆ/úaÄ'ÅÒŠa¬vÜǹ¨[ßOº©œôPsk"¥X,Èfž¢¡²(U6çNï­ÀÉ»ùwÕ–ÝštË`uRtmõÕ2MA3•‹aÖy½š1Ü,gÍ‹v=wX3lð:\BwûkUŽƒ_Ÿݝ¿Ë¦·>Ò;§©~~ o®R¿¾Äæ9ˆMďm€õº«xŠ•Ne¤	û"£<M%7„ŒJ`E©øP㔆¡‰(ø}n(‹¦ñ
 â‡ÿu}õÓSßƱ±rÑŸç»=¦;‘ܪ(KÒE–ª(É’‰ä¸Z'ý¼Ä“ÜW±Š€sÀ÷âjžÓŽ=lêrƒ°Á±ÁJðÔ¥™ø°TøKf¢k>,%,;OEÅЈaW•õÝ#Ÿ R \5Cµo»Û¡êa 
-†ÕÚõŒ¼+?)™¾+«aðƒ•£=˜P¬Ûªö}µ­Ú‘÷Ð&´Ù£=œ%ÂãvÉð7n	¤&10Eƒš9<¿­Æ¢nh ‚E%ÀþYˆcµ€’}å`	÷õ’ˆa1„•UN’ŸÇð 9éë®ÜãjŠ±î‚.w]O©ïe¨•(éEÛ›Æùˆ•$:2:%¾e×c¿/G§?!u·oË•;r°å`€N,NkLFà_Û]ƒL“øHPÓƒ:4µÇll¤Í‰®„44ˆqÕE3	¥ånöä(¦Éœ–ùÈ'AÑpÚ”P”{厛¿ üÔÕíPûúg§ÉÀÞƒ9<˜Ou¬“¬«m7¸÷V‹qÊЦy”èÄß$8äÆëÿOäXû§†$fY"Ý ›å+ì³Ò9õÔo¶»LùlÓ])uå‹órL—YB—E7XšÛ‰ëŽX/°¥p„,›P0’›	|Ÿ±Ž’ü	ý‘ëÙN—W@í~`Ë@Ά@O½Òx¸KM÷cñ¡^“vMEs¤7Ûaí
-D¸5OGFRãZpZ	Ç0ÉÙÏêí¾™ÌRL·™Q’”ïÊM1ŒuéÚãT¬Ûb[ÃÝè_1<‚;³þ1©0T—Úg­]i©±Q.%m‡Óú›,Á÷³ -ÍT¤3ÍgKÀìŠÝT³ýø¢«žîB6B9®×ß¿öÖüûŒ|À°0â]׎Õ|ß}Óy‘Í'NO®·»®‹¶$ÈnÐâf‰`Ç9Ý×C;±èš±»«qé ;IáoÊ`ë l¾+™9`3{ØZo?l<w1à Œ›n=Óofl*¾ëÚÃRscAn@ìm£ŠãìÕÜSÅRN)>¦3½P—„<Œ<DĶ¾» Äàñ©Ì0ÄɈۮ
-UE?¯LFUâ9Ÿ`¶³e™ñþ~©ˆ+9\Ìkv”öyÄCLÍ%
-E¡ظ Ñ6—ÀTªÈ(†4=él.<kß½y÷&ˆ'w`ÂrÂi€>€òu»îëjïPQÏ(ãÏ I#u°^±Û–Ûòå&yIav¾»­VÛb,7ÌÂ4~ö ÿ%þIðÿN|ü¹Ž¸ÎÁHòpí¼Äˆ–xP
-8dʹ…& µðx)Šàƾ˜°ù4”oÄÏÕ~[´3,g=° h2cû¹LflÁgOÃeóò.†g¦£Ø8ÓiC鱞.MýÛRÆŽ}M½éBøü›bÆí¿Kƒò2µ»õLÖÏ{¤Á+‡p!\3àp%˜iraÒMÝõ–£"ߏÕP‡”*ÁAÞO±3“7âzF©­?npùç:ÀFG<ý`¡¢¸}‘5TX@ˆŽªKHä‘ÓÖðQÝFÏ?çsú.ÎçtHå¦Ú×ThQ¨÷Óåÿ7ÿ+$n5Œá^øò37±±X‚%n‡—ÝEŒ¾„pB;‡_Ê }*vÍv"Ànb³ëg(¼ÝœK®œˆÓPERâ¥Nc˜Ú¹ÈB ùÁãø“ÖŠSZSZC)EJÑ§ê0s*0Å‘€çNáH)Š¾îöS‹c×QöM¹Ì¥‘œø]ӍÎ%
-¦<!«SQªöRüД¾§ré7µõ&ō˜+N3ˆÆLvt*í¾Â¬¾²‘Ì3—ËzëÔHsŒá)úÕt»À}ÆÕDM”ôÎ0{UN§;› pg¿Í¡O„Y„é6ÙAÌ{G¨æ)œÜ~KÚÖÎ&@$ˆ§Üéñ¾ic‡Âý´ò Añˆ¯¹ p_µ9øWSƒÁéï‰$àJY†¥ª
-ŒãK@ׂñ¼drŠ§ª
-7±$ÝuLIH§û–«L¢<+~¤Ÿ¹MÄ;øEÉÜÚOTfàÖ‚ZzÌ8ýYžÑ|ÝÐzrrc=3ÞFÚ=Ê©(›Eqêë	‰+ô„Y(òðëö›R¡—´x¾Šc"cåµ%|í^¶0>Á)”¹Ó7ád¶'95Æ9“œÇW®&ÎÊù1œôfq§¶€J-bÃU–‰ûŽX€²]ú'3ÚG‹W6‰¦♵¯t–cÚêi¶Í1ž†œÈ´)ÿ`ÅmÅyxÃÙÐnîv·¤	Ü^EY7µ+J¤6¬°ŒuÅEš„ćSM…Lã*ƒ¡ÄK;yp‚€Å)9'œK¬Rá„ ¶¦€w¤ïZ?·>lÀ‚Ä0m¬xš^	IŠ“ŠÆˆGß_Š²`ÎMÈýpuý÷÷€N`yàŸ³+‡™Z<’Eæ^Bç,ðkïÁ|u× £#ÈzÝvëÇÀ®ÞÅd|]1˜Y/‡jØ S"Õzí¯gƒ¨EÓM•‡USM1`¸cóœ!“³œ
-ë&úʏŽÓð®j'W“iänþ³ä¨úaîU¿}ÑàüÓþÁ™z œ3m*WQ¢Ø™~¼À—×  §(”x2Å­À0mŽ®Á7Ý8L ¸¥r¢‹²8— %E…	MêïÝwU1îÝ%)ÙbÁ pq‡q8eÕ§»/˼JíØ×·KId7bÎ š6«¨ôGE&m5Ùü‡ªÆW NB•Ap¦®ê°k9/5vâ+V}ê;E½<ëm/	tØà©Flè%°¤gHÀÀš˜ëØ¿TÕ4†
-»ëŠ®ØêÔñfÿÌ°ó´îô‰¥®3U؝.”¦›†ÝæÍ8î¾ùúk´ßQ¿‚«!Fî¾¢6%ÆÛë^RÓø-öp~v
-z·•hv51ç.%^l)Öv‘nä_àUæ*ÆØ]²sB‚lâî÷àÝ^¾ò‰Æª£i[Ô
-™>²‘M=Œ0—†Ëohümp­2c?Hú붢QìÇM×_áSŒîvo˜ä$Àç®yÐ~„wVHr“RúxI˜©ÌBTNÜ~·»Õš®A/î¸Ìä<²©ºÇŒ;L}úx0tû~ös“##–Á?ÉÕo*ç'¾9úàæ5ÌFš+Ñî··EÊùÞ¦6=WŠé#	.ß`ëÚ…*hWÝTn§Ê7‡:V™ïNYñ;ó±¯u@€žÜ¼à«IÅ}i#ÉtŠ$˜hê²õȃ&O£/fr’cyÌäÙÃu¥§$pa¨à,y3ƒ
-}Á&ÎP0SÝ·sÉL?)¿S…ú¸P¾¼ƒß\Èdá5iÁ/—À:sÎ`á¾¥ÏX-W¥ñá·C
-Ú_ÏB€S9ü‹’¸Jæ 2M{üKÅ`fG’œl·A ì? Ð1žüoìfc‹ÈÏCÖòÛìk¥‰#)óÒ6WV>á-kbÜÕóé85×®ø›.Š¡ŽÞ*RS`UxEþ*%Ý™‰¼C1}pvDèÀõ#Ⱦ-:àZ“wâfÒüÝɦjvs2qøw„½8²´®íC]Í^¯“lÌZ’—·§0Rsº/¯@ÆÛㆀYè”?g	vuÞ÷r?V'
-‹I"pÈ‚-rß<܈“nd`‡À>Î_Ì¥Îùú®õ¢ëuüxå>ၠ$†û0ÊÉÝœR_îã(:ÅAp0Þ'A@ÆŸ§Ìþ¢ÿ0ÍåÂK—Úsˆú›ÀÅw;%æÎ8Iy!„QRû@ôð˜/Ñ/O"™cé!söš=e2?]ý6ÌK”endstream
+†ÕÚõŒ¼+?)™¾+«aðƒ•£=˜P¬Ûªö}µ­Ú‘÷Ð&´Ù£=œ%ÂãvÉð7n	¤&10Eƒš9<¿­Æ¢nh ‚E%ÀþYˆcµ€’}å`	÷õ’ˆa1„•UN’ŸÇð 9éë®ÜãjŠ±î‚.w]O©ïe¨•(éEÛ›Æùˆ•$:2:%¾e×c¿/G§?!u·oË•;r°å`€N,NkLFà_Û]ƒL“øHPÓƒ:4µÇll¤Í‰®„44ˆqÕE3	¥ånöä(¦Éœ–ùÈ'AÑpÚ”P”{厛¿ üÔÕíPûúg§ÉÀÞƒ9<˜Ou¬“¬«m7¸÷V‹qÊЦy”èÄß$8äÆëÿOäXû§†$fY"Ý ›å+ì³Ò9õÔo¶»LùlÓ])uå‹órL—YB—E7XšÛ‰ëŽX/°¥p„,›P0’›	|Ÿ±Ž’ü	ý‘ëÙN—W@í~`Ë@Ά@O½Jðp!—š:îÆâC½&횊æH?n¶Ã2Ú:ˆpjžŽŒ¤Æµà´Ža’³Ÿ3ÔÛ}3™¥˜n2£$)#Þ•›bëҵǩX?¶Å¶†»Ñ¿2bxwf;ücRa¨.µÏZºÒ,Rc£\JÚ§õ6Y‚ïgAZš©HgšÏ–
+€Ù=,º©fûñE3V=Ý…l„r8\¯¿í5¬ù÷=ùa#`Ä»®«ù8¾)ú¦ó"šOœž\ow]?mHÝ ÅÍÁŽsº‡/‡vbÑ4!.bwWãÒ/ v’Âß”ÁÖØ|W2sÀfö°µÞ~ØxîbÀA7Ýz¦ßÌØT|×µ‡¤çÆ‚Ü€ØÛFÇÙ«¹§Š¥œS|Lfz¡.	3x"yˆˆm}wˆÁãS™aˆ“3·]ªŠ~^+˜ŒªÄs>ÁlgË2ãýýRWr¸˜×ì('ì󈇘šKŠB
+°q¢m.©T‘QizÒÙ\xÖ¾{óîMOîÀ„ä„Ó } åëvÝ×ÕÞ¡¢žPÆŸ@“Fê`½b·-·åËLò,’Âì„}w[­¶ÅXn˜…iüìAÿKü“àÿœøøsqƒ‘äáÚy‰-ñ pÈ”sM jáñRÁ}1aói(߈Ÿ«ý¶hgXÎ"z`AÑdÆös™ÌØ‚Ïž†Ëæå]ÏLG±q¦Ó†>Òc<
+\ %šú·¥ŒûšzÓ…ðø7Ōۗåejw뙬Ÿ÷HƒWáB¸6fÀàJ0Óä"Â<¤šº?ê-GÿD&¾-«¡)U‚ƒ¼Ÿ"bg&oÄõŒR[Ü áòÏu€Ž,xúÁBEqû"k¨ °€U—È#§¬á'¢ºžÎçô]œÏéÊMµ
+®©Ð¢þPï§ËÿoþWHÜjýðåg"nb!b±*KÜ/»‹}	á„v¿”úTìš	ìD€ÝÄ$f×?ÎPx»9:—\38-?¦¡Š¤ÄK
+œÆ00µr)…@óƒÇñ!'­§´¦´†RŠ•¢:NÕaæT`Š#Ϝ‘R}Ýí§#Æ®£ì›r™#J#9ñ»¦JLyBV§¢T#ì¥ø )}OåÒo jëMŠ1ÿVœf>™ìèTÚ}…Y}e#™g.—õÖ©‘æÃSô6ªévûŒ9ª;ˆš(éaöªœNw6AàÎ~›CŸ³Óm²ƒ˜÷ŽPÍS8¹ý–´=¬9œM<€þ
+HO¹Óã}ÓÆ…ûiåA‚â_sà¾j+r*𮦃Óß1)HÀ•²KU;Ç–.€®ã5xÉäOUnbIºë˜’N÷ÿ,W™DyVüH?s›ˆwð‹’¹´Ÿ¨ÌÀ­!´ô2˜	pú³<!£ùº¡õääÆzf¼´{”SQ6‹âÔ×Wè	³0:Qäá×í)6¥&B/iñ|ÇDÆ$ÊkKøÛ½l%`.|‚S(s§oÂÉlOrjŒs&93®\Mœ•óc8éÍâNm' •ZĆ«,<,÷± e»ô;O:g´¯lM)Ä3k_é,Ç´ÕÓl?šc<
+9‘iSþÁŠÛŠóð†³¡ÝÜínI9¸½Š²njW”HmX%`ëŠ#Š4	‰§š
+<˜ÆUC‰—vòà‹RrN8—X¥ÂÿAmM!îHßµ~.n}Ø€‰aÚX)ð4½’'¾¿eÁœ›ûáêúïïÀòÀ%>gW3µx$‹>̽„ÎYà×Þƒù ë®AGGõºí֏]¼‹Éøº4b0³&^Õ8°¦DªõÚ_ÏQ‹¦›*«¦šbÀpÇæ9C&g9&ÖMô•§á]ÕN®&ÓÈÝügÉQõÃÜ«~û¢Àù§ýƒ3õ 8gÚ.T®¢D±3üx/¯-@NQ(ñdŠ[a4Ú]ƒoº-.p˜@qKåD	ep.A<.JŠ
+šÔß%ºïªbÜ»KR:†3Å‚AàâãpʪOw_–y•Ú±¯o—’Ènĝ4mVQ鏊LÚj²ùUŒ¯@„*ƒàL]Õa×r^jìÄW¬úÔ4vŠzyÖÛ^è°ÁSØÐK`Iϐ€51×±©ªiv×]±Õ©ãÍþ™a7æiÝéK]gª,°3:](M7
+»Í›qÜ}óõ×h¿£~WCŒ>Ü}ElJŒ·×4¼¤¦3ð[ìáüì0.ôn;*ÑíjbÎ\J¼ØR¬í"ÝÈ¿À«ÌUŒ±»dç„ÙÄÝîÁ»½|åUGÒ¶¨2}d#!šza.
+—7ÞÐøÛàZeÆ~ô×mE
+¢Ø›®¾Â§7ÜíÞ0ÉI€!Îÿ\/ò ý﬐ä&¥ô9ð’$0S™…¨<œ¸ýn5v«5]ƒ^Üq!*˜ÉydSuw˜úôð`èöýìç&GF>,ƒ’«-ÞTÎO|
+rôÁÍk˜4W¢Ýoo+$Š”ó½Mmz®ÓG\¾Á2(ÖµTЮº#¨Ü&N•o1t¬2ߝ*²âwæc_ë€ =¹yÁW3’,ŠûÒF’é
+I0=ÐÔeê‘+LžF_Ìä$Çò˜É³‡ëJOIàÂPÁYòfú‚M,œ¡`¦º)nç’™~R~§
+õq¡|&x/¾¹ÉÂkÒ‚_.uæœÁÂ}KŸ±Z®$JãÃo‡´¿ž… ;¦rø%q•0ÌAdšöø—ŠÁÌŽ$9Ùn‚ Ø@¡c&<ùßØÍ:ǐŸ‡¬å·ÙÖJGRæ¥m®¬|Â[Öĸ«3æÓqj®]?ð7]C½U¤¦ÀªðŠüUJº3y‡búàìˆÐëF}[tÀµ&ïÄͤù»“MÕìæ&dâð
+î{qdi]Û‡ºš½^'Ù*
+˜µ$/ÿnOa¤æt^^Œ·Ç
+²Ð)Îìê¼ïå~¬N“Dà[ä¾y¸'?ÜÈÀ}œ¿˜Kóõ]ë5D×ëùñÊ}ÂAI!÷a”;’»9¥¾ÜÇQtŠƒà`2¼O‚€Œ?O™ýEÿašË…—.µ,æõ)6‹ïvJ̝pþ’òB£¤öèá0_"¢_žD2ÇÒCæì5{Êd~ºú?XxK•endstream
 endobj
 1023 0 obj
 << /Filter /FlateDecode /Length 1949 >>
@@ -2603,14 +2607,11 @@
 %ª¯{ÿPÆÉÙendstream
 endobj
 1091 0 obj
-<< /Type /XRef /Length 435 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1092 /ID [<213d0053ec1e0a53c3006db272349d0d><d9cc430f850fb088478d467450f98068>] >>
+<< /Type /XRef /Length 436 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 1092 /ID [<1654c5e3a24271b3b3682c1ec6893f4a><0c9132f9484649268e66406e7f421aef>] >>
 stream
-xœí—=(EqÀï}/ïz_®ï²P)e %¥ʠ؈z¢HÉG!¼Íöb 0’2I)õ	¥Ô[ÄF❟Á®ÿxÞðëtþçžsá>%?mY.|³<’°•Jü¶Ü˵Tì[»’^µKiҮ⽵”W÷»ê•Ò¤WåâÕõœz¥4éUuB¼J,«WJ“^5Œ‹WGIõJiÒ«Hxµ¯ßíJ£^uDÅ«í/õJiÒ«î˜xµ~§^)Mz5`‰Wñ>õJùF6R±VüqâÂô:X#ô/;œæ}C䛄iœFa?ù6*‡ÉD¨o€ò¿Ò.x—¸dBh7
-óïá4fõ
-ÿ=_„n)É8§t;ä´SjüÛ'0"~/ÒSfÙ¹3äë…Þ}XÅUÌJPF¼Â)a;¹Óà3sÇØd•þƒÂÌ+aF§]T³Û	ü ÿ5SÄ·Ô”Én¡ú³¡¿69e“p«0‡
-]¾Iœ'zòFB-°™žçÔÜ=µäÙ-üû¾x;¾J¶ÍfíP/×ÚÎ<yIâW#Ã]y¶NŽõ$Çd?
+xœí–M(DQ€ß›É<ógüNÙPRÊ‚,LI©AY(vDe”üÂìì&’š•d!¥Fa¡	¥”Ø‘˜óYØë.Ï[|Î=÷ÜóÞýÏeÉã²-+ß,—$l¥Ò ¿­Ðåz:ö,‹]/nµKiÒ®’ýõ´W©=õJiÒ«Šñêz^½Ršôª&)^%WÔ+¥I¯"âÕÑ‹z¥4éU´G¼Jè»Ò¨WýâÕΗz¥4éUwL¼Ú¸S¯”&½´Ä«xŸz¥ü?c÷›éØ;'þ8qaf=¬z‰VÃBÏ0ù&aF%«ýp€|•#d¢ÔGàjšvá»Ä¥“B»QNÁ2œUÜ+þö|†ÊèLÆ9¥Û!«Â@ãß<¾Q¡ÿ“x‰žr–?K¾AèNÀjv]pV’ú3âUV™Ðÿ Û9‘7õ?qî8“¬ÑH˜}%Ì*`µ‹Êcf;ôߦfšø–šr™-p@&ô1ëLlæ1aˆç‘žÜH 6Ó󜚡«Ž<³ï‹ÛñT1m®0g—zÙk;œÈöM¿Ò!Æ^ÞÚÏ·uò¬&—d@
 endstream
 endobj
 startxref
-280426
+280427
 %%EOF

Modified: www/vignettes/pompjss.R
===================================================================
--- www/vignettes/pompjss.R	2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pompjss.R	2015-03-24 14:19:18 UTC (rev 1148)
@@ -361,15 +361,15 @@
 ## ----gompertz-multi-mif-table,echo=F,results="asis"----------------------
 require(xtable)
 options(
-        xtable.sanitize.text.function=function(x)x,
-        xtable.floating=FALSE
-        )
+xtable.sanitize.text.function=function(x)x,
+xtable.floating=FALSE
+)
 print(xtable(results.table,align="r|cccccc",digits=c(0,4,4,4,2,2,2)))
 
 ## ----gompertz-dprior1,tidy=F---------------------------------------------
 hyperparams <- list(min = coef(gompertz)/10, max = coef(gompertz) * 10)
 
-## ----gompertz-dprior2----------------------------------------------------
+## ----gompertz-dprior2,tidy=FALSE-----------------------------------------
 gompertz.dprior <- function (params, ..., log) {
   f <- sum(dunif(params, min = hyperparams$min, max = hyperparams$max,
                  log = TRUE))
@@ -427,11 +427,11 @@
 rm(pmcmc1,save.seed,tic,toc)
 })
 
-## ----pmcmc-diagnostics,results="hide",fig.show="hide",echo=F-------------
-gelman.diag(pmcmc.traces)
-gelman.plot(pmcmc.traces)
-autocorr.plot(pmcmc.traces[[1]])
-hist(rle(unlist(pmcmc.traces[,"r"]))$length)
+## ----pmcmc-diagnostics,results="hide",fig.show="hide",echo=F,eval=F------
+## gelman.diag(pmcmc.traces)
+## gelman.plot(pmcmc.traces)
+## autocorr.plot(pmcmc.traces[[1]])
+## hist(rle(unlist(pmcmc.traces[,"r"]))$length)
 
 ## ----pmcmc-plot,echo=F,eval=T,results="hide",cache=TRUE------------------
 op <- par(mar=c(4,3.5,0,1),mfcol=c(3,2),mgp=c(2.5,1,0),cex.axis=1.5,cex.lab=2)
@@ -465,14 +465,12 @@
    Tr = exp(r);
    Tsigma = exp(sigma);
    Tphi = exp(phi);
-   TN_0 = exp(N_0);
-"
+   TN_0 = exp(N_0);"
 par.inv.trans <- "
    Tr = log(r);
    Tsigma = log(sigma);
    Tphi = log(phi);
-   TN_0 = log(N_0);
-"
+   TN_0 = log(N_0);"
 
 ## ----ricker-pomp,tidy=F--------------------------------------------------
 pomp(data = data.frame(time = seq(0, 50, by = 1), y = NA),
@@ -548,19 +546,19 @@
 })
 
 ## ----ricker-mif-calc,eval=FALSE,tidy=FALSE-------------------------------
-## mf <- mif(ricker,start=guess,Nmif=100,Np=1000,transform=TRUE,
-##           cooling.fraction=0.95^50,var.factor=2,ic.lag=3,
-##           rw.sd=c(r=0.1,sigma=0.1,phi=0.1),max.fail=50)
-## mf <- continue(mf,Nmif=500,max.fail=20)
+## mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+##           cooling.fraction = 0.95^50, var.factor = 2, ic.lag = 3,
+##           rw.sd=c(r = 0.1, sigma = 0.1, phi = 0.1), max.fail = 50)
+## mf <- continue(mf, Nmif = 500, max.fail = 20)
 
 ## ----ricker-mif-eval,echo=F,eval=T,cache=F,results="hide"----------------
 bake("ricker-mif.rda",{
   save.seed <- .Random.seed
   set.seed(718086921L)
-  mf <- mif(ricker,start=guess,Nmif=100,Np=1000,transform=TRUE,
-            cooling.fraction=0.95^50,var.factor=2,ic.lag=3,
-            rw.sd=c(r=0.1,sigma=0.1,phi=0.1),max.fail=50)
-  mf <- continue(mf,Nmif=500,max.fail=20)
+  mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+            cooling.fraction = 0.95^50, var.factor = 2, ic.lag = 3,
+            rw.sd=c(r = 0.1, sigma = 0.1, phi = 0.1), max.fail = 50)
+  mf <- continue(mf, Nmif = 500, max.fail = 20)
   .Random.seed <<- save.seed
 })
 

Modified: www/vignettes/pompjss.Rnw
===================================================================
--- www/vignettes/pompjss.Rnw	2015-03-24 13:44:58 UTC (rev 1147)
+++ www/vignettes/pompjss.Rnw	2015-03-24 14:19:18 UTC (rev 1148)
@@ -31,6 +31,8 @@
 \Crefname{appendix}{Appendix}{Appendices}
 \crefname{algorithm}{Algorithm}{Algorithms}
 \Crefname{algorithm}{Algorithm}{Algorithms}
+\crefname{section}{Section}{Sections}
+\Crefname{section}{Section}{Sections}
 \crefname{AlgoLine}{line}{lines}
 \Crefname{AlgoLine}{Line}{Lines}
 
@@ -218,6 +220,7 @@
 %% Note that you should use the \pkg{}, \proglang{} and \code{} commands.
 
 \section {Introduction}
+
 A partially observed Markov process (POMP) model consists of incomplete and noisy measurements of a latent, unobserved Markov process.
 The far-reaching applicability of this class of models has motivated much software development \citep{commandeur11}.
 It has been a challenge to provide a software environment that can effectively handle broad classes of POMP models and take advantage of the wide range of statistical methodologies that have been proposed for such models.
@@ -265,7 +268,8 @@
 Finally, \cref{sec:conclusion} discusses extensions and applications of \pkg{pomp}.
 
 
-\section[POMP models and their representation in pomp]{POMP models and their representation in \pkg{pomp}}\label{sec:background}
+\section[POMP models and their representation in pomp]{POMP models and their representation in \pkg{pomp}}
+\label{sec:background}
 
 Let $\theta$ be a $p$-dimensional real-valued parameter, $\theta\in\R^p$.
 For each value of $\theta$, let $\{X(t\giventh\theta),t\in T\}$ be a Markov process,
@@ -286,7 +290,8 @@
 Note that this formalism allows the transition density, $f_{X_{n}|X_{n-1}}$, and measurement density, $f_{Y_{n}|X_{n}}$, to depend explicitly on $n$.
 
 
-\subsection{Implementation of POMP models}\label{sec:implementation}
+\subsection{Implementation of POMP models}
+\label{sec:implementation}
 
 \pkg{pomp} is fully object-oriented:
 in the package, a POMP model is represented by an S4 object \citep{Chambers1998,genolini08} of \class{pomp}.
@@ -295,30 +300,32 @@
 \Cref{tab:notation} gives the mathematical notation corresponding to the elementary methods that can be executed on a \class{pomp} object.
 
 \begin{table}[t]
-  \begin{tabular}{llll}
-\hline
-Method &Argument to the &Mathematical terminology \\
-& \code{pomp} constructor & \\
-\hline
-\code{rprocess} &\code{rprocess} &Simulate from $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
-\code{dprocess} &\code{dprocess} &Evaluate $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
-\code{rmeasure} &\code{rmeasure} &Simulate from $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
-\code{dmeasure} &\code{dmeasure} &Evaluate $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
-\code{rprior} &\code{rprior} &Simulate from the prior distribution $\pi(\theta)$\\
-\code{dprior} &\code{dprior} &Evaluate the prior density $\pi(\theta)$\\
-\code{init.state} &\code{initializer} &Simulate from $f_{X_0}( x_0 \giventh \theta)$\\
-\code{timezero} &\code{t0} &$t_0$\\
-\code{time} &\code{times} &$t_{1:N}$\\
-\code{obs} &\code{data} &$y^*_{1:N}$\\
-\code{states} & --- &$x_{0:N}$\\
-\code{coef} &\code{params} &$\theta$\\
-\hline
-\end{tabular}
-\caption{
-  Constituent methods for \class{pomp} objects and their translation into mathematical notation for POMP models.
-  For example, the \code{rprocess} method is set using the \code{rprocess} argument to the \code{pomp} constructor function.
-}
-\label{tab:notation}
+  \begin{center}
+    \begin{tabular}{llll}
+      \hline
+      Method &Argument to the &Mathematical terminology \\
+      & \code{pomp} constructor & \\
+      \hline
+      \code{rprocess} &\code{rprocess} &Simulate from $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
+      \code{dprocess} &\code{dprocess} &Evaluate $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$\\
+      \code{rmeasure} &\code{rmeasure} &Simulate from $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
+      \code{dmeasure} &\code{dmeasure} &Evaluate $f_{Y_n|X_n}( y_n \given x_n\giventh \theta)$\\
+      \code{rprior} &\code{rprior} &Simulate from the prior distribution $\pi(\theta)$\\
+      \code{dprior} &\code{dprior} &Evaluate the prior density $\pi(\theta)$\\
+      \code{init.state} &\code{initializer} &Simulate from $f_{X_0}( x_0 \giventh \theta)$\\
+      \code{timezero} &\code{t0} &$t_0$\\
+      \code{time} &\code{times} &$t_{1:N}$\\
+      \code{obs} &\code{data} &$y^*_{1:N}$\\
+      \code{states} & --- &$x_{0:N}$\\
+      \code{coef} &\code{params} &$\theta$\\
+      \hline
+    \end{tabular}
+  \end{center}
+  \caption{
+    Constituent methods for \class{pomp} objects and their translation into mathematical notation for POMP models.
+    For example, the \code{rprocess} method is set using the \code{rprocess} argument to the \code{pomp} constructor function.
+    \label{tab:notation}
+  }
 \end{table}
 
 The \code{rprocess}, \code{dprocess}, \code{rmeasure}, and \code{dmeasure} arguments specify the transition probabilities $f_{X_n|X_{n-1}}( x_n \given x_{n-1}\giventh \theta)$ and measurement densities $f_{Y_n|X_n}(y_n\given x_n\giventh \theta)$.
@@ -365,7 +372,8 @@
 The \code{covar} argument in the \pkg{pomp} constructor allows for time-varying covariates measured at times specified in the \code{tcovar} argument.
 A example using covariates is given in \cref{sec:EpidemicModel}.
 
-\section{Methodology for POMP models}\label{sec:methods}
+\section{Methodology for POMP models}
+\label{sec:methods}
 
 Data analysis typically involves identifying regions of parameter space within which a postulated model is statistically consistent with the data.
 Additionally, one frequently desires to assess the relative merits of alternative models as explanations of the data.
@@ -384,59 +392,59 @@
 Though \pkg{pomp} has sufficient flexibility to encode arbitrary POMP models and methods and therefore also provides a platform for the development of novel POMP inference methodology,
 \pkg{pomp}'s development to date has focused on plug-and-play methods.
 However, the package developers welcome contributions and collaborations to further expand \pkg{pomp}'s functionality in non-plug-and-play directions also.
-In the remainder of this Section, we describe and discuss several inference methods, all currently implemented in the package.
+In the remainder of this section, we describe and discuss several inference methods, all currently implemented in the package.
 
 \begin{table}[t]
-\begin{tabular}{l|p{0.35\linewidth}|p{0.35\linewidth}}
-\multicolumn{3}{l}{\bf (a) Plug-and-play \rule[-2mm]{0mm}{4mm}  }\tabularnewline
-\hline
-&Frequentist   & Bayesian  \tabularnewline
-\hline
-Full information&
-Iterated filtering (\code{mif}, \cref{sec:mif}) \raggedright
-&PMCMC (\code{pmcmc}, \cref{sec:pmcmc}) \raggedright \tabularnewline
-\hline
-Feature-based
-&Nonlinear forecasting (\code{nlf}, \cref{sec:nlf}), \raggedright
-&ABC (\code{abc}, \cref{sec:abc}) \raggedright \tabularnewline
-&synthetic likelihood (\code{probe.match}, \cref{sec:probe}) \raggedright
-& \tabularnewline
-\hline
-\multicolumn{3}{c}{}\tabularnewline
-\multicolumn{3}{l}{\bf (b) Not plug-and-play \rule[-2mm]{0mm}{4mm}} \tabularnewline
-\hline
-& Frequentist         & Bayesian  \tabularnewline
-\hline
-Full information
-& EM and Monte~Carlo~EM,  \raggedright
-& MCMC \raggedright \tabularnewline
-& Kalman filter \raggedright
-& \tabularnewline
-\hline
-Feature-based
-&Trajectory matching (\code{traj.match}),  \raggedright
-& Extended Kalman filter \tabularnewline
-&extended Kalman filter,  \raggedright
-& \tabularnewline
-&Yule-Walker equations  \raggedright
-& \tabularnewline
-\hline
-\end{tabular}
-\caption{
-  Inference methods for POMP models.
-  For those currently implemented in \pkg{pomp}, function name and a reference for  description are provided in parentheses.
-  Standard Expectation-Maximization (EM) and Markov chain Monte~Carlo (MCMC) algorithms are not plug-and-play since they require evaluation of $f_{X_n|X_{n-1}}(x_n\given x_{n-1}\giventh\theta)$.
-  The Kalman filter and extended Kalman filter are not plug-and-play since they cannot be implemented based on a model simulator.
-  The Kalman filter provides the likelihood for a linear, Gaussian model.
-  The extended Kalman filter employs a local linear Gaussian approximation which can be used for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate Bayesian inference (by adding the parameters to the state vector).
-  The Yule-Walker equations for ARMA models provide an example of a closed-form method of moments estimator.
-}
-\label{tab:methods}
+  \begin{tabular}{l|p{0.35\linewidth}|p{0.35\linewidth}}
+    \multicolumn{3}{l}{\bf (a) Plug-and-play \rule[-2mm]{0mm}{4mm}  }\tabularnewline
+    \hline
+    &Frequentist   & Bayesian  \tabularnewline
+    \hline
+    Full information&
+    Iterated filtering (\code{mif}, \cref{sec:mif}) \raggedright
+    &PMCMC (\code{pmcmc}, \cref{sec:pmcmc}) \raggedright \tabularnewline
+    \hline
+    Feature-based
+    &Nonlinear forecasting (\code{nlf}, \cref{sec:nlf}), \raggedright
+    &ABC (\code{abc}, \cref{sec:abc}) \raggedright \tabularnewline
+    &synthetic likelihood (\code{probe.match}, \cref{sec:probe}) \raggedright
+    & \tabularnewline
+    \hline
+    \multicolumn{3}{c}{}\tabularnewline
+    \multicolumn{3}{l}{\bf (b) Not plug-and-play \rule[-2mm]{0mm}{4mm}} \tabularnewline
+    \hline
+    & Frequentist         & Bayesian  \tabularnewline
+    \hline
+    Full information
+    & EM and Monte~Carlo~EM,  \raggedright
+    & MCMC \raggedright \tabularnewline
+    & Kalman filter \raggedright
+    & \tabularnewline
+    \hline
+    Feature-based
+    &Trajectory matching (\code{traj.match}),  \raggedright
+    & Extended Kalman filter \tabularnewline
+    &extended Kalman filter,  \raggedright
+    & \tabularnewline
+    &Yule-Walker equations  \raggedright
+    & \tabularnewline
+    \hline
+  \end{tabular}
+  \caption{
+    Inference methods for POMP models.
+    For those currently implemented in \pkg{pomp}, function name and a reference for  description are provided in parentheses.
+    Standard Expectation-Maximization (EM) and Markov chain Monte~Carlo (MCMC) algorithms are not plug-and-play since they require evaluation of $f_{X_n|X_{n-1}}(x_n\given x_{n-1}\giventh\theta)$.
+    The Kalman filter and extended Kalman filter are not plug-and-play since they cannot be implemented based on a model simulator.
+    The Kalman filter provides the likelihood for a linear, Gaussian model.
+    The extended Kalman filter employs a local linear Gaussian approximation which can be used for frequentist inference (via maximization of the resulting quasi-likelihood) or approximate Bayesian inference (by adding the parameters to the state vector).
+    The Yule-Walker equations for ARMA models provide an example of a closed-form method of moments estimator.
+  }
+  \label{tab:methods}
 \end{table}
 
+\subsection{The likelihood function and sequential Monte Carlo}
+\label{sec:pfilter}
 
-\subsection{The likelihood function and sequential Monte Carlo}\label{sec:pfilter}
-
 %%%%  PFILTER PSEUDOCODE
 \begin{algorithm}[ht]
   \caption{\textbf{Sequential Monte Carlo (SMC, or particle filter)}:
@@ -541,9 +549,11 @@
 In particular, if all the particle weights are equal then \cref{alg:systematic} has the appropriate behavior of leaving the particles unchanged.
 As pointed out by \citep{douc05}, stratified resampling performs better than multinomial sampling and \cref{alg:systematic} is in practice comparable in performance to stratified resampling and somewhat faster. 
 
+\pagebreak
 
 %%% ITERATED FILTERING
-\subsection{Iterated filtering}\label{sec:mif}
+\subsection{Iterated filtering}
+\label{sec:mif}
 
 % MIF PSEUDOCODE
 \begin{algorithm}[h]
@@ -631,7 +641,8 @@
 This approach has been used in a variety of previously proposed POMP methodologies \citep{kitagawa98,janeliu01,wan00} but iterated filtering is distinguished by having theoretical justification for convergence to the maximum likelihood estimate \citep{ionides11}.
 
 
-\subsection{Particle Markov chain Monte Carlo}\label{sec:pmcmc}
+\subsection{Particle Markov chain Monte Carlo}
+\label{sec:pmcmc}
 
 %% PMCMC PSEUDOCODE
 \begin{algorithm}[h]
@@ -680,7 +691,8 @@
 In part because it gains only a single likelihood evaluation from each particle-filtering operation, PMCMC can be computationally relatively inefficient \citep{bhadra10,ionides15}.
 Nevertheless, its invention introduced the possibility of full-information plug-and-play Bayesian inferences in some situations where they had been unavailable.
 
-\subsection{Synthetic likelihood of summary statistics}\label{sec:probe}
+\subsection{Synthetic likelihood of summary statistics}
+\label{sec:probe}
 
 %%%%% SYNTHETIC LIKELIHOOD EVALUATION ALGORITHM
 \begin{algorithm}
@@ -823,7 +835,8 @@
 the package supports alternative choices of proposal distribution.
 
 
-\subsection{Nonlinear forecasting} \label{sec:nlf}
+\subsection{Nonlinear forecasting}
+\label{sec:nlf}
 
 %%%%% NLF QUASI LIKELIHOOD ALGORITHM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{algorithm}[h]
@@ -904,9 +917,12 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-\section{Model construction and data analysis: simple examples} \label{sec:examples}
+%% \clearpage
+\section{Model construction and data analysis: Simple examples}
+\label{sec:examples}
 
-\subsection{A first example: the Gompertz model}\label{sec:gompertz:setup}
+\subsection{A first example: The Gompertz model}
+\label{sec:gompertz:setup}
 
 The plug-and-play methods in \pkg{pomp} were designed to facilitate data analysis based on complicated models, but we will first demonstrate the basics of \pkg{pomp} using simple discrete-time models, the Gompertz and Ricker models for population growth \citep{Reddingius1971,Ricker1954}.
 The Ricker model will be introduced in \cref{sec:ricker:setup} and used in \cref{sec:ricker:probe.match}; the remainder of \cref{sec:examples} will use the Gompertz model.
@@ -1129,7 +1145,8 @@
 The latter approach has the advantage of allowing one to estimate the Monte Carlo error itself;
 we will demonstrate this in \cref{sec:gompertz:mif}.
 
-\subsection{Maximum likelihood estimation via iterated filtering}\label{sec:gompertz:mif}
+\subsection{Maximum likelihood estimation via iterated filtering}
+\label{sec:gompertz:mif}
 
 Let us use the iterated filtering approach described in \cref{sec:mif} to obtain an approximate maximum likelihood estimate for the data in \code{gompertz}.
 Since the parameters of \cref{eq:gompertz1,eq:gompertz-obs} are constrained to be positive, when estimating, we transform them to a scale on which they are unconstrained.
@@ -1283,6 +1300,16 @@
 In this case, we see that the \code{mif} procedure is successfully maximizing the likelihood up to an error of about 0.1 log units.
 
 \begin{table}
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/pomp -r 1148


More information about the pomp-commits mailing list